999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新授課“四問驅(qū)動”教學范式的構(gòu)建與實踐 ①——課堂教學實施“問題解決”的操作策略的探索

2021-09-11 02:22:16王克亮
數(shù)學通報 2021年7期
關(guān)鍵詞:案例數(shù)學教學

王克亮

(江蘇省射陽中學 224300)

《普通高中數(shù)學課程標準(2017年版)》在課程目標中強調(diào):“通過高中數(shù)學課程的學習,學生能提高從數(shù)學角度發(fā)現(xiàn)和提出問題的能力、分析和解決問題的能力(簡稱‘四能’).”這表明新的課程標準提倡課堂教學采用“問題解決”的形式. 與之配套的蘇教版高中數(shù)學新教材則在扉頁的“致同學”中提到:“怎樣學習數(shù)學?第一,要學會發(fā)現(xiàn)問題和提出問題;第二,要嘗試分析并解決所提出的問題;第三,要學會回顧反思.”很明顯,這是在向?qū)W生介紹“問題解決”式的學習方法.

那么,在高中數(shù)學新授課中,該如何實施“問題解決”式的教學方法呢?經(jīng)過近兩年的探索與實踐,筆者構(gòu)建了“四問驅(qū)動”的教學范式.

1 “四問驅(qū)動”教學范式的流程及內(nèi)涵

筆者構(gòu)建的新授課“四問驅(qū)動”教學范式的流程如圖1所示,其中,“啟問、探問、追問、回問”構(gòu)成一個問題解決循環(huán).

圖1

筆者認為,一節(jié)新授課就是一個“問題解決”的大循環(huán).

啟問:依據(jù)目標,提出問題. 這是“問題解決”的發(fā)生階段,指發(fā)現(xiàn)問題與提出問題的過程. 啟問通常緊跟問題情境之后或置于一個教學活動之前,往往隱含一節(jié)課或一個教學環(huán)節(jié)的學習目標.

探問:拾級而上,解決問題. 這是“問題解決”的發(fā)展階段,指分析問題與解決問題的過程. 這一階段通常需要老師的引導與啟發(fā),可設計一系列的子問題或“問題解決”的小循環(huán)來引導學生探究.

追問:質(zhì)疑交流,促進思維. 這是“問題解決”過程中的一個個小高潮,指質(zhì)疑問難與思維交流的過程,旨在出現(xiàn)老師質(zhì)疑學生、學生質(zhì)疑學生、以及學生質(zhì)疑老師的生動場景.

回問:反思提煉,總結(jié)提升. 這是“問題解決”的結(jié)束階段,指回顧與反思的過程,意圖從中提煉思想方法,或提出新的問題.

筆者認為,一節(jié)新授課就是在不斷地提出問題與解決問題的過程中達成學習目標.

2 “四問驅(qū)動”教學范式的實踐與體會

在新授課“四問驅(qū)動”教學范式的實踐中,筆者獲得了如下一些啟示.

2.1 啟問:宜發(fā)展學生核心素養(yǎng)

《普通高中數(shù)學課程標準(2017年版)》在教學建議中強調(diào):“情境創(chuàng)設和問題設計要有利于發(fā)展數(shù)學學科素養(yǎng).”筆者心目中的“啟問”是教學目標問題化的結(jié)果,是貫穿整節(jié)課或一個教學環(huán)節(jié)的大問題,它不只是瞄準定義、定理、法則這些冰冷的知識,而應盡量發(fā)展數(shù)學抽象、數(shù)學建模、直觀想象等數(shù)學核心素養(yǎng).

案例1向量的概念及表示

引例1每次上課前,我(指教者,下同)從辦公室出來走140米到了教室;下課后,我將再從教室出發(fā)走140米回到辦公室. 那么,我這兩次運動位置變化的效果一樣嗎?

意圖引出“位移”這個矢量.

引例2每次上課前從辦公樓出來時,我先向西勻速行走40秒,每秒鐘行2米;然后向南勻速行走10秒,也是每秒鐘行2米. 那么,這兩個時段內(nèi)我行走的速度一樣嗎?

意圖引出“速度”這個矢量.

追問像這樣的量,你能再列舉一些嗎?

意圖抽象出上述兩個物理量的共性之處,并找出更多類似的量.

● 用什么樣的數(shù)學模型來表示這樣的量?又該如何研究這個數(shù)學模型呢?

意圖從數(shù)學抽象、數(shù)學建模以及研究路線的角度“啟問”,進入“問題解決”大循環(huán). 同時指出,這就是新的一章“向量”將要研究的內(nèi)容.

案例2平面向量基本定理

回顧向量共線定理的內(nèi)容是什么?

意圖回顧已學知識:如果有一個實數(shù)λ,使b=λa(a≠0),那么b與a是共線向量;反之,如果b與a(a≠0)是共線向量,那么有且只有一個實數(shù)λ,使b=λa.

追問1你是如何理解向量共線定理的?

意圖引導學生回答出以下兩點:

(1)所有的與向量a共線的向量,與實數(shù)之間構(gòu)成了一一對應的關(guān)系;

(2)一個非零向量,利用數(shù)乘可以表示所有的與它共線的向量.

追問2如果將向量共線定理看成是一維空間中的一個基本定理,那么你想到了什么樣的問題?

意圖引導學生提出如下問題.

● 在二維空間(即平面)中,有沒有類似的基本定理呢?

意圖從直觀想象、數(shù)學建模的角度“啟問”,進入“問題解決”大循環(huán),同時引出本節(jié)課的課題.

評注上述兩個案例都是從數(shù)學核心素養(yǎng)的高度來“啟問”的.筆者認為,新授課的“啟問”,通常指明了本節(jié)課研究的大方向,明確了本節(jié)課的核心教學目標,它可以只是一個“虛擬的問題”,起“前呼”的作用.在案例2的情境之后,筆者還為學生自己發(fā)現(xiàn)問題與提出問題創(chuàng)設了平臺.

2.2 探問:宜展示知識形成過程

新授課離不開有關(guān)概念、定理、法則等新知識的學習,為了讓學生弄清楚這些新知識的來龍去脈,教學中應盡量還原它們的形成過程,所以需要設計一些探究性問題.筆者認為,“探問”應圍繞“啟問”而設計,層層遞進,通過這些問題的解決自然生成新的知識.另外,新知識的應用策略也可以用“探問”的形式來引領(lǐng).

案例3向量的概念及表示(案例1續(xù))

明確研究路線請回顧“集合”的所學內(nèi)容,并類比其研究模式,試確定“向量”這個全新的數(shù)學模型的研究路線.

意圖提煉出數(shù)學對象的一般研究模式:數(shù)學概念——表示方法——特殊模型——定義運算——知識運用.然后明確本節(jié)課主要研究向量的概念、表示和特殊的向量模型.

問題1什么叫向量?你認為該如何給它下個定義呢?

意圖從前面的多個實例中抽象出“既有大小,又有方向”這兩個共同特征.

問題2對于既有大小又有方向的向量,你想到了哪幾種合理的表示方法?

意圖在已學的線段、有向線段等知識的基礎上,從圖形、字母等角度來研討向量的表示方法,并給出向量的長度(模)的概念及表示方法.

問題3自己先畫一些向量,然后試著從長度和方向這兩個角度觀察,我們可以給出哪些特殊的向量模型?

意圖從學生所作的圖形入手,描述其特征,指出它的大小或方向的特殊性,然后進行合理命名,并借鑒已有經(jīng)驗給出相應的記法,逐步完成下列表格.

名 稱特 征圖形表示大小方向記法零向量長度為00任意0單位向量長度等于1個單位長度1/單位向量e相等向量長度相等且方向相同相等相同a=b相反向量長度相等且方向相反相等相反a=-b平行向量(共線向量)方向相同或相反的非零向量/相同或相反a∥b垂直向量方向相互垂直/垂直a⊥b

問題4如何運用上述新知識來解決問題?

意圖例題分析、方法提煉及變式練習(此略).

評注本案例中的問題1~問題3是根據(jù)數(shù)學對象的一般研究模式而確定的,它們是相對獨立的三個“探問”,而問題4則是新知識的應用策略.實踐表明,本節(jié)課中所有的新知識都可以在學生自行探究的基礎上自然生成,無需任何“灌輸”.特別是問題3,給了學生較多的發(fā)揮空間,課堂上甚至探究出了本節(jié)內(nèi)容中沒有涉及到的“垂直向量”.

案例4平面向量基本定理(案例2續(xù))

問題1在平面內(nèi),若有類似于向量共線定理的基本定理,該如何來探究呢?

問題1.1若有這樣的基本定理,它的結(jié)構(gòu)如何?

意圖類比向量共線定理得到平面內(nèi)該基本定理的結(jié)構(gòu):給定平面內(nèi)的一些非零向量,對于該平面內(nèi)的任一向量,都可以用這些向量來表示.

問題1.2若只給定平面內(nèi)的一個非零向量,它能表示該平面內(nèi)的任一向量嗎?為何?

意圖引導學生體會到平面內(nèi)的一個非零向量只能表示與它共線的所有向量.

問題1.3若給定平面內(nèi)的兩個非零向量,它能表示該平面內(nèi)的任一向量嗎?

引例如圖2,炮彈在發(fā)射的某一時刻,速度v可以分解為水平向前的分速度v1和豎直向上的分速度v2.那么,v,v1,v2之間的關(guān)系可以怎樣表示?

圖2

意圖根據(jù)向量的加法法則,得v=v1+v2.

思考1保留上述兩個非零向量v1,v2,換一個炮彈的發(fā)射速度v3(如圖3所示),它能用v1,v2的式子來表示嗎?

圖3

意圖得到v3=λ1v1+λ2v2的表示形式.

追問1該表達式中的λ1與λ2唯一嗎?為什么?

意圖引導學生用向量加法的平行四邊形法則和向量共線定理解釋λ1與λ2的唯一性.

思考2若將v1,v2改成平面內(nèi)其它的兩個非零向量e1,e2,將v3改成平面內(nèi)的任一向量a,上述結(jié)論還成立嗎?

意圖給出多組非零向量e1,e2,引導學生體會到只要它們不共線,結(jié)論總成立.

問題1.4研究至此,你能得到什么樣的結(jié)論?

意圖提煉出平面向量基本定理,并介紹基底與正交分解的概念.

問題1.5我們是如何探究得到平面向量基本定理的,你從中獲得了哪些感悟?

意圖從邏輯推理(類比遷移、理性分析、邏輯表述)、數(shù)學建模、直觀想象等數(shù)學核心素養(yǎng)的角度談學習體會.

問題2你是如何理解平面向量基本定理的?

意圖引導學生從以下幾個角度來理解:

(1)平面內(nèi)一對不共線的向量,就可以表示該平面內(nèi)的所有向量;

(2)當一組基底確定后,平面內(nèi)的向量就與實數(shù)對(λ1,λ2)之間建立了一一對應的關(guān)系;

(3)平面向量基本定理可作為判斷向量是否共面的依據(jù),所以也可以理解成是向量共面定理;

(4)平面向量基本定理可看成是向量共線定理的推廣,從一維空間拓展到了二維空間.

追問2很自然地,此時你又有了什么樣新的猜想?

意圖再將平面向量基本定理推廣到三維空間,猜想出空間向量基本定理.

問題3如何運用平面向量基本定理來解決問題?

意圖例題分析、方法提煉及變式練習(此略).

評注在該案例中,問題1~問題3是“問題解決”大循環(huán)中的“探問”;同時,問題1及其子問題又構(gòu)成了一個“問題解決”的小循環(huán),其中的問題1相當于是“啟問”,問題1.1~1.4是“探問”,問題1.5是“回問”,問題解決過程中有“追問”.

2.3 追問:宜促使學生深度思維

數(shù)學教育的核心目標在于培養(yǎng)學生的思維能力,所以課堂上我們應追求學生的深度思維.對此,“追問”應當是一個有效的策略.“追問”可以基于課前預設,更多來自課中臨時生成,由此可引發(fā)師生之間、生生之間的對話,促使師生思維的交流與碰撞,在追問中將學生的思維不斷引向深入.

比如,在案例1中,“追問 像這樣的量,你能再列舉一些嗎?”需要學生抽象出“位移”與“速度”的共同特征.

在案例2中,“追問1 你是如何理解向量共線定理的?”需要學生深入領(lǐng)會向量共線定理的內(nèi)涵,并能用自己的語言表述出來;而“追問2 如果將向量共線定理看成是一維空間中的一個基本定理,那么你想到了什么樣的問題?”則需要學生善于類比,在二維空間中提出類似的新問題.

在案例3中,特別是在問題3的解決過程中,應當有多個臨時生成的“追問”.比如,“如何確定零向量的方向比較合理?”“相反向量類似于哪個熟悉的概念?”“平行向量的定義為何要強調(diào)‘非零向量’?”“零向量與其它向量平行嗎?”“平行向量中的‘平行’如何理解?”“共線向量中的‘共線’如何理解?”等.

在案例4中,“追問1 該表達式中的λ1與λ2唯一嗎?為什么?”需要學生能夠運用所學知識探究出λ1與λ2的唯一性;而“追問2 很自然地,此時你又有了什么樣新的猜想?”則需要將一維、二維空間中的結(jié)論推廣到三維空間,以培養(yǎng)學生的類比遷移和創(chuàng)新思維能力.

評注“追問”通常貫穿教學的全過程,它的主體可以是老師,也可以是學生.為了培養(yǎng)學生質(zhì)疑的勇氣與能力,課堂上要創(chuàng)設更多的平臺鼓勵學生發(fā)問.比如,老師可經(jīng)常說這樣的幾句話:“此時,你想提出什么樣的問題?”“對此,你有什么好的想法?”“同學們有什么疑問?”等.筆者認為,“追問”是靈動課堂的核心所在,是教師教學智慧的體現(xiàn).

2.4 回問:宜引導學生提高認識

我們知道,數(shù)學是一門邏輯性、探究性很強的學科,所以在新知識的學習中,回顧反思這一思維活動是必不可少的,它對提高學生的認知水平和數(shù)學能力至關(guān)重要.“回問”就是利用問題驅(qū)動學生進行反思,讓學生在反思中感悟,在反思中提升,在反思中創(chuàng)新.

案例5向量的概念及表示(接案例3)

我們是建立了什么樣的數(shù)學模型來表示“位移”“速度”這些量的?本節(jié)課我們研究了這個數(shù)學模型的哪些內(nèi)容?

意圖回顧本節(jié)課所學的主要內(nèi)容,即向量的定義與表示、特殊的向量模型.

在本節(jié)課的學習中,你獲得了哪些啟示?又有哪些地方值得注意?

意圖讓學生暢所欲言,并聚焦以下幾點:

(1)學會建模:學會從多個實例中抽象出數(shù)學模型,如向量的概念;

(2)注重傳承:學會將舊的知識移植到新的知識中,如向量的表示、特殊的向量模型等;

(3)轉(zhuǎn)變觀念:注意一些舊的經(jīng)驗可能有了新的涵義,如平行向量、共線向量中的“平行”“共線”的意義已不同于舊的經(jīng)驗,值得注意.

后續(xù)我們將要研究“向量”這個數(shù)學模型的哪些內(nèi)容?

意圖明確后續(xù)將要研究向量的運算及應用等,進而引出“向量的加法”這個話題,為下節(jié)課做鋪墊,激發(fā)學生進一步學習的興趣.

案例6平面向量基本定理(接案例4)

你是如何理解平面向量基本定理的?

意圖把握平面向量基本定理的實質(zhì),它是一組本質(zhì)一致的結(jié)論在二維空間中的表現(xiàn)形式.

你認為研究平面向量基本定理有何重要意義?

意圖讓學生體會到,在此基礎上可建立平面向量與實數(shù)對的一一對應關(guān)系,進而為平面向量的代數(shù)化奠定基礎.

在本節(jié)課學習的基礎上,你想提出什么樣的新問題?

意圖引出“向量的坐標表示與坐標運算”這個話題,為下節(jié)課作鋪墊,激發(fā)學生進一步探究的欲望.

評注上述兩個案例分別從知識內(nèi)涵、研究路徑、學習意義、問題提出等角度進行“回問”,加深了學生的認識.筆者認為,“回問”通常起“后應”的作用,既是對“啟問”的回應,更是對思想和方法的提煉與升華;同時,“回問”還常常起著承上啟下的作用.

實踐表明,基于“啟問、探問、追問、回問”的教學范式,是新授課實施“問題解決”的一個較好操作策略,能充分發(fā)揮學生的主體作用,實現(xiàn)課堂教學方式的轉(zhuǎn)型.該教學范式既與新課標的倡議相吻合,又能提升課堂的層次.

猜你喜歡
案例數(shù)學教學
案例4 奔跑吧,少年!
少先隊活動(2021年2期)2021-03-29 05:40:48
微課讓高中數(shù)學教學更高效
甘肅教育(2020年14期)2020-09-11 07:57:50
隨機變量分布及統(tǒng)計案例拔高卷
“自我診斷表”在高中數(shù)學教學中的應用
東方教育(2017年19期)2017-12-05 15:14:48
發(fā)生在你我身邊的那些治超案例
中國公路(2017年7期)2017-07-24 13:56:38
對外漢語教學中“想”和“要”的比較
唐山文學(2016年2期)2017-01-15 14:03:59
我為什么怕數(shù)學
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
一個模擬案例引發(fā)的多重思考
跨越式跳高的教學絕招
體育師友(2013年6期)2013-03-11 18:52:18
主站蜘蛛池模板: 国产青青操| 无码一区二区波多野结衣播放搜索| 中文字幕一区二区人妻电影| 91啪在线| 激情视频综合网| 日韩不卡高清视频| 日韩欧美视频第一区在线观看| 亚洲香蕉在线| 国产在线观看高清不卡| 免费无遮挡AV| 国产成熟女人性满足视频| 国产女人爽到高潮的免费视频| 国产理论一区| 超清无码熟妇人妻AV在线绿巨人| 美女一区二区在线观看| 中日韩一区二区三区中文免费视频 | 欧美啪啪网| 全部无卡免费的毛片在线看| 国产欧美一区二区三区视频在线观看| 久久伊伊香蕉综合精品| 一级毛片在线播放| 亚洲成a人片7777| 亚洲精品无码在线播放网站| 国产精女同一区二区三区久| 四虎在线高清无码| 尤物视频一区| 91精品专区国产盗摄| 毛片免费高清免费| 成人韩免费网站| 久久久精品无码一二三区| 五月婷婷综合色| 亚洲va视频| 国产精品嫩草影院av| 亚洲无限乱码一二三四区| 国产精品嫩草影院视频| 亚洲av色吊丝无码| 青青久久91| 天天综合网色中文字幕| 亚洲色图综合在线| 黄色网页在线播放| 免费在线a视频| 老司机午夜精品网站在线观看 | 久久久久亚洲AV成人网站软件| 91在线精品麻豆欧美在线| 国产91高清视频| 国产乱人乱偷精品视频a人人澡| 99热最新网址| 麻豆国产精品视频| 国产精品部在线观看| 日本影院一区| 久久精品人人做人人爽97| 精品久久香蕉国产线看观看gif| 中文一级毛片| 久久久精品无码一区二区三区| 久青草国产高清在线视频| 国产一区二区三区精品欧美日韩| 久久婷婷五月综合97色| 沈阳少妇高潮在线| 亚洲成人免费看| 97在线公开视频| 久久99久久无码毛片一区二区| 玩两个丰满老熟女久久网| 青草视频在线观看国产| 日韩免费毛片| 狼友av永久网站免费观看| 国产精品视频公开费视频| 秋霞午夜国产精品成人片| 日本高清免费不卡视频| 国产精品专区第一页在线观看| 亚洲第一成年网| 免费全部高H视频无码无遮掩| 91毛片网| 久久国产拍爱| 中文字幕在线永久在线视频2020| 国产情侣一区二区三区| 欧美精品xx| 日本亚洲欧美在线| 88av在线| 亚洲无码高清免费视频亚洲| 国产一区二区三区在线观看免费| 亚洲高清在线天堂精品| 尤物精品视频一区二区三区|