999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

LIMIT CYCLE BIFURCATIONS OF A PLANAR NEAR-INTEGRABLE SYSTEM WITH TWO SMALL PARAMETERS?

2021-09-06 07:54:04梁峰

(梁峰)

The Institute of Mathematics,Anhui Normal University,Wuhu 241000,China E-mail:liangfeng741018@126.com

Maoan HAN (韓茂安)?

Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China Department of Mathematics,Shanghai Normal University,Shanghai 200234,China E-mail:mahan@shnu.edu.cn

Chaoyuan JIANG (江潮源)

The Institute of Mathematics,Anhui Normal University,Wuhu 241000,China E-mail:jcy7368591@126.com

Abstract In this paper we consider a class of polynomial planar system with two small parameters,ε and λ,satisfying 0< ε ? λ ? 1.The corresponding first order Melnikov function M1with respect to ε depends on λ so that it has an expansion of the form M1(h,λ)=.Assume that M1k′(h)is the first non-zero coefficient in the expansion.Then by estimating the number of zeros of M1k′(h),we give a lower bound of the maximal number of limit cycles emerging from the period annulus of the unperturbed system for 0<ε?λ?1,when k′=0 or 1.In addition,for each k∈ N,an upper bound of the maximal number of zeros of M1k(h),taking into account their multiplicities,is presented.

Key words Limit cycle;Melnikov function;integrable system

1 Introduction and Main Results

Consider the planar near-integrable system

where

ε>

0 is small,

p

(

x,y

)and

q

(

x,y

)are arbitrarypolynomials with degree

n

and independent of

ε,F

(

x,y

)is a particular polynomial with

F

(0

,

0)/=0

,

and the dot denotes a derivative with respect to the variable

t

.The unperturbed system of(1.1)has a period annulus around the origin.

Motivated by the works mentioned above,especially the method used in[14],in this paper we extend the bifurcation method with two small parameters of near-Hamiltonian systems[8]to consider limit cycle bifurcations of the near-integrable system

where 0

?

λ

?1 and

When

ε

=0,system(1.2)has a center at the origin and two parallel lines of singular points

Note that 0

<

?

x

<x

for

λ>

0 small.Then,on the region|

x

|

<

|

x

|

,

system(1.2)is equivalent to the near-Hamiltonian system

whose unperturbed system has a family of periodic orbits given by

which forms a period annulus of systems(1.2)|and(1.4)|surrounding the origin,denoted by A.When

λ

=0

,L

(

h,λ

)reduces to

Corresponding to the family of periodic orbits,system(1.4)has the following first order Melnikov function in

ε

:

Where,by Lemma 2.1 in the next section,

Theorem 1.1

Consider system(1

.

2)with

n

∈Zand 0

?

λ

?1

.

Then,for

k

∈N,

2 Preliminary Lemmas

In this section we provide some preliminary lemmas in order to prove Theorem 1.1.

Lemma 2.1

For

k

∈N,the integral formula of

M

(

h

)in(1

.

8)holds.

Proof

Let

x

∈(?1

,

1)

.

Then,the perturbed terms of system(1

.

4)have the following expansions for 0

?1:

Inserting(2.1)and(2.2)into(1.6)yields

On the other hand,by(1.5),the first equality in(2.4)and the derivative formula in Lemma 2.1[8],we have

that is,

M

(

h,λ

)is independent of

λ.

Hence,(1.7),(2.3)and(2.4)together give

Lemma 2.2

Denote

Proof

The proofs of statements(i)and(ii)are straightforward.(iii)From(2.5),we have,for

i

∈N and

m

∈Z,

Thus,the statement(iii)holds.

(iv)Making a change

t

=

θ

?

π

,we get,from(2.5),that for

r

∈(0

,

1),

Then,by the integral formula

the first formula of(iv)is valid.

For the second formula of(iv),

which,together with the integral formula

and the first formula of(iv),yields

In view of(iii)and the first two formulae of(iv),it is clear that the third one of(iv)holds.

(v)Since,by(2.5),

Lemma 2.3

For

m

∈Z,

which is a polynomial in

r

of degree?

m

,and

?

(

r

)denotes a polynomial in

r

with degree

m

?1 and

?

(

r

)=2

π,?

(

r

)=

π

(2?

r

)

.

Proof

We only give the proof of the case

m>

0 by mathematical induction.The proof for other two cases is clear.First,when

m

=1

,

2,the equality(2

.

6)holds,by the first two formulas of(iv)in Lemma 2.2,where

?

(

r

)=2

π,?

(

r

)=

π

(2?

r

)

.

Suppose that(2

.

6)works for

m

=3

,

4

,...,i.

Then,for

m

=

i

+1,we have,by the statement(v)of Lemma 2.2,that

is a polynomial in

r

of degree

i.

Therefore,(2

.

6)is obtained for all

m

≥1

.

Lemma 2.5

For

k

=1 or 3,

m,n

∈Zand

r

∈(0

,

1)

,

the following

m

+

n

+1 functions are linearly independent:

respectively.Obviously,for

k

=1 or 3,the functions in the above are linearly independent in the interval(0,1).Thus,the conclusion of the lemma follows.

3 Proof of Theorem 1.1

3.1 Proof of Theorem 1.1(i)

Set,for

n

≥1 and

r

∈(0

,

1),

Then,for

k

≥1,

Applying the statements(i),(ii)and(iii)of Lemma 2.2 in turn,we obtain that,for

k

≥1,

Then,by using very similar methods as to those in(3.7)–(3.8),we further have,by(3.11)and Lemma 2.3,that

By Lemmas 2.2 and 2.3,we note that in(3.15),

3.2 Proof of Theorem 1.1(ii)

Since,for

s

≥1 and

r

∈(0

,

1),

it follows that for

s

≥1,

Using(3.23),we have in(3.20)that

and when

n

≥2,

which,together with Lemmas 2.4 and 2.5,leads to

H

(1)≥2

.

For

n

=2,we have,similarly,that

and by Lemmas 2.4 and 2.5,

H

(2)≥2

.

When

n

≥3 is odd,substituting(3.33)and(3.41)into(3.30)shows that

where for

n

≥3 odd,we get

Recall that if for

n

≥3

,

can be chosen arbitrarily,then so can the coefficients

can be chosen arbitrarily and

Based on the discussions of the case

k

=1

,

we conclude that the statement of Theorem 1.1(ii)holds in this case.

主站蜘蛛池模板: 波多野结衣AV无码久久一区| 亚洲无码电影| 日韩精品一区二区深田咏美| 欧美不卡视频在线观看| 欧美日韩亚洲国产主播第一区| 久久久久国产精品熟女影院| 四虎影视永久在线精品| 国产成人乱无码视频| 亚洲国产欧美目韩成人综合| 91小视频在线观看免费版高清| 香蕉国产精品视频| 麻豆精品久久久久久久99蜜桃| 亚洲精品桃花岛av在线| 99热这里只有精品国产99| 色哟哟国产精品一区二区| 日韩高清欧美| 永久天堂网Av| 在线看片国产| 亚洲精品波多野结衣| 中文国产成人久久精品小说| 男人天堂伊人网| 色综合a怡红院怡红院首页| 欧美日韩国产在线观看一区二区三区 | 中文字幕66页| 久久黄色免费电影| 亚洲国产成人久久精品软件| 色婷婷色丁香| 国产肉感大码AV无码| 成人中文在线| 国产91蝌蚪窝| 亚洲成人黄色网址| 91青青草视频| 91福利一区二区三区| 亚洲欧美日韩另类在线一| 九九精品在线观看| 亚洲欧美色中文字幕| 国产成人无码综合亚洲日韩不卡| 国产成人精品一区二区三在线观看| 国产精品第三页在线看| 午夜天堂视频| 亚洲日韩AV无码一区二区三区人| 欧美性爱精品一区二区三区| 欧美精品二区| 婷婷中文在线| 日韩成人高清无码| 亚洲精品无码在线播放网站| 人妻无码中文字幕第一区| 熟妇无码人妻| 国产欧美视频在线观看| 99青青青精品视频在线| 极品av一区二区| 日本日韩欧美| 日本a∨在线观看| 亚洲无码电影| 青草国产在线视频| 99热这里只有精品久久免费| 久久无码高潮喷水| www.日韩三级| 国产精品黄色片| 久久久久国产精品嫩草影院| 亚洲 欧美 日韩综合一区| 亚洲精品国产自在现线最新| AV色爱天堂网| 国产99精品视频| 国产一区二区福利| 亚洲欧美成人综合| 青青青视频蜜桃一区二区| 欧美日韩精品一区二区在线线| 国产成人一级| 狠狠色狠狠色综合久久第一次| 国产白浆在线观看| 伊人91在线| 欧美日本中文| 三上悠亚一区二区| 亚洲欧美在线综合一区二区三区 | 强乱中文字幕在线播放不卡| 国产亚洲视频免费播放| a亚洲视频| 无码国内精品人妻少妇蜜桃视频| 亚洲国产看片基地久久1024| 亚洲伊人电影| 欧美亚洲一区二区三区在线|