999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

EXISTENCE TO FRACTIONAL CRITICAL EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES?

2021-11-13 01:11:15

Department of Mathematics,Razi University,Kermanshah,Iran E-mail:nyamoradi@razi.ac.ir;neamat80@yahoo.com

Abdolrahman RAZANI

Department of Pure Mathematics,Faculty of Science,Imam Khomeini International University,34149-16818,Qazvin,Iran E-mail:razani@sci.ikiu.ac.ir

Abstract In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:whereis the fractional p-Laplacian with 0ps,a,b>0,λ>0 is a parameter,V:RN→R+is a potential function,θ=is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of in fi nitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.

Key words Hardy-Little wood-Sobolev inequality;concentration-compactness principle;variational method;Fractional p-Laplacian operators;multiple solutions

1 Introduction

In this paper,we study the multiplicity of solutions to the following Kirchhoff-type equations with Hardy-Little wood-Sobolev critical nonlinearity:

So,the main result of this paper can be included in the following theorem:

Theorem 1.1Assume that(V1)and(V2)hold.Then,(1.1)has in finitely many solutions forsp

We point out that Theorem 1.1 extends Theorem 2.4 in[21]to the casea=1,b=0,p=2 and Theorem 1.1 in[14,17,32]to the casep=2 ands=1.

We firstly recall that the fractional Kirchhoff equation was first introduced and motivated in[6].The study of existence and uniqueness of positive solutions for Choquard type equations attracted a lot of attention of researchers due to its vast applications in physical models[26].Fractional Choquard equations and their applications is very interesting;we refer the readers to[3,7,8,13,18,21,22,27,35,37]and the references therein.The authors in[27],by using the Mountain Pass Theorem and the Ekeland variational principle,obtained the existence of nonnegative solutions of a Schrdinger-Choquard-Kirchhoff-type fractionalp-equation.Ma and Zhang[18]studied the fractional order Choquard equation and proved the existence and multiplicity of weak solutions.In[7],the authors investigated a class of Brzis-Nirenberg type problems of nonlinear Choquard equation involving the fractional Laplacian in bounded domain?.Wang and Yang[36],by using an abstract critical point theorem based on a pseudo-index related to the cohomological index,studied the bifurcation results for the critical Choquard problems involving fractionalp-Laplacian operator:

where ? is a bounded domain in RNwith Lipschitz boundary andλis a real parameter.Also,in[11,23,29],the authors studied the existence of multiple solutions for problem(1.3),whenp=2.For more works on the Brezis-Nirenberg type results on semilinear elliptic equations with fractional Laplacian,we refer to[29,30,33]and references therein.

On the other hand,Song and Shi in[31]studied the following Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity:

The proofs of our main results are obtained by applying variational arguments inspired by[25,31].

The paper is organized into three sections.In Section 2,we recall some basic de finitions of fractional Sobolev space and Hardy-Littlewood-Sobolev Inequality,and we give some useful auxiliary lemmas.In Section 3,we give the proof of Theorem 1.1.

2 Preliminary Lemmas

Let 0

equipped with the norm

De fine the space

with the norm

Lemma 2.1(see[25,Lemma 1])(Xλ,‖·‖Xλ)is a uniformly convex Banach space.

Lemma 2.2(see[25,Lemma 2])Assume that(V1)holds.Then the embeddingsXλWs,p(RN)Lν(RN)are continuous forν∈[].In particular,there exists a constantCν>0 such that

Moreover,for anyR>0 andν∈[1]the embeddingXλLν(BR(0))is compact.

Also,letSp,Hbe the best constant

andS?be the best Sobolev constant

Now,we recall that a sequence{(un,vn)}is a Palais-Smale sequence at the levelc((PS)csequence in short)for the functionalJifJ(un,vn)→candJ′(un,vn)→0.If any(PS)csequence{(un,vn)}has a convergent subsequence,we say thatJsatis fies the(PS)ccondition.

Lemma 2.5Assume that(V1)and(V2)hold.ThenJλ,Vsatis fies the(PS)ccondition for allsp

So,{un}nis bounded inXλ.

Then,there exists a subsequence,still denote by{un},such thatun?uweakly inXλ.Also,in view of Lemma 2.2 and Lemma 2.3,we have

So,(2.16)and(2.17)imply that

Here,similar to the method in[25],we prove that{un}converges strongly touinXλ.To this end,let?∈Xλbe fixed and denote byB?the linear functional onXλde fined by

for allv∈Xλ.By the Hlder inequality and de finition ofB?,we have

To prove our main result,we will use the Krasnoselskii’s genus introduced by Krasnoselskii in[38].LetXbe a Banach space and let us denote by Λ the class of all closed subsetsA?X{0}that are symmetric with respect to the origin;that is,u∈Aimplies?u∈A.

Theorem 2.6(See[28])LetXbe an in finite dimensional Banach space and letJ∈C1(X,R)be even functional withJ(0)=0.IfX=Y⊕Z,whereYis finite dimensional andJsatisfiesthat

(I1)There exist constantsρ,α>0 such thatJ(u)≥αfor allu∈?Bρ(0)∩Z;

(I2)There exists Θ>0 such thatJsatis fies the(PS)ccondition for 0

whereγ(V)is Krasnoselskii’s genus ofV.Forj∈N,set

So,0≤cj≤cj+1forj>kandcj<Θ,then we get thatcjis the critical value ofJ.Furthermore,ifcj=cj+1=···=cj+m=c<Θ forj>k,thenγ(Kc)≥m+1,where

Proof of Theorem 1.1We shall apply Theorem 2.6 toJλ,V.We know thatXλis a Banach space andJλ,V∈C1(Xλ,R).By(2.8),functionalJλ,Vsatis fiesJλ,V(0)=0.We divide the proof into the following four steps:

Step 1We will show thatJλ,Vsatis fies Hypothesis(I1).By(2.7),foru∈Xλ,we have

Step2We will sho wthatJλ,Vsatisfies Hypothesis(I3).Letis finite dimensional subspace ofXλ.Because all the norm in the finite dimensional space are equivalent,then for anyu∈,one can get

for some positive constantC0>0.Also,sp0 such thatJλ,V(u)≤0 onX?λBR.

Step 3We will prove that there exists a sequence{Υn}?(0,+∞)with Υn≤Υn+1,such that

To this end,in view of the de finition ofcn,one can get

so by the de finiti on of Γn,we get Υn<+∞and Υn≤Υn+1.

Step 4We will prove that problem(1.1)has at leastkpair of weak solutions.To this e nd,using the similar argument in the proof of Theorem 1 in[31],fork≥1,by choosing.So,by Step 3,one can get

Hence,by Theorem 2.6 and Proposition 9.30 in[28],the levelc1≤c2≤···≤ckare critical values ofJλ,V.Ifcj=cj+1,then by Theorem 2.6 and Remark 2.12 in[1],Kcjcontains in finitely many distinct points and therefore problem(1.1)has in finitely many weak solutions.Therefore,problem(1.1)has at leastkpair of weak solutions.

主站蜘蛛池模板: 亚洲第一黄片大全| 伦伦影院精品一区| 呦系列视频一区二区三区| 久久久受www免费人成| 嫩草国产在线| 欧美视频免费一区二区三区| 超清人妻系列无码专区| 亚洲第一页在线观看| 免费a级毛片18以上观看精品| 999精品在线视频| 综合五月天网| 国产成a人片在线播放| 精品撒尿视频一区二区三区| 欧美成人影院亚洲综合图| 中文字幕在线日本| 成年人国产网站| 国产一区二区三区在线观看免费| 国产H片无码不卡在线视频| 亚洲无限乱码| 午夜毛片免费看| 久久动漫精品| 精品久久高清| 免费福利视频网站| 六月婷婷综合| 亚洲天堂在线视频| 国产在线第二页| 98超碰在线观看| 国产精品永久免费嫩草研究院| 亚洲国产成人精品无码区性色| 在线免费亚洲无码视频| 成人午夜网址| 久久精品一品道久久精品| 欧美精品综合视频一区二区| 亚洲精品图区| 国产va在线| 国产成人亚洲无码淙合青草| 亚洲AV无码乱码在线观看代蜜桃| 亚洲高清日韩heyzo| 久久国产精品娇妻素人| 亚洲精品爱草草视频在线| 亚洲性视频网站| 91久久国产热精品免费| 国产黑人在线| 日韩色图区| 亚洲国产中文欧美在线人成大黄瓜| 国产精品妖精视频| 中文字幕亚洲综久久2021| 欧美人与牲动交a欧美精品| 久久国产V一级毛多内射| 精品精品国产高清A毛片| 97国产在线视频| 欧美三级日韩三级| 国产精品视频a| 老司国产精品视频| 成人福利一区二区视频在线| 国产精品第三页在线看| 色婷婷电影网| 午夜福利在线观看成人| 成人国产精品2021| 国产成人久久综合777777麻豆| 国产精品不卡永久免费| 丁香婷婷在线视频| 国产精品污视频| 婷婷成人综合| 国产丰满大乳无码免费播放| 亚洲精品国产日韩无码AV永久免费网| 亚洲啪啪网| 国产成人亚洲无码淙合青草| 国产欧美在线观看视频| 激情無極限的亚洲一区免费| 久久国产成人精品国产成人亚洲 | 国产一级毛片网站| 青青青视频91在线 | 国产一区二区视频在线| 激情五月婷婷综合网| 不卡无码网| 亚洲一级无毛片无码在线免费视频| 国产精选小视频在线观看| 亚洲欧美成人影院| 亚洲综合香蕉| 国产97公开成人免费视频| 中文国产成人精品久久一|