葛清清
新課程理念下的小學(xué)數(shù)學(xué)教學(xué),將培養(yǎng)學(xué)生的“數(shù)感”作為一項重要的教學(xué)任務(wù),旨在發(fā)展學(xué)生發(fā)現(xiàn)問題、思考問題、解決問題的能力。筆者認(rèn)為,在小學(xué)數(shù)學(xué)課堂教學(xué)中,要關(guān)注學(xué)生對數(shù)量關(guān)系的理解,如多與少、部分與整體等的關(guān)系,從而在充分感知和領(lǐng)悟的過程中發(fā)展他們的數(shù)感。
一、在生活經(jīng)驗中感知和體驗
一般來說,“數(shù)感”包括“對數(shù)的理解”和“數(shù)的概念的形成”。基于學(xué)生生活經(jīng)驗的數(shù)感培養(yǎng),就是通過演繹、歸納,逐步讓學(xué)生建立起抽象的數(shù)學(xué)概念,并在理解和掌握中形成數(shù)感。
例如,在認(rèn)識數(shù)字“0”的教學(xué)中,教師不能只是狹隘地讓學(xué)生認(rèn)識到“0”表示沒有,而應(yīng)該回歸生活,讓學(xué)生從電話號碼中的“0”、門牌號碼上的“0”、車牌號上的“0”、溫度計上的“0”等,體會到“0”在生活中的意義。對于自然數(shù)的認(rèn)識,教師也要從具體的事物入手,如數(shù)字“3”,教師可以通過實物,如3根手指、3個人、3個班、3本作業(yè)本等,讓學(xué)生感受到“3”既可以指具體的個體,也可以指集合體。另外,“3”也可以表示序數(shù),教師可以通過梨子、蘋果、香蕉、橘子等水果的排列,讓學(xué)生說說香蕉排在第幾位。還可以通過小組中學(xué)生的位置,讓學(xué)生說說第3個學(xué)生是誰,他前面一共有幾個人等,以此來體驗基數(shù)和序數(shù)的區(qū)別。
對于單位“1”的理解,教師更要引導(dǎo)學(xué)生從具體的生活現(xiàn)象中抽象出“一個計量單位”“表示許多物體組成的一個整體”的認(rèn)知,從而為分?jǐn)?shù)的學(xué)習(xí)以及其他相關(guān)知識的學(xué)習(xí)奠定良好的數(shù)感基礎(chǔ)。
二、在建構(gòu)數(shù)的概念意義中發(fā)展
在數(shù)學(xué)運(yùn)算中,數(shù)學(xué)符號扮演著非常重要的角色。學(xué)生每天都在和數(shù)學(xué)運(yùn)算符號及關(guān)系符號打交道。英國學(xué)者列科爾德創(chuàng)造了符號“=”,他在《智慧的磨刀石》一文中說:“為了避免枯燥地重復(fù)等于這個單詞,我認(rèn)真地比較了許多的圖形和記號,覺得世界上再也沒有比兩條平行而又等長的線段,意義更相同了。”還有“>”“<”等符號的來歷,都十分有趣,教師可以給學(xué)生講講這些關(guān)于數(shù)學(xué)符號來歷的小故事,讓學(xué)生感受到符號背后的智慧,在好玩和有趣中感受數(shù)學(xué)語言,樹立符號意識,發(fā)展他們的數(shù)感。
對于數(shù)學(xué)概念或關(guān)系的描述,教師也可以通過數(shù)學(xué)符號來表示,如在學(xué)習(xí)“長方形的周長”時,學(xué)生通過演示、實踐、語言描述,基本理解了周長的計算方法。這時,教師再引導(dǎo)他們用“a”表示長方形的長,“b”表示長方形的寬,“c”表示長方形的周長,啟發(fā)學(xué)生將語言文字概括成“c=(a+b)×2”或“c=2a+2b”這樣的符號表達(dá)式。如此,學(xué)生能厘清數(shù)量關(guān)系,認(rèn)識到用符號表示的好處。這樣,學(xué)生在理解、感悟以數(shù)學(xué)符號為主要表達(dá)方式的數(shù)學(xué)語言中,能把知識逐漸符號化,并建立起敏銳的數(shù)感。
三、在積極思辨中形成數(shù)感
美國心理學(xué)家愛德華·李·桑代克告訴我們,不斷嘗試犯錯可以讓學(xué)習(xí)逐步走向正確。人們在探究自然萬物的特點(diǎn)和規(guī)律的過程中,都是在反復(fù)嘗試、不斷犯錯的過程中最終發(fā)現(xiàn)真理的。課堂上的一切學(xué)習(xí),對于學(xué)生來說都是一個個全新的對未知領(lǐng)域的探索之旅,在這樣的探究、發(fā)現(xiàn)、歸納、建構(gòu)的過程中,學(xué)生難免會出現(xiàn)這樣或那樣的錯誤。這時候,教師對學(xué)生的錯誤進(jìn)行批判,對學(xué)生理解知識并無多大幫助。
例如,在解決問題“晶晶身高是132厘米,寧寧比她高[112],寧寧身高是多少?”時,學(xué)生不假思索,列出算式“132×(1+[112])”,算出答案為143厘米。然而,當(dāng)他們遇到問題“晶晶身高是132厘米,比寧寧高[112],寧寧身高是多少?”時,往往會習(xí)慣性地仍然列式為“132×(1+[112])”,而忽略了單位“1”所對應(yīng)的對象。對于學(xué)生出現(xiàn)的這些錯誤,教師不能以批評的方式責(zé)令學(xué)生重新讀題、思考,而要讓學(xué)生自己去發(fā)現(xiàn)兩題中單位“1”所對應(yīng)的對象不同。這樣,學(xué)生才會發(fā)現(xiàn)自己產(chǎn)生錯誤的根本原因,并積極加以改正。
數(shù)感的培養(yǎng)對學(xué)生的數(shù)學(xué)學(xué)科核心素養(yǎng)的提升有著重要的意義。在日常數(shù)學(xué)教學(xué)中,教師要充分調(diào)動學(xué)生已有的生活經(jīng)驗,幫助他們積極建構(gòu)數(shù)的概念,并在積極思辨與探究實踐中,加深對數(shù)的感知和領(lǐng)悟。(作者單位:江蘇省南通市小海小學(xué))