999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

奈安與腐植酸促進烤煙生長及消減煙葉鎘污染的協同效應

2021-06-30 02:23:19黃振瑞林阿典李集勤馬柱文李淑玲
南方農業學報 2021年2期

黃振瑞 林阿典 李集勤 馬柱文 李淑玲

摘要:【目的】明確奈安與腐植酸配施對烤煙生長及品質提升的影響,并探究其對土壤有效態鎘(Cd)和煙葉Cd含量的影響及相互關系,為Cd輕度污染農田烤煙的安全生產提供技術支撐?!痉椒ā客ㄟ^大田試驗,共設4個處理[T1:不施腐植酸和奈安(CK),T2:單施奈安(1.2 g a.i/ha),T3:單施腐植酸(750 kg/ha),T4:奈安(1.2 g a.i/ha)+腐植酸(750 kg/ha)配施]。于烤煙移栽90 d后調查烤煙植株農藝性狀,移栽100 d后取植株樣品測定煙葉產量、化學品質和Cd含量,煙葉采收結束后取5~20 cm耕層土壤樣品分析不同處理的土壤有效態Cd含量、總Cd含量及土壤pH?!窘Y果】與T1(CK)處理相比,T2處理的煙葉產量顯著提高5.99%(P<0.05,下同),煙堿含量顯著降低11.92%;T3處理的煙葉產量顯著提高7.00%,煙葉總糖、還原糖、總氮和鉀含量分別顯著提高19.11%、12.65%、21.19%和9.87%;T4處理的煙葉產量顯著提高14.70%,煙葉總糖、還原糖、總氮和鉀含量分別顯著提高23.36%、16.41%、13.25%和13.73%,而煙堿含量顯著下降16.89%,煙葉化學成分的協調性最佳。施用腐植酸(T3處理和T4處理)能顯著降低煙葉Cd含量,較T1(CK)處理分別顯著降低0.96和1.22 mg/kg,消減率為35.80%~46.51%,煙葉Cd富集系數從8.22降至5.27~5.90,有效減輕煙葉對Cd的富集作用;施用腐植酸(T3處理和T4處理)還能顯著降低土壤有效態Cd含量(11.95%~14.64%),并使土壤pH分別升高0.50和0.54。相關分析結果表明,土壤有效態Cd含量與煙葉Cd含量呈極顯著正相關(P<0.01),而土壤pH與土壤有效態Cd和煙葉Cd含量均呈顯著負相關。【結論】奈安與腐植酸配施對提升烤煙生長及煙葉品質具有明顯的協同增效作用,且能消減阻控煙葉對Cd的富集,可作為植煙區Cd輕度污染農田進行烤煙安全生產的一項有效措施。

關鍵詞: 烤煙;奈安;腐植酸;鎘污染;消減阻控;協同增效

中圖分類號: S572.061 ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)02-0429-10

Abstract:【Objective】This paper investigated the effects of the combinations of Naian and humic acid on the growth and quality improvement of tobacco leaves, on the available cadmium(Cd) content in soil and Cd content in tobacco leaves and their correlations, which would provide technical support for the safe production of tobacco in slightly Cd-contaminated soil. 【Method】Four treatments were set up as field experiments,[T1:no humic acid and Naian added as control(CK), T2:Naian(1.2 g a.i/ha), T3:humic acid(750 kg/ha), T4:Naian(1.2 g a.i/ha)+humic acid(750 kg/ha). Agronomic characters of tobacco plantswere investigated after 90 d of transplanting.The yield, chemical quality and Cd content of tobacco leaves were determined after 100 d of transplanting. The available Cd content, total Cd content and pH in the soil at 5-20 cm layer were analyzed after tobacco leaves harvest. 【Result】Compared with T1(CK),T2 significantly promoted the yield of tobacco leaves by 5.99 % and significantly reduced nicotine by 11.92%(P<0.05, the same below). T3 significantly promoted the yield of tobacco leaves by 7.00 % and significantly increased the contents of total sugar,redu-cing sugar,total nitrogen and potassium in the tobacco leaves by 19.11%,12.65%,21.19% and 9.87%, respectively. T4 significantly promoted the yield of tobacco leaves by 14.70 %, significantly increased the contents of total sugar,reducing sugar,total nitrogen and potassium in the tobacco leaves by 23.36 %,16.41 %,13.25 %,13.73%, and significantly reduced the nicotine content by 16.89%. The coordination of chemical composition of tobacco leaves was the optimal. The application of humic acid(T3 and T4)significantly reduced the contents of Cd in tobacco leaves, and reduced by 0.96 and 1.22 mg/kg compared with T1(CK), the reduction rate was 35.80%-46.51%. The enrichment coefficient of Cd in tobacco leaves decreased from 8.22 to 5.27-5.90, which effectively reduced the enrichment effect of tobacco leaves on Cd. Humic acid (T3 and T4) reduced the contents of available Cd in soil by 11.95 -14.64 % and increased soil pH by 0.50-0.54. The results showed that there was extremely significant positive correlation between soil available Cd content and tobacco leaf Cd content(P<0.01), while soil pH was significantly negatively correlated with soil available Cd and tobacco leaf Cd content. 【Conclusion】The combination of Naian or humic acid has obvious synergistic effects on the improvement of the growth and quality of flue-cured tobacco, and effectively reduce the accumulation of Cd in tobacco leaves. The combined application of Naian and humic acid would be an effective technology for safe production of tobacco in the tobacco plan-ting areas in slightly Cd-contaminated soil.

Key words: tobacco; Naian; humic acid; cadmium pollution; reduction and inhibition; synergistic effect

Foundation item: Science and Technology Planning Project of Guangdong(2017A020225018)

0 引言

【研究意義】煙草是我國植煙區重要的經濟作物,優質無公害煙葉生產是確保煙草行業可持續發展的基礎。鎘(Cd)并非煙草生長的必需元素,但其在農田土壤中具有較強的移動性,極易被煙葉吸收富集(施琪等,2019)。Cd污染脅迫不僅危害煙草生長,還會降低烤煙的品質和經濟效益(彭麗成等,2011;Cheng et al.,2018)。煙葉產品在燃燒過程中約有33%的Cd會進入煙氣,并隨卷煙抽吸而進入人體肺部等器官,對人體健康造成潛在危害(Galazyn-Sidorczuk et al.,2008;周茂忠等,2017;劉春奎等,2019)。因此,開發煙葉Cd消減阻控技術,降低煙草對Cd的吸收與累積,是當前煙草安全生產的研究熱點之一?!厩叭搜芯窟M展】目前,農田重金屬Cd污染阻控技術主要有:施用磷肥、更換栽培品種或耕作制度等農藝措施(He et al.,2013;曾曉舵等,2019)以改善栽培條件,降低Cd從土壤向植物體內遷移的概率;通過鈍化劑(吳烈善等,2015;趙敏等,2018;張耿苗等,2019)、生物炭(李衍亮等,2017)及石灰(曾秀君等,2020)等改變Cd在土壤中的存在形態,使其固定在土壤中而降低遷移性和生物可利用性;噴施鋅(李曉越等,2018;路育茗等,2019)和硅(Li et al.,2020)等阻隔劑,利用植物生理作用將Cd固定在植株的不可食用或不可利用部位,以減少對人體健康的危害。腐植酸(Humic acid)作為一種天然存在的高絡合和聚合有機物,含有大量羧基、羰基及酚羥基等活性官能團,能與鉛(Pb)及Cd等多種重金屬離子絡合,且在固定重金屬離子的同時能培肥土壤和改善作物品質,已備受關注(Plaz et al.,2015;袁林等,2019)。高華軍等(2014)研究表明,施用腐植酸肥可提高土壤速效鉀和有機質等養分含量,改善煙葉化學品質,提高烤煙的經濟效益。李希希等(2015)通過盆栽試驗發現施用1.0 g/kg腐植酸可明顯抑制土壤中Pb的活性,進而降低煙葉Pb積累量,煙葉Pb消減率達52.16%。奈安的主要成分是胺鮮酯(DA-6)和氧奈酮,能提高作物的抗逆性,如預防并有效緩解除草劑藥害(郭瑞峰等,2017),減輕Cd等重金屬對植物的脅迫(肖艷輝等,2019),從而促進作物生長發育。于彩蓮等(2011)研究表明,葉面噴施DA-6可有效提高龍葵的抗逆性,增強苗期葉片過氧化物酶(POD)活性,降低苗期和成熟期葉片丙二醛(MDA)含量,使龍葵地上部生物量顯著增加7.54%~8.69%。高新菊等(2014)研究發現,噴施奈安對玉米二甲四氯鈉藥害有明顯緩解作用,能提高葉綠素含量,玉米產量較對照顯著提高50.42%。王雷等(2016)通過盆栽土培試驗發現一定濃度的DA-6可緩解Cd對黑麥草的毒害作用,顯著提高生物量和葉綠素含量,并降低黑麥草對Cd的富集效果?!颈狙芯壳腥朦c】至今,尚未明確奈安與腐植酸配施對植煙土壤Cd污染下烤煙生長及品質的影響,其協同消減和阻控煙葉對Cd的富集效應也鮮見研究報道?!緮M解決的關鍵問題】通過大田試驗探討奈安與腐植酸配施對烤煙生長及品質提升的影響,同時探究其對土壤有效態Cd和煙葉Cd含量的影響及相互關系,以期為Cd輕度污染農田烤煙的安全生產提供技術支撐。

1 材料與方法

1. 1 試驗地概況

試驗于2019年3月在廣東省梅州市蕉嶺縣廣福鎮廣育村(東經116°17′68″,北緯24°82′79″)進行,試驗地年均氣溫21.7 ℃,年降水量1304.9 mm,屬亞熱帶海洋性季風氣候。植煙土壤類型為麻沙泥田,土壤質地為壤土,中等肥力,種植制度為煙—稻年內輪作,田塊平整,排灌方便,耕作層(0~20 cm)土壤基本理化性質見表1,其中土壤總Cd含量超過我國農用地土壤污染篩選值(>0.3 mg/kg)(GB 15618—2018)。

1. 2 試驗材料

腐植酸(源自褐煤)由北京博威神農科技有限公司提供,其基本理化性質:粒度≤100目,pH 7.12,總腐植酸≥55%,有機質含量587.82 g/kg,全氮含量3.61 g/kg,全磷含量0.35 g/kg,全鉀含量24.95 g/kg,Pb含量0.51 mg/kg,Cd含量0.013 mg/kg。奈安(可濕性粉劑)由河南遠東生物工程有限公司生產提供,其有效成分為0.1%。供試烤煙品種為云煙87,為當地主栽品種。

1. 3 試驗設計

田間試驗共設4個處理,T1:不施腐植酸和奈安(CK);T2:單施奈安(1.2 g a.i/ha);T3:單施腐植酸(750 kg/ha);T4:奈安(1.2 g a.i/ha)+腐植酸(750 kg/ha)配施。每處理3次重復,小區面積67 m2,隨機區組排列,行株距為1.1 m×0.5 m。腐植酸全部基施,于移栽前5 d用耕翻機具旋耕2遍拌勻,耕深約15 cm,然后起壟種煙;奈安分別于烤煙移栽后第5和15 d兌水1000倍稀釋噴施(岳倫勇等,2013);T1(CK)處理噴施等量清水。烤煙施氮量為120 kg/ha,N∶P2O5∶K2O=1∶0.8∶2.3,其他栽培管理措施參照當地優質烤煙種植規范進行操作。

1. 4 測定指標及方法

于烤煙移栽90 d后,每小區隨機選取5株烤煙,參照YC/T 142—2010《煙草農藝性狀調查測量方法》的標準調查測定其農藝性狀,包括葉片數、節距、株高、莖圍、腰葉長及寬等指標??緹熞圃?00 d后收獲,計算各處理的煙葉產量;取烤后中部煙葉(C3F)各1 kg,烘干磨碎過0.25 mm篩,參照王瑞新(2003)的方法測定其化學成分,包括總糖、還原糖、煙堿、氯、鉀及總氮等指標。

煙葉采收結束后,每小區按五點采樣法采集5~20 cm耕層土壤,制成混合土樣,自然風干后參照GB/T 23739—2009《土壤質量 有效態鉛和鎘的測定 原子吸收法》測定土壤化學性質指標。土壤pH采用酸度計電位法進行測定;煙葉Cd含量采用HNO3-HClO4消解法進行測定;土壤總Cd采用HNO3-HClO4-HF消化進行測定;土壤有效態Cd采用0.005 mol/L DTPA+0.01 mol/L CaCl2溶液浸提法進行測定;土壤總Cd、有效態Cd和煙葉Cd含量測定均設空白和土壤成分分析標準物質(HTSB-3)作為分析質量控制,提取液和消解液采用火焰/石墨爐原子吸收光譜儀(PE-PinAAcle 900T,美國)進行測定。消減率和富集系數計算方法如下(段淑輝等,2018):

1. 5 統計分析

試驗數據采用Excel 2007和SAS 9.2進行處理分析及制圖,并以Duncans新復極差法進行差異顯著性檢驗。

2 結果與分析

2. 1 不同處理對烤煙生長及煙葉產量的影響

施用腐植酸和奈安均能促進烤煙生長,但不同處理對煙葉產量和煙株農藝性狀的影響效應存在明顯差異。由圖1可看出,煙葉產量以T4處理最高(2913.35 kg/ha),較T1(CK)處理顯著增產14.70%(P<0.05,下同);T2處理和T3處理的煙葉產量分別為2692.20和2717.80 kg/ha,二者間無顯著差異(P>0.05,下同),但較T1(CK)處理分別顯著增產5.99%和7.00%。

由表2可知,T4處理烤煙的株高、最大葉長、最大葉寬、葉片數和莖圍等農藝性狀均顯著高于T1(CK)處理,分別顯著提高12.86%、5.06%、20.62%、16.17%和9.59%;T2處理烤煙的株高、最大葉長、最大葉寬、葉片數和莖圍也顯著高于T1(CK)處理;T3處理烤煙的株高、最大葉長、葉片數、莖圍和節距等農藝性狀表現均優于T1(CK)處理,其中,最大葉長和葉片數與T2處理、T4處理間無顯著差異,但最大葉寬和莖圍顯著低于T2處理及T4處理??梢?,增施奈安和腐植酸能有效促進烤煙生長,且以奈安+腐植酸配施(T4處理)的煙葉產量和烤煙農藝性狀表現最佳,即二者具有明顯的協同增效作用。

2. 2 不同處理對中部煙葉(C3F)化學成分的影響

中部煙葉具有良好的配合特性及較高的煙葉成絲率,且不易破碎,其品質是衡量煙草優質栽培的重要指標之一(李志鵬等,2016;李影等,2019)。由表3可看出,不同處理烤煙中部煙葉化學成分指標中,除氯含量不存在顯著差異外,其余化學成分指標均存在顯著差異,尤其以對煙葉糖類化合物的影響最明顯。與T1(CK)處理相比,T4處理烤煙中部煙葉的總糖、還原糖、總氮及鉀含量分別顯著提高23.36%、16.41%、13.25%和13.73%,煙堿含量顯著降低16.89%,糖堿比和氮堿比分別是T1(CK)處理的1.40和1.38倍;T3處理烤煙中部煙葉的總糖、還原糖、總氮及鉀含量與T4處理間無顯著差異,但分別較T1(CK)處理顯著提高19.11%、12.65%、21.19%和9.87%,煙堿含量與T1(CK)處理間無顯著差異,糖堿比和氮堿比均顯著高于T1(CK)處理;T2處理烤煙中部煙葉的總糖、還原糖、總氮和鉀含量與T1(CK)處理無顯著差異,但煙堿含量較T1(CK)處理顯著降低11.92%,糖堿比和氮堿比也顯著高于T1(CK)處理。綜上所述,單施腐植酸處理(T3)烤煙中部煙葉的煙堿含量偏高,而單施奈安處理(T2)的鉀含量較低,奈安與腐植酸配施對烤煙中部煙葉化學成分的協調性具有正向效應,糖堿比維持在8.00~10.00,氮堿比在1.00以下,均在適宜范圍內,說明奈安+腐植酸配施(T4處理)對煙葉品質的提升具有顯著效果。

2. 3 不同處理對煙葉Cd含量及其消減效果的影響

不同處理對烤煙煙葉Cd含量及其消減效率的影響見圖2。由圖2-A可看出,施用腐植酸可顯著降低煙葉Cd含量,與T1(CK)處理相比,T3處理的煙葉Cd含量顯著降低0.96 mg/kg,煙葉Cd消減率達35.80%;T4處理的煙葉Cd含量顯著降低1.22 mg/kg,煙葉Cd消減率為46.51%,但T3處理與T4處理間無顯著差異。T2處理的煙葉Cd含量為3.24 mg/kg,與T1(CK)處理的差異不顯著,煙葉Cd消減率為6.40%,說明施用奈安對煙葉Cd含量的消減作用不明顯。煙草極易富集Cd,其富集系數可達5.00~10.00;Cd在煙草中的遷移性較強,且吸收的Cd主要分配積累在煙葉中(孫朋成等,2014)。本研究結果顯示,T1(CK)處理的煙葉Cd富集系數達8.22,施用腐植酸后煙葉Cd富集系數降至5.27~5.90,單施奈安的煙葉Cd富集系數為7.80,僅較T1(CK)處理降低0.42。可見,腐植酸在消減煙葉Cd含量及阻控煙葉Cd富集方面發揮主導作用。

2. 4 不同處理對土壤有效態Cd含量的影響

土壤—作物系統中Cd的積累能力和生物毒性,不僅與土壤總Cd含量有關,還取決于可被作物直接吸收利用的土壤有效態Cd含量(曾曉舵等,2019)。由圖3可看出,以T3處理和T4處理對土壤有效態Cd含量的降低效果較優,且兩處理間無顯著差異,分別為0.152和0.148 mg/kg,較T1(CK)處理顯著降低11.95%和14.64%;T2處理對土壤有效態Cd含量的影響不明顯。相關分析結果(圖4)表明,土壤有效態Cd含量與煙葉Cd含量呈極顯著正相關(P<0.01),其相關線性方程為y=33.060x?2.481(r=0.823**),說明隨著土壤有效態Cd含量的降低,煙葉Cd含量也隨之降低,即腐植酸消減煙葉Cd含量主要是通過降低土壤有效態Cd含量來實現。

2. 5 土壤pH與土壤有效態Cd和煙葉Cd含量的關系

pH是土壤的重要理化性質,直接影響Cd在土壤中的移動性和生物有效性。收獲烤煙后比較各處理的土壤pH發現,與T1(CK)處理相比,T3處理和T4處理的土壤pH分別升高0.50和0.54,T2處理的土壤pH無顯著變化(圖5)。由圖6可看出,土壤pH與土壤有效態Cd和煙葉Cd含量均呈顯著負相關,對應的相關線性方程分別為y=-0.028x+0.317(r=0.660*)和y=-1.379x+10.500(r=0.804*),說明隨著土壤pH的上升,土壤有效態Cd和煙葉Cd含量均隨之下降??梢?,腐植酸施用一定程度上能提高植煙土壤pH,進而降低土壤有效態Cd含量及減少煙葉Cd富集。

3 討論

3. 1 不同處理對烤煙生長及煙葉化學品質的影響

植煙土壤Cd污染會影響烤煙植株葉綠素和蛋白質的合成,而造成煙草不同程度的減產,甚至絕收(雷麗萍等,2012)。腐植酸作為一種復雜的天然高分子有機質,廣泛存在于土壤、泥炭、褐煤和風化煤中,具有良好的保肥供肥能力。張喜峰等(2013)研究表明,腐植酸能促進烤煙生長,提高煙葉產量和上中等煙比例。在本研究中,單獨施用腐植酸(T3處理)能顯著增加Cd輕度污染農田煙葉的產量,提升株高、最大葉長和有效葉片數等植株農藝性狀表現。腐植酸通過有效刺激作物根系的生理活性,增強根系和葉片內呼吸酶活力,由此促進根系對營養物質的吸收,而有利于植物的生長發育(靳志麗等,2002;蔡憲杰等,2008)。奈安的主要成分是DA-6,通過葉面噴施10~20 mg/L DA-6能顯著提高Cd污染土壤上的植株生物量,在龍葵(于彩蓮等,2011)和黑麥草(侯琪琪等,2018)等植物中已得到證實。本研究結果表明,單獨施用奈安(T2處理)的煙葉產量較T1(CK)處理增產5.99%,且顯著提升株高、最大葉長、最大葉寬、葉片數和莖圍等農藝性狀。這可能是由于DA-6不僅提高葉綠素含量及Rubisco等光合作用關鍵酶活性,還能調節植物體內的生長素和赤霉素等激素水平,促進植株生長(單守明等,2008)。此外,DA-6能增加植物細胞保護酶[POD和超氧化物歧化酶(SOD)]活性,提升植物的抗氧化能力及降低MDA含量,最終增強植株對Cd的抗性(袁江等,2016;王正等,2020)。DA-6對環境和農業生產安全高效,常作為增效劑與肥料復配使用。如DA-6與硼、糖、鈣配合使用可提高枇杷花粉活力,促進花粉管的伸長,提高早期坐果率(梁廣堅等,2011)。Xiao等(2020)研究表明,營養液中添加黃腐酸鉀和DA-6能顯著提高番茄產量,且以15 mg/L黃腐酸鉀和2.5 mg/L DA-6復配的增產效果最佳,較對照增產21.77%。本研究也發現,奈安與腐植酸配施(T4處理)對烤煙生長及煙葉產量的提升效果顯著高于單獨施用奈安或腐植酸,表現出良好的協同增效作用。這是由于DA-6能有效提高植株葉綠素含量及同化作用能力,而腐植酸富含形成土壤腐殖質的胡敏酸和富里酸等組分,既能改善土壤理化性質,又有利于提高土壤保肥保水性,進而促進植物對肥料的吸收利用,即二者配施產生良好的協同增效作用(于俊紅等,2008;劉偉等,2015;柳燕蘭等,2016)。

煙葉內在化學成分的協調性是決定烤煙品質的重要因素之一。煙草富集過量Cd不僅抑制植株的生長發育,還會影響煙葉煙堿、還原糖及蛋白質含量,導致其化學成分失衡,而降低煙葉品質(雷麗萍等,2011)。已有研究證實,施用腐植酸可改善煙葉品質,促使煙葉各化學成分間比例協調(王金林,2014;高華軍等,2014)。本研究結果也顯示,施用腐植酸后(T3處理和T4處理),烤煙中部煙葉(C3F)的總糖、還原糖、總氮及鉀含量分別較T1(CK)處理顯著提高19.11%~23.36%、12.65%~16.41%、13.25%~21.19%和9.87%~13.73%,尤其是煙葉鉀含量超過2.50%,達到國際優質煙葉鉀含量的標準(林昌華等,2019),究其原因可能與腐植酸具有提升烤煙養分代謝水平及提高煙葉化學品質的作用有關(靳志麗等,2002)。

3. 2 不同處理對消減阻控煙葉Cd富集的影響

土壤Cd的生物有效性與土壤中Cd的形態密切相關,因此土壤有效態Cd含量能在一定程度上表征土壤Cd的生物有效性(Seshadri et al.,2017)。腐植酸具備的絡合(螯合)能力和膠體特性,可絡合并固定土壤中的Cd離子,且隨腐植酸投入的增加,土壤有效態Cd含量將進一步下降,從而降低植株對土壤Cd的吸收與富集(王晶等,2002;劉慧等,2010)。本研究結果表明,施用腐植酸(T3處理和T4處理)的土壤有效態Cd含量較T1(CK)處理顯著降低11.95%~14.64%,同時顯著降低煙葉Cd含量,消減率達35.80%~46.51%,煙葉Cd富集系數從8.22降至5.27~5.90,有效減輕煙葉對Cd的富集,進而實現對煙葉Cd的消減阻控(胡鑫等,2016)。相關分析結果也表明,土壤有效態Cd與煙葉Cd含量呈極顯著正相關,即隨著土壤有效態Cd含量降低,煙葉Cd含量隨之減少。蔣萍萍等(2019)研究表明,添加腐植酸后土壤可提取態Cd含量逐漸降低,是由于腐植酸具有豐富的含氧官能團(羧酸、酚羥基和醌官能團等),可絡合重金屬陽離子,并通過范德華力、氫鍵及靜電吸附等形成穩定的復合物,降低土壤Cd的可利用性,從而延緩或減弱Cd被農作物吸收(余貴芬等,2006;Yang and Hodson,2019;王琦等,2020)。由于DA-6能促進植物根系生長并分泌更多有機酸,致使土壤酸溶態Cd含量增加,甚至促進植物對Cd的吸收(王正等,2020)。在本研究中,單施奈安(T2處理)對土壤有效態Cd含量影響不明顯,對煙葉Cd含量也幾乎沒有消減效果,煙葉Cd富集系數僅較T1(CK)處理降低0.42。此外,在田間條件下土壤有效態Cd含量還與土壤有機質、氧化還原電位、微生物、礦物成分、污染來源及土壤類型等因素有關(關天霞等,2011;王發園等,2014;陸中桂等,2018),因此,奈安與腐植酸配施阻控煙葉Cd富集的作用機制尚有待進一步探究。

4 結論

奈安與腐植酸配施對提升烤煙生長及煙葉品質具有明顯的協同增效作用,且能消減阻控煙葉對Cd的富集,可作為植煙區Cd輕度污染農田進行烤煙安全生產的一項有效措施。

參考文獻:

蔡憲杰,楊義方,馬永建,魏春陽,王維超,李躍峰,尹啟生. 2008. 腐殖酸類肥料對堿性植煙土壤pH及烤煙產量質量的影響[J]. 中國農學通報,24(6):261-265. [Cai X J,Yang Y F,Ma Y J,Wei C Y,Wang W C,Li Y F,Yin Q S. 2008. Study on the effect of humus fertilizer on alkaline tobacco-planting soil pH and tobacco yield and quality[J]. Chinese Agricultural Science Bulletin,24(6):261-265.]

段淑輝,肖艷松,李玉輝,劉勇軍,范才銀,陳鵬峰,陳世寶,周志成. 2018. 基于煙葉Cd消減率和修復邊際效率評價Cd鈍化劑修復效果[J]. 中國煙草科學,39(4):32-40. doi:10.13496/j.issn.1007-5119.2018.04.005. [Duan S H,Xiao Y S,Li Y H,Liu Y J,Fan C Y,Chen P F,Chen S B,Zhou Z C. 2018. Remediation effect of Cd amendments evaluated by tobacco leaf Cd depletion rate and remediation marginal efficiency[J]. Chinese Tobacco Science,39(4):32-40.]

高華軍,林北森,王五權,石剛,麻海戈,呂澤生,馮誠,黃忠言. 2014. 腐殖酸肥對百色植煙土壤養分和烤煙香氣質量的影響[J]. 中國煙草科學,35(4):52-57. doi:10.13496/j.issn.1007-5119.2014.04.010. [Gao H J,Lin B S,Wang W Q,Shi G,Ma H G,Lü Z S,Feng C,Huang Z Y. 2014. Effects of humic acid fertilizer on soil nutrient contents and aroma quality of flue-cured tobacco in Baise tobacco-growing area[J]. Chinese Tobacco Science,35(4):52-57.]

高新菊,葛玉紅,王恒亮,吳仁海,蘇旺蒼,魯傳濤,張永超. 2014. 緩解劑對2甲4氯鈉玉米藥害的解除作用[J]. 農藥,53(2):109-112. doi:10.16820/j.cnki.1006-0413.2014. 02.011. [Gao X J,Ge Y H,Wang H L,Wu R H,Su W C,Lu C T,Zhang Y C. 2014. Relief effects of antidotes on the MCPA-Na phytotoxicity in maize[J]. Agrochemicals,53(2):109-112.]

關天霞,何紅波,張旭東,白震,解宏圖. 2011. 土壤中重金屬元素形態分析方法及形態分布的影響因素[J]. 土壤通報,42(2):503-512. doi:10.19336/j.cnki.trtb.2011.02.049. [Guan T X,He H B,Zhang X D,Bai Z,Xie H T. 2011. The methodology of fractionation analysis and the factors affecting the species of heavy metals in soil[J]. Chinese Journal of Soil Science,42(2):503-512.]

郭瑞峰,張建華,曹昌林,范娜,李光,史麗娟,江佰陽,彭之東,白文斌. 2017. 2種安全劑減輕煙嘧磺隆殘留對高粱藥害的作用[J]. 山西農業科學,45(8):1335-1337. doi:10.3969/j.issn.1002-2481.2017.08.28. [Guo R F,Zhang J H,Cao C L,Fan N,Li G,Shi L J,Jiang B Y,Peng Z D,Bai W B. 2017. Effects of 2 kinds of safety agents on protecting sorghum from residual injury of nicosulfuron[J]. Journal of Shanxi Agricultural Sciences,45(8):1335-1337.]

侯琪琪,景俏麗,董歲明,柴麗紅. 2018. Gallic acid與DA-6強化黑麥草修復復合重金屬(Cd、Pb、Cu、Zn)污染土壤的研究[J]. 應用化工,47(3):425-428. doi:10.16581/j.cnki.issn1671-3206.2018.03.001. [Hou Q Q,Jing Q L,Dong S M,Chai L H. 2018. Study on remediation of soil(Cd,Pb,Cu,Zn) by compound with Gallic acid and DA-6 enhanced ryegrass[J]. Applied Chemical lndustry,47(3):425-428.]

胡鑫,羅真華,謝會雅,周毅,晏哲,彭亮,曾清如. 2016. 土壤性質對煙葉中鉛、鎘含量的影響及預測模型研究[J]. 農業環境科學學報,35(3):449-454. doi:10.11654/jaes.2016. 03.006. [Hu X,Luo Z H,Xie H Y,Zhou Y,Yan Z,Peng L,Zeng Q R. 2016. Soil property effects on and prediction models of lead and cadmium concentrations in tobacco leaves[J]. Journal of Agro-Environment Science,35(3):449-454.]

蔣萍萍,俞果,姚詩音,劉杰,雷玲,游少鴻,陳喆,程艷. 2019. 不同螯合劑強化青葙修復土壤鎘污染的效應[J]. 南方農業學報,50(11):2443-2449. doi:10.3969/j.issn.2095-1191.2019.11.09. [Jiang P P,Yu G,Yao S Y,Liu J,Lei L,You S H,Chen Z,Cheng Y. 2019. Remediation effects on cadmium contaminated soil by different chelating agents enhanced Celosia argentea Linn.[J]. Journal of Southern Agriculture,50(11):2443-2449.]

靳志麗,劉國順,聶新柏. 2002. 腐殖酸對土壤環境和烤煙礦質吸收影響的研究[J]. 中國煙草科學,(3):15-18. doi:10.13496/j.issn.1007-5119.2002.03.005. [Jin Z L,Liu G S,Nie X B. 2002. The study on effect of humic acid on soil environment and absorbing ability to mineral of flue-cured tobacco[J]. Chinese Tobacco Science,(3):15-18.]

雷麗萍,陳世寶,孫聰,徐照麗,汪安云,柴家榮. 2012. 溶液Ca、K濃度和pH對煙草Cd毒性的影響[J]. 中國煙草科學,33(4):79-84. doi:10.3969/j.issn.1007-5119.2012.04. 017. [Lei L P,Chen S B,Sun C,Xu Z L,Wang A Y,Chai J R. 2012. Enfluence of Ca,K concentration and pH value in solution on Cd toxicity to tobacco in solution culture[J]. Chinese Tobacco Science,33(4):79-84.]

雷麗萍,陳世寶,夏振遠,柴家榮,王萌. 2011. 煙草對污染土壤中鎘脅迫的響應機制及影響因素研究進展[J]. 中國煙草科學,32(4):87-93. doi:10.3969/j.issn.1007-5119. 2011.04.020. [Lei L P,Chen S B,Xia Z Y,Chai J R,Wang M. 2011. Tolerance and accumulation of cadmium by tobacco plants and the influence factors in polluted soils:A review[J]. Chinese Tobacco Science,32(4):87-93.]

李希希,王春香,陳玉成,楊志敏. 2015. 改良劑對土壤—煙草系統中Pb污染風險的削減[J]. 農業資源與環境學報,32(1):26-30. doi:10.13254/j.jare.2014.0268. [Li X X,Wang C X,Chen Y C,Yang Z M. 2015. Decrease RIsk of Pb contamination in soil-tobacco system by amendments[J]. Journal of Agricultural Resources and Environment,32(1):26-30.]

李曉越,段淑輝,周志成,劉勇軍,李杉杉,趙中秋,王萌,陳世寶. 2018. 不同葉面肥對烤煙Cd吸收及煙葉品質的影響[J]. 植物營養與肥料學報,24(5):1330-1337. doi:10.11674/ zwyf.18048. [Li X Y,Duan S H,Zhou Z C,Liu Y J,Li S S,Zhao Z Q,Wang M,Chen S B. 2018. Effect of different foliar fertilizers on Cd uptake by tobacco cultivars and qualities of tobacco leaves[J]. Journal of Plant Nutrition and Fertilizers,24(5):1330-1337.]

李衍亮,黃玉芬,魏嵐,黃連喜,黃慶,許桂芝,劉忠珍. 2017. 施用生物炭對重金屬污染農田土壤改良及玉米生長的影響[J]. 農業環境科學學報,36(11):2233-2239. doi:10.11654/jaes.2017-0522. [Li Y L,Huang Y F,Wei L,Huang L X,Huang Q,Xu G Z,Liu Z Z. 2017. Impacts of biochar application on amelioration of heavy metal-polluted soil and maize growth[J]. Journal of Agro-Environment Science,36(11):2233-2239.]

李影,李斌,劉芳,姜桂英,劉世亮,龍潛,董士剛,李小磊. 2019. 生物炭配施有機菌肥對豫中烤煙生長與產量及品質的影響[J]. 河南農業大學學報,53(1):34-41. doi:10.16445/j.cnki.1000-2340.2019.01.006. [Li Y,Li B,Liu F,Jiang G Y,Liu S L,Long Q,Dong S G,Li X L. 2019. Effects of bio-bacteria-fertilizer combined with biochar on growth,yield and quality of flue-cured tobacco in central Henan Province[J]. Journal of Henan Agricultural University,53(1):34-41.]

李志鵬,劉浩,于曉娜,程昌新,宗勝杰,王勇,代先強,曹學鴻,葉協鋒. 2016. 黃腐酸對植煙土壤改良及煙葉品質的影響研究[J]. 土壤通報,47(4):914-920. doi:10.19336/j.cnki.trtb.2016.04.22. [Li Z P,Liu H,Yu X N,Cheng C X,Zong S J,Wang Y,Dai X Q,Cao X H,Ye X F. 2016. Effect of fulvic acid on improvement of tobacco-planted soil and quality of flue-cured tobacco leaves[J]. Chinese Journal of Soil Science,47(4):914-920.]

梁廣堅,黃桂萍,鄧莉,鐘鏡波,孔祥文. 2011. 硼、糖、鈣和DA-6對枇杷花粉管生長的影響[J]. 肇慶學院學報,32(2):50-52. [Liang G J,Huang G P,Deng L,Zhong J B,Kong X W. 2011. Effects of boron,sucrose,calcium and DA-6 on growth of pollen tube of loquat[J]. Journal of Zhaoqing University,32(2):50-52.]

林昌華,張士榮,肖洲,劉春玲,李璐瑤,王軍,丁效東. 2019. 不同供鉀水平下烤煙生長及硝態氮吸收動力學特征[J]. 熱帶作物學報, 40(9):1677-1684. doi:10.3969/j.issn. 1000-2561.2019.09.002. [Lin C H,Zhang S R,Xiao Z,Liu C L,Li L Y,Wang J,Ding X D. 2019. The absorption dynamic parameter of NO3- in flue-cured tobacco pretreated in different concentrations of KCl[J]. Chinese Journal of Tropical Crops,40(9):1677-1684.]

劉春奎,賈琳,閆啟峰,王劉東,馬俊桃,張文潔,馬林,楊靖,張正楊,吳劍虹,李志剛,焦凱旋. 2019. 卷煙煙氣主要化學成分適宜性指數研究[J]. 南方農業學報,50(10):2149-2159. doi:10.3969/j.issn.2095-1191.2019.10.03. [Liu C K,Jia L,Yan Q F,Wang L D,Ma J T,Zhang W J,Ma L,Yang J,Zhang Z Y,Wu J H,Li Z G,Jiao K X. 2019. Suitability index of main smoke chemical components of cigarette[J]. Journal of Southern Agriculture,50(10):2149-2159.]

劉慧,袁宏偉,朱方偉,郭紅巖. 2010. 灌溉方式及腐植酸用量對溫室內土壤Cd遷移的影響[J]. 農業環境科學學報,29(7):1310-1314. [Liu H,Yuan H W,Zhu F W,Guo H Y. 2010. Effect of irrigation methods and humic acid supply on soil Cd translocation in greenhouse[J]. Journal of Agro-Environment Science,29(7):1310-1314.]

劉偉,鄭建國,王兆燕. 2015. 植物生長調節劑與肥料復配的研究與應用[J]. 磷肥與復肥,30(3):28-29. doi:10.3969/j.issn.1007-6220.2015.03.011. [Liu W,Zhang J G,Wang Z Y. 2015. Research and application of compounding of plant growth regulator and fertilizer[J]. Phosphate & Compound Fertilizer,30(3):28-29.]

柳燕蘭,郭賢仕,姜小風,董博,郭天文. 2016. 不同配方土壤熟化調理劑對新修梯田土壤改良效果的影響[J]. 干旱地區農業研究,34(4):139-145. doi:10.7606/j.issn.1000-7601.2016.04.21. [Liu Y L,Guo X S,Jiang X F,Dong B,Guo T W. 2016. Effect of different formula of modi-fiers on soil improvement of newly built terrace[J]. Agricultural Research in the Arid Areas,34(4):139-145.]

陸中桂,黃占斌,李昂,王存,許可,郝博遠,阿迪來·阿力木江,李潔. 2018. 腐植酸對重金屬鉛鎘的吸附特征[J]. 環境科學學報,38(9):3721-3729. doi:10.13671/j.hjkxxb. 2018.0183. [Lu Z G,Huang Z B,Li A,Wang C,Xu K,Hao B Y,Adilai·Alimujiang,Li J. 2018. The adsorption behavior of lead and cadmium by humic acid[J]. Acta Scientiae Circumstantiae,38(9):3721-3729.]

路育茗,聶兆君,劉紅恩,高巍,秦世玉,李暢,扶海超,趙鵬. 2019. 施鋅對冬小麥亞細胞鎘分布和鎘化學形態的影響[J]. 河南農業大學學報,53(4):503-511. doi:10.16445/j.cnki.1000-2340.2019.04.002. [Lu Y M,Nie Z J,Liu H E,Gao W,Qin S Y,Li C,Fu H C,Zhao P. 2019. Influence of zinc on the subcellular fractions and chemical forms of cadmium in winter wheat[J]. Journal of Henan Agricultural University,53(4):503-511.]

彭麗成,黃占斌,石宇,何磊,章智明,劉亞琦. 2011. 不同環境材料對 Pb、Cd 污染土壤的淋溶效應[J]. 環境科學學報,31(5):1033-1038. doi:10.13671/j.hjkxxb.2011.05.025. [Peng L C,Huang Z B,Shi Y,He L,Zhang Z M,Liu Y Q. 2011. Leaching effects of different environmental materials on soils polluted by Pb and Cd[J]. Acta Scientiae Circumstantiae,31(5):1033-1038.]

單守明,劉國杰,李紹華,苗鵬飛. 2008. DA-6對草莓葉綠體光化學反應和Rubisco活性的影響[J]. 中國農業大學學報,13(2):7-10. doi:10.3321/j.issn:1007-4333.2008.02.002. [Shan S M,Liu G J,Li S H,Miao P F. 2008. Effects of different concentrations of DA-6 on chloroplast photoche-mical reaction and rubisco activities in strawberry[J]. Journal of China Agricultural University,13(2):7-10.]

施琪,魯然英,常德政,劉歡歡,劉濤,蔣士君. 2019. 增施生物質炭對鎘污染土壤的修復效果研究[J]. 江西農業學報,31(10):83-87. doi:10.19386/j.cnki.jxnyxb.2019.10.14. [Shi Q,Lu R Y,Chang D Z,Liu H H,Liu T,Jiang S J. 2019. Effects of increasing biochar application on remediation of Cd contaminated soil[J]. Acta Agriculturae Jiangxi,31(10):83-87.]

孫朋成,黃占斌,唐可,張瑩. 2014. 土壤重金屬污染治理的化學固化研究進展[J]. 環境工程,(1):158-161. doi:10.13205/ j.hjgc.201401037. [Sun P C,Huang Z B,Tang K,Zhang Y. 2014. Research progress of chemical solidification on administering soil heavy metal pollution[J]. Environmental Engineering,(1):158-161.]

王發園,王玲,王旭剛,石兆勇. 2014. 鈍化劑在煙草植物修復鉛鎘污染土壤中的作用[J]. 環境工程學報,8(2):789-794. [Wang F Y,Wang L,Wang X G,Shi Z Y. 2014. Role of immobilization amendments in phytoremediation of Pb-Cd-contaminated soil using tobacco plants[J]. Chinese Journal of Environmental Engineering,8(2):789-794.]

王金林. 2014. 腐殖酸與鉀肥互作對烤煙生長和品質的影響[D]. 鄭州:河南農業大學. doi:10.7666/d.Y2691124. [Wang J L. 2014. Effects of the interaction of humic acid with potash on the flue-cured tobacco growth and quality[D]. Zhengzhou:Henan Agricultural University.]

王晶,張旭東,李彬,郭書海,王新. 2002. 腐殖酸對土壤中Cd形態的影響及利用研究[J]. 土壤通報,33(3):185-187. doi:10.19336/j.cnki.trtb.2002.03.007. [Wang J,Zhang X D,Li B,Guo S H,Wang X. 2002. The effect of humid acid on the cadmium transformation and the mechanism[J]. Chinese Jourual of Soil Science,33(3):185-187.]

王雷,何閃英,李阿南,郭?;? 2016. MGDA與DA-6強化黑麥草對Cd污染土壤的修復作用[J]. 水土保持學報,30(3):134-140. doi:10.13870/j.cnki.stbcxb.2016.03.024. [Wang L,He S Y,Li A N,Guo H H. 2016. MGDA and DA-6 enhanced ryegrass to phytoextract Cd from conta-minated soil[J]. Journal of Soil and Water Conservation,30(3):134-140.]

王琦,溫婧玉,趙玉杰,楊燁,朱家超,穆莉,劉瀟威,康為露. 2020. 腐植酸調節砷酸鹽生菜毒性作用研究[J]. 農業環境科學學報,39(6):1196-1206. doi:10.11654/jaes.2019-1304. [Wang Q,Wen J Y,Zhao Y J,Yang Y,Zhu J C,Mu L,Liu X W,Kang W L. 2020. The effect of humic acid on arsenate toxicity of lettuce[J]. Journal of Agro-Environment Science,39(6):1196-1206.]

王瑞新. 2003. 煙草化學[M]. 北京:中國農業出版社:170-277. [Wang R X. 2003. Tobacco chemistry[M]. Beijing:China Agriculture Press:170-277.]

王正,孫兆軍,Sameh Mohamed,王珍,何俊,韓磊. 2020. 胺鮮酯與螯合劑GLDA聯合強化柳枝稷吸收積累鎘效果[J]. 環境科學,41(12):5589-5599. doi:10.13227/j.hjkx.20200 4071. [Wang Z,Shun Z J,Sameh M,Wang Z,He J,Han L. 2020. DA-6 and GLDA enhanced Pancium virgatum L. to phytoextract Cd from contaminated soils[J]. Environmental Science,41(12):5589-5599.]

吳烈善,曾東梅,莫小榮,呂宏虹,蘇翠翠,孔德超. 2015. 不同鈍化劑對重金屬污染土壤穩定化效應的研究[J]. 環境科學,36(1):309-313. doi:10.13227/j.hjkx.2015.01.041. [Wu L S,Zeng D M,Mo X R,Lü H H,Su C C,Kong D C. 2015. Immobilization impact of different fixatives on heavy metals contaminated soil[J]. Environmental Science,36(1):309-313.]

肖艷輝,李應文,鄒碧,何金明,李志安. 2019. 不同濃度胺鮮酯對籽粒莧富集重金屬鎘鋅的影響[J]. 生態環境學報,28(12):2433-2437. doi:10.16258/j.cnki.1674-5906.2019. 12.016. [Xiao Y H,Li Y W,Zou B,He J M,Li Z A. 2019. Effect of DA-6 at different concentrations on Cd and Zn accumulation by heavy metal hyperaccumulator Amaranthus hypochondriacus L.[J]. Ecology and Environmental Sciences,28(12):2433-2437.]

于彩蓮,劉波,徐鑫. 2011. DA-6強化龍葵修復高鎘污染土壤的作用[J]. 中國農業科學,44(16):3485-3490. doi:10. 3864/j.issn.0578-1752.2011.16.023. [Yu C L,Liu B,Xu X. 2011. Effect of DA-6 on enhanced remediation efficiency of Solanum nigrum L. in serious cadmium polluted soil[J]. Scientia Agricultura Sinica,44(16):3485-3490.]

于俊紅,彭智平,黃繼川,李銳,詹愈忠. 2008. DA-6對花生花期干旱脅迫下的生理效應[J]. 熱帶作物學報,29(4):465-467. doi:10.3969/j.issn.1000-2561.2008.04.013. [Yu J H,Peng Z P,Huang J C,Li R,Zhan Y Z. 2008. Effect of DA-6 on physiological changes of peanut at anthesis under drought stress[J]. Chinese Journal of Tropical Crops,29(4):465-467.]

余貴芬,蔣新,趙振華,卞永榮. 2006. 腐殖酸存在下鎘和鉛對土壤脫氫酶活性的影響[J]. 環境化學,25(2):168-170. doi:10.3321/j.issn:0254-6108.2006.02.011.[Yu G F,Jiang X,Zhao Z H,Bian Y R. 2006. Dehydrogenase activity of Cd and Pb-contaminated soil in the presence of humic substances[J]. Environmental Chemistry,25(2):168-170.]

袁江,李曄,許劍臣,楊紅剛. 2016. 可生物降解螯合劑GLDA和植物激素共同誘導植物修復重金屬污染土壤研究[J]. 武漢理工大學學報,38(2):82-86. doi:10.3963/j.issn.1671- 4431.2016.02.015. [Yuan J,Li Y,Xu J C,Yang H G. 2016. Enhanced phytoremediation of heavy metal polluted soil from contaminated soils using plant by biodegra-dable chelate GLDA in combination with plant hormones[J]. Journal of Wuhan University of' Technology,38(2):82-86.]

袁林,賴星,楊剛,蘭玉書,程蓉,伍鈞. 2019. 鈍化材料對鎘污染農田原位鈍化修復效果研究[J]. 環境科學與技術,42(3):90-97. doi:10.19672/j.cnki.1003-6504.2019.03.012. [Yuan L,Lai X,Yang G,Lan Y S,Cheng R,Wu J. 2019. In-situ remediation of cadmium-polluted agriculture land using passivating materials[J]. Environmental Science & Technology,42(3):90-97.]

岳倫勇,朱列書,廖雪芳,尹佳,郭東海,宋正熊,王祖富. 2013. 除草安全劑奈安不同施用濃度對煙草生長發育的影響[J]. 現代農業科技,(11):125-126. doi:10.3969/j.issn.1007-5739.2013.11.081. [Yue L Y,Zhu L S,Liao X F,Yin J,Guo D H,Song Z X,Wang Z F. 2013. Effects of different application concentrations of herbicide safener Naian on growth and development of tobacco[J]. Modern Agricultural Science and Technology,(11):125-126.]

曾曉舵,王向琴,凃新紅,鄒華旭,劉傳平,李芳柏,吳啟堂. 2019. 農田土壤重金屬污染阻控技術研究進展[J]. 生態環境學報,28(9):1900-1906. doi:10.16258/j.cnki.1674-5906.2019.09.023. [Zeng X D,Wang X Q,Tu X H,Zou H X,Liu C P,Li F B,Wu Q T. 2019. Research progress on speciation and physiological control of heavy metal in soil-plant system[J]. Ecology and Environmental Sciences,28(9):1900-1906.]

曾秀君,黃學平,程坤,何國慶,傅志強,趙雪瑩. 2020. 石灰組配有機改良劑對農田鉛鎘污染土壤微生物活性的影響[J]. 環境科學研究,33(10):2361-2369. doi:10.13198/j.issn.1001-6929.2020.04.27. [Zeng X J,Huang X P,Cheng K,He G Q,Fu Z Q,Zhao X Y. 2020. Effects of lime mixed with organic modifiers on microbial activity in Lead and Cadmium contaminated farmland soil[J]. Research of Environmental Sciences,33(10):2361-2369.]

張耿苗,項佳敏,章明奎. 2019. 4類調理劑對中性農田土壤鎘鈍化的效果[J]. 江西農業學報,31(6):102-106. doi:10.19386/j.cnki.jxnyxb.2019.06.18. [Zhang G M,Xiang J M,Zhang M K. 2019. Effects of four kinds of amendments on cadmium inactivation in neutral farmland soils[J]. Acta Agriculturae Jiangxi,31(6):102-106.]

張喜峰,張立新,高梅,韋成才,馬英明,王平平,耿偉. 2013. 不同氮肥形態和腐殖酸對陜西典型生態區烤煙化學成分和產質量的影響[J]. 草業學報,22(6):60-67. doi:10.11686/cyxb20130608. [Zhang X F,Zhang L X,Gao M,Wei C C,Ma Y M,Wang P P,Geng W. 2013. Effects of different nitrogen fertilizer types and humic acid (HA) on chemical composition,yield and quality of flue-cured tobacco traits in typical ecological zones of Shaanxi Pro-vince[J]. Acta Prataculturae Sinica,22(6):60-67.]

趙敏,范瓊,鄧愛妮,王曉剛,蘇冰霞,周聰. 2018. 酸性土壤改良對土壤鎘形態改變及樹仔菜鎘含量的影響[J]. 南方農業學報,49(6):1089-1094. doi:10.3969/j.issn.2095-1191. 2018.06.07. [Zhao M,Fan Q,Deng A N,Wang X G,Su B X,Zhou C. 2018. Impact of acid soil improvement on form transformation of cadmium in soils and cadmium content in Sauropus androgynus (L.) Merr[J]. Journal of Southern Agriculture,49(6):1089-1094.]

周茂忠,張悠金,姚鶴鳴,劉百戰,陸怡峰,胡建軍,李永霞,張琿姿,董建江,洪深求,孫高軍. 2017. 卷煙主流煙氣重金屬遷移率與煙葉中重金屬不同形態之間的關系研究[J]. 中國煙草學報,23(2):1-12. doi:10.16472/j.chinatobacco. 2016.229. [Zhou M Z,Zhang Y J,Yao H M,Liu B Z,Lu Y F,Hu J J,Li Y X,Zhang H Z,Dong J J,Hong S Q,Sun G J. 2017. Study on relationships between occurrence forms of heavy metals in tobacco leaf and their migration ratios into mainstream cigarette smoke[J]. Acta Tabacaria Sinica,23(2):1-12.]

Cheng J Z,Li Y L,Gao W C,Chen Y,Pan W J,Lee X Q,Tang Y. 2018. Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco[J]. Biology & Fertility of Soils,54(1):373-383. doi:10.1007/s00374-018-1267-8.

Galazyn-Sidorczuk M,Brzóska M M,Moniuszko-Jakoniuk J. 2008. Estimation of polish cigarettes contamination with cadmium and lead,and exposure to these metals via smoking[J]. Environmental Monitoring and Assessment,137(1-3):481-493. doi:10.1007/s10661-007-9783-2.

He M,Shi H,Zhao X Y,Yu Y,Qu B. 2013. Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite[J]. Procedia Environmental Sciences,18:657-665. doi:10.1016/j.proenv.2013.04.090.

Li N,Feng A X,Liu N,Jiang Z M,Wei S Q. 2020. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research,27(16):20370-20379. doi: 10.1007/s11356-020-08357-4.

Plaz I,Ontiveros-Ortega A,Calero J,Aranda V. 2015. Implication of zeta potential and surface free energy in the description of agricultural soil quality:Effect of different cations and humic acids on degraded soils[J]. Soil & Tillage Research,146:148-158. doi:10.1016/j.still.2014. 10.013.

Seshadri B,Bolan N S,Choppala G,Kunhikrishnan A,Sanderson P,Wang H,Currie L D,Tsang D C W,Ok Y S,Kim G. 2017. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil[J]. Chemosphere,184:197-206. doi:10.1016/j.chemosphere.2017.05.172.

Xiao H J,Zhou Y,Mao K,Wang J Q,Liu K. 2020. Effects of potassium fulvic acid and DA-6 on the growth and yield of tomato cultivated with rock wool[J]. American Journal of Biochemistry and Biotechnology,16(2):162-169. doi:10.3844/ajbbsp.2020.161.168.

Yang T,Hodson M E. 2019. Investigating the use of synthetichumic-likeacidasa soil washing treatment for metal contaminated soil[J]. The Science of the Total Environment,647:290-300. doi:10.1016/j.scitotenv.2018.07.457.

(責任編輯 蘭宗寶)

主站蜘蛛池模板: 亚洲一区二区成人| 在线国产91| 91麻豆精品视频| 69av免费视频| 日本AⅤ精品一区二区三区日| 亚洲第一黄色网| 亚洲AV无码乱码在线观看裸奔 | 狠狠久久综合伊人不卡| 草逼视频国产| 黄色网页在线观看| 亚洲精品爱草草视频在线| 91综合色区亚洲熟妇p| 2021精品国产自在现线看| 国产人在线成免费视频| 亚洲最大情网站在线观看 | 成年人福利视频| 国产亚洲视频在线观看| 深爱婷婷激情网| 91外围女在线观看| 国产成人区在线观看视频| 久久综合成人| 特级毛片免费视频| 色成人综合| 欧美日本二区| 日本亚洲欧美在线| 国产第八页| 亚洲欧美日韩高清综合678| 九九精品在线观看| 日韩人妻少妇一区二区| 国产成人无码综合亚洲日韩不卡| 国产福利免费在线观看| 亚洲欧美另类久久久精品播放的| 手机精品福利在线观看| 欧美h在线观看| 欧美日韩精品一区二区在线线 | 国产亚洲视频免费播放| 在线观看精品自拍视频| 国产成人av一区二区三区| 国产福利一区在线| 日韩国产欧美精品在线| www.亚洲国产| 色成人亚洲| 精品国产美女福到在线不卡f| 久久久久亚洲av成人网人人软件 | 精品欧美一区二区三区在线| 国产一级在线播放| 2020精品极品国产色在线观看| 波多野结衣一二三| 欧美不卡在线视频| 欧美视频在线不卡| …亚洲 欧洲 另类 春色| 亚洲人成成无码网WWW| 日韩无码视频专区| 国产精品露脸视频| 欧美人与牲动交a欧美精品| 国产福利在线观看精品| 亚洲首页在线观看| 97亚洲色综久久精品| 国产白浆视频| 日韩av无码精品专区| 91美女视频在线观看| 亚洲无限乱码| 日本免费一级视频| 伊人网址在线| 无码人妻免费| 免费国产好深啊好涨好硬视频| 99re在线观看视频| 天堂va亚洲va欧美va国产 | 亚洲欧美另类日本| 丰满的熟女一区二区三区l| 中文字幕调教一区二区视频| 婷婷亚洲视频| 亚洲久悠悠色悠在线播放| 国产一二三区视频| 精品久久国产综合精麻豆| 亚洲欧州色色免费AV| 久久这里只精品热免费99| 国产黑人在线| 久久狠狠色噜噜狠狠狠狠97视色 | 精品人妻无码中字系列| 天天躁夜夜躁狠狠躁图片| 亚洲AV无码精品无码久久蜜桃|