王 睿, 林 錕, 王江濤, 譚麗菊
渤海多溴二苯醚的分布特征及其風險評價
王 睿, 林 錕, 王江濤, 譚麗菊
(中國海洋大學海洋化學理論與技術教育部重點實驗室, 山東 青島 266100)
多溴二苯醚(PBDEs)屬于新興污染物, 是一種性能優良的阻燃劑, 在各種工業產品中廣泛應用, 而且存在于世界各地的海洋環境中。PBDEs還有持久性、遠距離遷移性、生物累積性等特點, 對海洋生態系統和人類造成嚴重危害。與此同時渤海又是我國唯一一個半封閉型的內海, 有較差的自凈能力以及與外界海水交換的能力, 因此渤海區域PBDEs的研究在近十幾年來受到了極大的關注。本文綜述了PBDEs在渤海區域內的污染特征以及在海水、沉積物和生物介質中的含量水平與分布特征, 并對與PBDEs相關的生態環境風險評價方式進行了總結, 以期使讀者深入了解渤海區域內PBDEs的污染現狀及其危害, 為以后此區域進行多溴二苯醚的污染防治和渤海生態環境治理等方面的工作提供可以借鑒的資料。
多溴二苯醚; 渤海; 含量; 分布; 生態環境風險
多溴二苯醚(PBDEs)可以用來制作各種阻燃劑(BFRs)并在近二十幾年來廣泛用于建筑建材、家具行業、電子產品和一些基于泡沫材料的工業產品中。PBDEs的化學式一般用C12H(0-9)Br(1-10)O來表示, 根據每種同系物含Br的個數不同, 總計有209種同系物。常見的由PBDEs制作的阻燃劑有3種配方: 一種是十溴二苯醚產品(DBDE), 主要由十溴二苯醚(BDE-209)組成; 一種是八溴二苯醚產品(OBDE), 由六溴二苯醚、七溴二苯醚和八溴二苯醚組成; 還有一種五溴二苯醚產品(PeBDE), 主要由五溴二苯醚(BDE-99)和四溴二苯醚(BDE-47)組成[1-2], 這些都屬于商業混合物。1979年, 十溴二苯醚第一次在美國一個專門生產PBDEs廠房的附近被檢出[3]。在此之后, 隨著BFRs的普遍使用, 近十幾年在不同的環境介質中和生物體中都檢測到了PBDEs, 這些介質包括但不限于水環境、土壤、水中顆粒物、沉積物、生物體和人體血液等[4-8]。研究發現, PBDEs具有環境持久性、生物累積性, 對各種水生生物具有一定的毒性作用。排放到環境中的PBDEs會進行遷移擴散并會在生物(人類)體內富集, 當人體內的PBDEs到達一定濃度時會干擾內分泌系統、影響生育能力、危害神經系統以及對人的部分重要器官產生毒性[9-10]。所以說環境中的PBDEs是影響人類健康的一個重要因素。
多溴二苯醚除了可以通過多種途徑釋放到空氣中[11], 水體是PBDEs發生遷移轉化的重要環境介質, PBDEs在水環境中的溶解度很低, 初排放進海洋環境中的PBDEs大多數會吸附顆粒物, 在海洋中遷徙, 最終到沉積物中[12]。渤海是我國唯一一個半封閉型內海, 海域面積約7.7×104km2, 是世界上典型的半封閉海之一[13]。在近些年來, 環渤海地區經濟快速發展、人口日益密集、海上航運發達, 使渤海飽受陸源和海源污染之困, 又因此區域海水交換和自凈能力差, 導致渤海灣PBDEs的污染形勢極為嚴峻。本文概述了近年來渤海區域PBDEs的污染現狀及其分布, 并對與PBDEs相關的生態環境安全風險評價方式進行了總結, 以期為以后此區域多溴二苯醚的污染防治和渤海生態環境治理等方面的工作提供可借鑒的資料。
根據目前對渤海范圍內PBDEs含量水平的調查結果顯示, 在渤海大部分區域的3種介質中都有PBDEs被檢出, 這里把渤海劃分成5個部分, 分別是渤海灣、遼東灣、萊州灣、渤海中部及渤海海峽。其中在渤海入海河流中PBDEs的檢出率和含量都要比海洋中高, 據先前的研究, 渤海入海河流樣品中主要污染物之一BDE-209的最高濃度出現在靠近溴代阻燃劑(BFRs)生產園區的彌河[14]。Mou等[15]在2015年4和11月萊州灣調查得到, PBDEs主要吸附在顆粒相之上, 這些PBDEs主要來源于商業十溴二苯醚產品(DBDE)的地表徑流輸入。呂楊等[16]從渤海灣區域內采集了沉積物和魚類(鯽魚)樣品, 得到沉積物中PBDEs的含量遠遠小于魚體中PBDEs含量(以干重計), 其中相對含量較高的PBDEs單體為三溴二苯醚(BDE-28)和四溴二苯醚(BDE-47)。Yao等[17]在2016年報道了渤海近岸PBDEs沉積物的污染主要是陸源污染, 其采集的柱狀樣中PBDEs的濃度隨深度的增加而明顯減小, 且淤泥區中PBDEs的濃度較高。據Wang等[18]的調查, PBDEs在渤海近岸海域的濃度較高, 遠岸海域的濃度較低, 這顯示出人的生產生活、近岸局部的沖刷和地表徑流的輸入對渤海地區PBDEs的含量都有非常重要的影響。因PBDEs在渤海沉積物、生物體及水體中都有檢出, 所以在現階段探究PBDEs在不同介質中的賦存狀態及含量對全面理解其在渤海中的環境行為、風險和歸趨有重要的價值。
水環境是溴代阻燃劑(BFRs)遷移和擴散的主要媒介, 陸地上很小比例的BFRs會揮發至空氣中[11], 通過降雨等方式進入海洋, 大部分的 BFRs會從垃圾填埋場或廢舊電子處理廠等通過雨水沖刷及地表徑流等途徑進入下水管道和入海河流之中, 然后遷移至海洋環境中被顆粒物吸附, 最后沉降到沉積物中或被海洋中魚類、藻類等動植物吸收富集[19], 進而通過食物鏈進入人體之中。
PBDEs有較高的辛醇-水分配系數(lgow)[20], 所以大部分PBDEs在海洋水體中的濃度很低, 有關其在渤海水體中含量的報道也較少。PBDEs在水中的溶解度一般還與溴原子個數有關, 而且高溴代PBDEs會分解為低溴代PBDEs[21], 因此高溴代PBDEs在海洋水體環境中的檢出率很低, 但高溴代的BDE-209是應用最廣的一種BFRs的原料, 有可能因為其對海洋環境的持續輸入而被檢出。表1為渤海萊州灣及渤海海峽北部旅順養殖區海水中PBDEs的污染情況[15]。在渤海海峽北部養殖區附近海域水體中PBDEs含量為15.4~65.5 ng·L–1[22], 此結果比Chen和Luo等在珠江口測得的濃度要高[23], 其中PBDEs同系物BDE-47在渤海環境中檢出率較高。除渤海區域外, Guan等在8條珠江入海支流采集水樣, 對樣品中PBDEs的17種PBDEs進行了測定和分析, 水平范圍在0.34~68 ng·L–1[24], 主要成分為BDE-47、BDE-99和BDE-209, 其中BDE-47和BDE-99是BFRs中五溴二苯醚(PeBDE)配方的主要成分, 這與珠江入海口水體中PBDEs的成分大致相同, 這也與渤海區域主要的PBDEs相符, 不僅說明了兩區域使用的BFRs種類是大致相同的, 還說明了PBDEs在陸地上進行一系列的遷移后, 會在河流入海口匯聚成點源, 最后進入到整個海洋環境中。總的來說, 渤海不同區域水體中PBDEs的含量水平變化較大, 以渤海旅順為例可能因為采樣點受點源污染輸出導致臨近水域濃度較高, 平均約為30.5± 13.5 ng·L–1(含BDE-209)[22], 萊州灣區域在2015年11月測得的濃度約為0.07~0.28 ng·L–1[15], 而中國海洋水體中PBDEs的平均水平大致<0.1 ng·L–1[25], 所以渤海區域PBDEs的含量還是處于較高水平, 和Pan等[26]先前的研究相比, 萊州灣區域PBDEs的濃度是顯著下降的。

表1 渤海水體中PBDEs的含量水平
PBDEs極易吸附在顆粒物上而沉降于水底, 沉積物是PBDEs主要的歸宿之一, 殘留在沉積物中的PBDEs又可以擴散出來進入水環境中[27], 造成海洋環境中PBDEs的再次污染并且對海洋動植物有著潛在的威脅, 因此PBDEs在海洋沉積物中的賦存狀態和釋放方式是以后需要探究的重點。萊州灣附近有亞洲最大的溴化阻燃劑(BFRs)生產基地, 因此此區域沉積物中PBDEs的濃度較渤海灣其他區域高[26], 還因為不同區域的河口處輸入PBDEs的量各不相同, 所以渤海海洋沉積物中PBDEs的含量水平會因研究區域的不同而存在差異。
表2是渤海及其附近海域沉積物中PBDEs的含量水平, Lin等[28]最早研究了環渤海主要河流入??趨^域的表層沉積物發現PBDEs主要以BDE-209為主, ∑PBDEs(不含BDE-209) 的含量較少且分布差異較大。渤海整個區域PBDEs的含量整體呈上升趨勢, 部分區域濃度因所調查范圍的不同而變化較大, 因為萊州灣附近的濰坊工業園區有我國最大的BFRs廠商與供貨商[29], 其中電子制造業和BFRs生產業都是政府支持的高新技術產業, 給渤海造成了很大的負擔。渤海作為一個半封閉型的內海, 與黃海的水交換程度較小, 隨著渤海經濟圈的迅速發展, 大部分的污染物會從陸地排放進渤海[13], 使渤海區域的污染負擔加重, 環渤海區域沉積物中檢測出的PBDEs在河口處含量較高[30], 顯示出渤海周邊區域的工廠排放和河流徑流是影響渤海沉積物中PBDEs含量的主要因素, 基本上, 在所有站位中BDE-209的濃度要遠高于其他PBDEs的濃度[31], 因為BDE-209是DBDE的主要成分且DBDE是目前使用最廣泛的BFRs。

表2 渤海及其附近海域沉積物中PBDEs的含量水平/[ng·(g dw)–1]
注: ND為未檢出, dw為干重
值得注意的是渤海近岸海域受人類影響較大, 渤海區域共有約50多條入海河流, 渤海中的PBDEs主要是源于沿岸污水口的排放和地表徑流的輸入。在渤海入海35條河口的沉積物樣品中, BDE-209是所測PBDEs的主要組成[14]。BDE-209的均值濃度要比此區域∑PBDEs的濃度高大約一個數量級, 最大值出現在萊州灣西部的彌河, 這可能是因為萊州灣區域有溴代阻燃劑的生產工廠[34], 而且DBDE是一種常用的BFRs, BDE-209是DBDE產品的主要成分[1-2], 因此在渤海沉積物中占很高的比例, 最大值為1.77 ng·g–1。渤海的入海河流沉積物中PBDEs的最大值為4.08 ng·g–1[35]。
從圖1中BDE-209在渤海中的空間分布得出: BDE-209在萊州灣及附近海域的濃度較高, 在遼東灣和渤海海峽濃度較低; BDE-209總體上呈由近岸高遠岸低, 渤海南部高北部低的特點; 圖2所示, ∑PBDEs與BDE-209的分布類似, 其在萊州灣的濃度較高, 但BDE-209主要集中在萊州灣西部的彌河入??趨^域, 而∑PBDEs卻集中在萊州灣東部, 而且在萊州灣東側王河和界河中∑PBDEs的濃度并不高, 這可能是兩個原因造成的, 一是由于BDE-209在輸入至海洋中后會降解為低溴的PBDEs, 然后受渤海沿岸流的影響向東遷移, 二可能是由于在兩條河流下游有工廠污水和/或含BFRs廢料的物品直接排放至萊州灣東部海域所導致的[14], 因此水動力與陸源因素可能是導致此區域∑PBDEs與BDE-209的分布有差異的原因。

圖1 渤海及35條河流樣品中BDE-209空間分布(單位: pg·g–1)[35]
渤海灣區域沉積物中PBDEs的分布情況較為復雜, 部分區域的濃度較低, 部分區域的濃度則很高, 濃度高的區域可能是受附近點源污染的影響, 渤海中部PBDEs的濃度居中, 遼東灣和渤海海峽的濃度較低, 但遼東灣邊界處的PBDEs濃度要比灣內高, 這可能是此區域有傾廢區(綏中發電廠二期工程配套碼頭項目臨時性海洋傾倒區, 39°59′0.00″N, 120°5′60.00″E[13])和一系列綏中油氣平臺(綏中36-1EA/B/C/CEP-D/E/F/J/旅大5-2平臺)的原因, 使得遼東灣邊界地區受污染的程度較灣內嚴重。總體而言, 渤海區域的BDE-209與∑PBDEs的分布整體上有較好的相關性, 這也變相的說明了渤海區域內的BDE-209可能會分解為低溴PBDEs。
水生生物是反映環境污染的良好的生物指示物[36], 它們可以通過水及攝取海洋中的各類食物來富集環境中的PBDEs[37], 在渤海某些水生生物中同樣也檢測到了PBDEs, 如表3所示。根據現有的研究, PBDEs在渤海海洋生物中的污染較普遍, 它們在海洋生物體內的含量高低除了與環境污染狀況、動植物的種類和不同部位的組織有關[38], 還與其捕食習性和代謝潛力有關[39]。除了未轉化的PBDEs, 羥基化(OH-)和甲氧基化(MeO-)的PBDEs在生物中也廣泛存在。但目前對它們的營養級放大和人體中暴露水平的了解還很少, Liu等[40]研究了渤海沿岸城市大連的生物群, 通過食用海產品對OH- PBDEs(0.4 ng·kg–1·d–1)和MeO-PBDEs(0.8 ng·kg–1·d–1)的膳食攝入量的評估表明, 沿海居民通過大量食用海產品接觸OH-PBDEs和MeO-PBDEs的風險更高。
在萊州灣海域的生物體中PBDEs的濃度較高, PBDEs在此區域沉積物中的污染狀況相似, 可以推斷出海洋中的底棲生物的攝食習性及生存環境中污染物的暴露水平對底棲生物體中PBDEs的賦存有很大的影響[17]。在渤海海峽南部周邊海域生物體中PBDEs的濃度高于萊州灣, 這可能與渤海海域的沿岸流[41-42]有關, 導致低溴的PBDEs遷移到渤海海峽的南部, 最終被水生生物所富集[43], 這同時體現出高溴的PBDEs受海流的影響較小, 很可能會附著在懸浮顆粒上而沉降[31]。

圖2 渤海及 35 條河流樣品中∑PBDEs(BDE-209除外)的空間分布(單位: pg·g–1)[35]

表3 渤海不同區域不同底棲生物中PBDEs的含量(單位: ng·g–1)[43]
BDE-209雖然近年來在某些魚/貝類中的檢出率和檢出濃度有上升趨勢[44], 但其在生物體中的檢出率相對來說還是很低, 這和沉積物中PBDEs分布方式不同, 主要有兩方面的原因, 一是因為BDE-209在所有PBDEs同系物中的分子量最大, 很難透過細胞膜[45], 另一方面可能是生物體內部會對高溴代PBDEs單體進行一系列的代謝和轉化作用, 所以很難富集高溴代的PBDEs[46-47]。BDE-47/BDE-99的比值可以很好的反映出生物體降解PBDEs的能力[48], 這兩種PBDEs同系物是五溴二苯醚商業產品的主要成分, BDE-47/BDE-99的比例約為0.8至1.0[2, 49]。無脊椎動物中BDE-47/99的比率為0.5至2.5, 魚類為2.4至22之間, BDE-99所占比例的減少可以用其在生物體內降解為BDE-47來解釋[50]。魚類的這一比值相對高于無脊椎動物樣本, 表明魚類的代謝能力更為發達。BDE-47/BDE-99的比值還可與營養級相關聯, 并有研究發現這一比值隨營養級增加而增加[51]。He等[52]發現在同種生物體內內臟組織中含有的PBDEs明顯高于肌肉組織中的PBDEs, 這與LYU等[16]在渤海灣鯽魚體內∑PBDEs在肌肉組織(6.81~20.00 ng·g–1)中的含量小于內臟組織(8.10~ 35.50 ng·g–1)的結果一致。Zheng等[53]發現渤海沿岸滄州濕地的珩科鳥體內的PBDEs等鹵代化合物還會選擇性地從母體轉移到卵中。
現常用風險商值(RQ)來對水體中的PBDEs進行生態風險評價[54]。風險商值基于美國環境保護署的規定和低等水生生物毒理學數據, 來確定水體中不同BFRs產品的無效應濃度(MSNOEC)分別是0.053 μg·L–1(五溴二苯醚)和0.017 μg·L–1(八溴二苯醚), 十溴二苯醚的毒性數據目前還沒有[55]。水體中的濃度(measured environmental concentration, MEC)為暴露水平, 公式如下:
RQ=MEC/MSNOEC, (1)
當RQ≥1(高風險), 0.1≤RQ<1(中等風險), 0.01≤RQ<0.1(低風險), RQ<0.01(無風險)。
這里也可以采用風險商值(RQ)來對渤海灣PBDEs沉積物進行生態風險評價, 公式如下:

C是沉積物中PBDEs的濃度[56],si是PBDEs的標準濃度值[57], 標準濃度值依據加拿大環境部(EC)規定的沉積物質量準則[58]。C,si需經1%TOC歸一化得到。
3.3.1 PBDEs在海洋生物中的富集研究
PBDEs通常具有親脂和難降解的特性, 當某種化學物質的生物富集因子(BCF)>5 000時, 便認為該化學物質存在著生物富集性[59]。對于PBDEs, 其通過細胞膜的能力是影響PBDEs生物累積程度的重要因素, 而且高溴PBDEs比低溴PBDEs在海洋食物鏈中的生物累積性低[60]。生物沉積物富集因子(BSAF)也可以用來評估海洋中PBDEs的生物富集效應, 海洋生物對PBDEs的吸收富集能力的大小與其富集的種類和生存的環境有關[61]。相對來說, 底棲動物對PBDEs有高的富集能力和敏感性, 常被用來指示海洋污染的程度[62], 海洋中魚類的富集能力一般要比浮游生物和貝類生物高, 主要是因為魚類處于較高的營養級, 在渤海灣區域, 魚類體內以低溴PBDEs (BDE-28/47/99)為主[51]。
3.3.2 生物沉積物富集因子
生物對沉積物中PBDEs的富集能力可以用下式表示:
BSAF=C/C, (3)
C是生物體中 PBDEs 的脂肪歸一化濃度;C是沉積物中 PBDEs 的TOC歸一化濃度[41]。
3.3.3 食用健康風險評價方式
1) 每日最大允許海產品攝入量
因為PBDEs可能有致癌性的風險, 也可能有非致癌性的風險, 因此, 兩種風險都需要進行分析。美國環境保護機構(U.S. EPA)給出了每日允許海產品最大攝入量的計算公式[63-65]:


CRlim是由式(4): 特定某種海鮮產品中 PBDEs 的致癌性健康風險、式(5): 特定某種海鮮產品中 PBDEs的非致癌性健康風險計算得出的最高海鮮產品的攝入量, 單位: g·d–1; BW是體重(kg), 取男女體重的平均值 58.55 kg[65]; ARL是在可承受范圍內最高的致癌風險, 一般取10–6(即致癌率=1/106)[65];C是海產品中PBDEs的濃度, 單位: pg·g–1; CSF是海產品中PBDEs 致癌斜率因子, 取0.007 (mg·kg bw–1·d–1)–1[67]; RfD是參考劑量, 單位: mg·kg–1·d–1。
2) 日暴露量
對污染物進行人體暴露評估是健康風險評估的前提條件, 人體暴露評估常用日攝入量來表示。在這里可以利用PBDEs的濃度來進行評價, 即認為PBDEs進入人體后會被全部吸收, 則日暴露量EDI的值可以用以下公式計算:

EDI是人體每天通過食用魚產品, 人每千克的體重攝入污染物的量, 單位: pg·(kg bw)–1·d–1; IR是食物攝入率, 單位: g·d–1, 我國所在地區(采用G區: 東南亞地區)每人每天所食用不同海鮮產品量的標準為: 魚類9.4 g、甲殼類3.6 g、頭足類7.5 g和貝類7.5 g, 總海鮮產品的平均攝入量取45.0 g[68]; BW同式(5);C是生物體中PBDEs的濃度, 單位: pg·g–1。
Mou等[15]對萊州灣區域海水中的PBDEs(除十溴二苯醚外)生態風險評價顯示其0.01≤RQ<0.1, 為中等生態風險。Wang等[74]對渤海中部表層沉積物中的PBDEs的生態風險評價表示五溴二苯醚(RQ>0.1 )和十溴二苯醚 (RQ>0.1)可能對底棲生物有潛在的威脅。在萊州灣東部區域沉積物中三、四、六和十溴二苯醚的RQ<0.01, 無生態風險, 五溴二苯醚的0.1≤RQ<1, 為中等生態風險[15]。因此渤海灣不同區域不同介質中PBDEs所產生的生態風險有明顯的差異。Wang等[30]還發現在環渤海近岸生物體中PBDEs的生物沉積物富集因子(BSAF)值與它們的lgow密切相關。Yao等[17]在環渤海近岸所計算PBDEs的BSAF值為菲律賓蛤仔(0.43~4.06)>紫怡貝(0.34~2.86)>四角蛤蜊(0.17~1.95)>麻蛤(0.13~2.33)>牡蠣(0.09~120), 此結果較Wang等[30]所測的結果偏低。渤海區域CRlim的最小值為15.82 kg·d–1[17], 超出美國環境保護機構所給出的值(0.142 kg·d–1)約2個數量級, 所以食用渤海周邊的海鮮是完全沒有問題的。據Liu等[75]的研究, 渤海的周邊城市(以大連為例), 此區域居民通過不同海產品消費所攝入的MeO-PBDEs [0.8 ng·(kg bw)–1·d–1] 和PBDEs[0.8 ng·(kg bw)–1·d–1]均是OH-PBDEs [0.4 ng·(kg·bw)–1·d–1] 攝入量的2倍。由于所選取的海產品的不同, Yao等在大連所測得的PBDEs的攝入量為5 ng·(kg bw)–1·d–1。Eguchi等[76]人發現沿海居民血清中的OH-PBDEs和MeO-PBDEs的濃度要高于內地的電子垃圾回收工作者, 說明了海鮮可能是沿海居民體內OH-PBDEs 或 MeO-PBDEs的主要來源。由于缺乏關于人的準確毒性數據以及PBDEs, OH-PBDEs和MeO-PBDEs的健康風險評估標準, 因此難以通過食用海鮮定量評估PBDEs及其衍生物在人體的暴露風險。
本文系統地綜述了渤海區域PBDEs在沉積物, 水體及生物體中的污染現狀及其生態環境風險評價方式, 雖然目前關于PBDEs的研究已經取得了一定的進展, 但是PBDEs作為一種長期污染物對于環境的持續影響和人類的安全依舊是潛在的威脅, 而且目前PBDEs在不同環境介質中的濃度限定標準還沒有規范化, 因此亟需制定一套適合我國的PBDEs濃度標準。關于PBDEs在人體暴露的評估, 大多數是基于日常攝取食物來進行評價, 既沒有考慮PBDEs通過人的皮膚和呼吸攝入這兩個過程[72], 也沒有考慮PBDEs在人體內的吸收率[73], 因此需要進行更全面的研究, 把日常攝入, 呼吸和皮膚接觸這3種暴露途徑以及在人體內的吸收率全部考慮在內。而且, 由于在實際的海洋環境中PBDEs會受各種因素互相影響, PBDEs會發生各種反應, 如PBDEs的轉化(羥基化及巰基化等)、其反應所產生的毒性物質之間會存在哪些聯合作用(拮抗作用及協同作用等), 對于PBDEs的這些環境行為和毒理學效應還需要進一步的研究。
[1] Darnerud P O, Eriksen G S, Jóhannesson T, et al. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology[J]. Environmental Health Perspectives, 2001, 109 (S1): 49-68.
[2] La Guardia M J, Hale R C, Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used Penta-, Octa-, and Deca- PBDE technical flame-retardant mixtures[J]. Environmental Science & Technology, 2006, 40(20): 6247-6254.
[3] Decarlo V J. Studies on brominated chemicals in the environment[J]. Annals of the New York Academy of Sciences, 1979, 320: 678-681.
[4] Wit C A D, Alaee M, Muir D C G. Levels and trends of brominated flame retardants in the Arctic[J]. Chemosphere, 2006, 64(2): 209-233.
[5] Boer J D, Wester P G, Horst A V D, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands[J]. Environmental Pollution, 2003, 122(1): 63-74.
[6] Sellstrom U, Kierkegaard A, Wit C D. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish River[J]. Environmental Toxicology and Chemistry, 1998, 17(6): 1065-1072.
[7] Takasuga T, Senthilkumar K, Takemori H, et al. Impact of fermented brown rice with Aspergillus oryzae (FEBRA) intake and concentrations of polybrominated diphenylethers (PBDEs) in blood of humans from Japan[J]. Chemosphere, 2004, 57(8): 795-811.
[8] 劉宗峰, 郎印海, 曹正梅, 等. 環境中多溴聯苯醚(PBDEs)分布特征研究進展[J]. 土壤通報, 2007, 38(6): 1227-1233.Liu Zongfeng, Lang Yinhai, Cao Zhengmei, et al. Advance of the distribution of polybrominated diphenyl ethers (PBDEs) in the environment[J]. Chinese Journal of Soil Science, 2007, 38(6): 1227-1233.
[9] 龐佳佳, 王亮亮. 多溴聯苯醚的研究進展[J]. 首都醫藥, 2012(2): 27-28.Pang Jiajia, Wang Liangliang. Research progress of polybrominated biphenyl ethers[J]. Capital Medicine, 2012(2): 27-28.
[10] 韋朝海, 廖建波, 劉潯, 等. PBDEs的來源特征、環境分布及污染控制[J]. 環境科學學報, 2015, 35(10): 3025-3041.Wei Chaohai, Liao Jianbo, Liu Xun, et al. Source, characteristics, environmental distribution and pollution control of PBDEs[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3025-3041.
[11] Esch G J V. Flame retardants: a general introduction[J]. Oms Environmental Health Criteria, 1997, 192(192): XI-56.
[12] Macías-Zamora J V, Ramírez-álvarez N, Hernández-Guzmán F A, et al. On the sources of PBDEs in coastal marine sediments off Baja California, Mexico[J]. Science of The Total Environment, 2016, 571: 59-66.
[13] 劉興亮. 渤海海域海洋傾廢區現狀調查與評估研究[D]. 大連: 大連海事大學, 2010.Liu Xingliang. Study on Bohai sea marine dumping area investigation and assessment[D]. Daliang, Liaoning Province: Dalian Maritime University, 2010.
[14] Zhen X, Tang J, Xie Z, et al. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China[J]. Environmental Pollution, 2016, 213: 386-394.
[15] 牟亞南, 王金葉, 張艷, 等. 萊州灣東部海域多溴聯苯醚的污染特征及生態風險評價[J]. 環境化學, 2019, 38(1): 131-141.Mou Yanan, Wang Jinye, ZhanG Yan, et al. Contamination characteristics and ecological risk assessment of polybrominated diphenyl ethers in the eastern region of Laizhou Bay[J]. Environmental Chemistry, 2019, 38(1): 131-141.
[16] 呂楊, 王立寧, 黃俊, 等. 海河渤海灣地區沉積物, 魚體樣品中多溴聯苯醚的水平與分布[J]. 環境污染與防治, 2007, 29(9): 652-655.Lv Yang, Wang Lining, Huang Jun, et al. PBDEs in sediments and cruwians of Haihe River and Bohai Bay[J]. Environmental Pollution & Control, 2007, 29(9): 652-655.
[17] 姚文君, 薛文平, 國文, 等. 環渤海近岸海域表層沉積物及底棲生物中PBDEs的賦存特征及富集行為[J]. 生態毒理學報, 2016, 11(2): 413-420. Yao Wenjun, Xue Wengping, Guo Wen, et al. Occurrence and bioaccumulation of polybrominated diphenyl ethers (PBDEs) in surficial sediment and benthic organism in the Bohai Sea[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 413-420.
[18] 王國光, 張大海, 楊丹丹, 等. 超聲輔助堿解萃取-氣相色譜-電子捕獲檢測器測定海洋沉積物中8種多溴聯苯醚[J]. 色譜, 2015, 33(8): 885-891.Wang Guoguang, Zhang Dahai, Yang Dandan, et al. Determination of eight polybrominated diphenyl ethers in marine sediments by ultrasonically assisted alkaline degradation extraction and gas chromatography-electron capture detection[J]. Chinese Journal of Chromatography, 2015, 33(8): 885-891.
[19] Streets S S, Henderson S A, Sroner A D, et al. Partitioning and bioaccumulation of PBDEs and PCBs in Lake Michigan[J]. Environmental Science and Technology, 2006, 40(23): 7263-7269.
[20] Li L, Xie S, Cai H, et al. Quantitative structure– property relationships for octanol–water partition coefficients of polybrominated diphenyl ethers[J]. Chemo-sphere, 2008, 72(10): 1602-1606.
[21] Li Y, Lin T, Chen Y, et al. Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: Occurrence, distribution and mass inventory[J].Environmental Pollution, 2012, 171: 155-161.
[22] Wang Y, Wu X, Zhao H, et al. Characterization of PBDEs and novel brominated flame retardants in seawater near a coastal mariculture area of the Bohai Sea, China[J]. Science of The Total Environment, 2017, 580: 1446-1452.
[23] Chen M, Yu M, Luo X, et al. The factor controlling the partioning of polybrominated diphenyl ethers and polychlorinated biphenyls in the water-column of the Pearl River Estuary in South China[J]. Marine Pollution Bulletin, 2011, 62(1): 29-35.
[24] Guan Y, Wang J, Ni H, et al. Riverine inputs of polybrominated diphenyl ethers from the Pearl River Delta (China) to the coastal ocean[J]. Environmental Science and Technology, 2007, 41(17): 6007-6013.
[25] 朱冰清, 史薇, 胡冠九. 中國海洋環境中鹵代阻燃劑的污染現狀與研究進展[J]. 環境化學, 2017, 36(11): 2408-2423.Zhu Bingqing, Shi Wei, Hu Guanjiu, The pollution status and research progress on halogenated flame retardants in China marine environment[J]. Environmental Chemistry, 2017, 36(11): 2408-2423 .
[26] Pan X, Tang J, Li J, et al. Polybrominated diphenyl ethers (PBDEs) in the riverine and marine sediments of the Laizhou Bay area, North China[J]. Journal of Environmental Monitoring, 2011, 13(4): 886-893.
[27] 員曉燕, 楊玉義, 李慶孝, 等. 中國淡水環境中典型持久性有機污染物(POPs) 的污染現狀與分布特征[J]. 環境化學, 2013, 32(11): 2072-2081.Yuan Xiaoyan, Yang Yuyi, Li Qingxiao, et al. Present situation and distribution characteristics of persistent organic pollutants in freshwater in China[J]. Environmental Chemistry, 2013, 32(11): 2072-2081.
[28] 林忠勝, 馬新東, 張慶華, 等. 環渤海沉積物中多溴聯苯醚(PBDEs)的研究[J]. 海洋環境科學, 2008, 27(S2): 24-27.Lin Zhongsheng, Ma Xindong, Zhang Qinghua, et al. Study on polybraminated diphenyl ethers (PBDEs) in sediment surround Bohai Sea[J]. Marine Environmental Science, 2008, 27(S2): 24-27.
[29] Li H, Zhang Q, Wang P, et al. Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China[J]. Journal of Environmental Moni-toring, 2012, 14(10): 2591-2597.
[30] Wang Z, Ma X, Lin Z, et al. Congener specific distributions of polybrominated diphenyl ethers (PBDEs) in sediment and mussel (Mytilus edulis) of the Bo Sea, China[J]. Chemosphere, 2009, 74(7): 896-901.
[31] MaiB, Chen S, Luo X, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea[J]. Environmental Science and Technology, 2005, 39(10): 3521-3527.
[32] Pan X, Tang J, Li J, et al. Levels and distributions of PBDEs and PCBs in sediments of the Bohai Sea, North China[J]. Journal of Environmental Monitoring, 2010, 12(6): 1234-1241.
[33] Wang D, Alaee M, Sverko E, et al. Analysis and occurrence of emerging chlorinated and brominated flame retardants in surficial sediment of the Dalian coastal area in China[J]. Journal of Environmental Monitoring, 2011, 13(11): 3104-3110.
[34] Li Y, Zhen X, Liu L, et al. Halogenated flame retardants in the sediments of the Chinese Yellow Sea and East China Sea[J]. Chemosphere, 2019, 234: 365-372.
[35] 甄小妹. 環渤海區域表層沉積物中鹵代阻燃劑的分布特征及來源研究[D]. 煙臺: 中國科學院煙臺海岸帶研究所, 2016.Zhen Xiaomei. The distribution and the source of the halogenated flame retardant in the surface sediments from Yellow Sea and Bohai Sea.North China[D]. Yantai, Shandong Province: Yantai Institute of Coastal Zone Research Chinese Academy of Sciences, 2016.
[36] Hong S H, Environmental occurrence and bioaccumulation of organochlorines in Korean coastal waters[D]. Ewha Womens University, Korea, 2002.
[37] Wang Y, Jiang G, Lam P K S, et al. Polybrominated diphenyl ether in the East Asian environment: A critical review[J]. Environment International, 2007, 33(7): 963-973.
[38] Klosterhaus S L, Stapleton H M, Guardia M J L, et al. Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife[J]. Environment International, 2012, 47: 56-65.
[39] Fu L, Pei J, Zhang Y, et al. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mollusks from the Chinese Bohai Sea: Levels and interspecific differences[J]. Marine Pollution Bulletin, 2019, 142: 551-558.
[40] Liu Y, Liu J, Yu M, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure[J]. Environmental Pollution, 2018, 233: 604- 611.
[41] Ma X, Zhang H, Wang Z, et al. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China[J]. Environmental Science & Technology, 2014, 48(10): 5964-5971.
[42] Zhang Y, Zhao H, Zhai W, et al. Enhanced methane emissions from oil and gas exploration areas to the atmosphere-The central Bohai Sea[J]. Marine Pollution Bulletin, 2014, 81(1): 157-165.
[43] 姚文君. 渤海近岸生物體內多溴二苯醚的分布特征及食用健康風險評價[D]. 大連: 大連工業大學, 2016.Yao Wenjun. The distribution and consumption of health risk assessment of PBDEs in organisms collected from the coastal of Bohai Sea[D]. Dalian, Liaoning Province: Dalian Polytechnic University, 2016.
[44] 李玉芳, 宋淑玲. 中國主要沿海地區魚/貝類中PBDEs暴露水平現狀、特征和發展趨勢[J]. 環境化學, 2020, 39(1): 138-147.Li Yufang, Song Shuling. Current status, characteristics and development trend of PBDEs levels in fish/ shellfish from major coastal areas of China[J]. Environmental Chemistry. 2020, 39 (1): 138-147.
[45] Luo Q, Cai Z, Wong M. Polybrominated diphenyl ethers in fish and sediment from river polluted by electronic waste[J]. Science of the Total Environment, 2007, 383(1-3): 115-127.
[46] Xu J, Gao Z, Xian Q, et al. Levels and distribution of polybrominated diphenyl ethers (PBDEs) in the freshwater environment surrounding a PBDE manufacturing plant in China[J]. Environmental Pollution, 2009, 157(6): 1911-1916.
[47] 郭英, 唐洪磊, 孟祥周, 等. 多溴聯苯醚在桂花魚體內的分布[J]. 環境科學, 2007, 28(12): 2806-2810. Guo Ying, Tang Honglei, Meng Xiangzhou, et al. Tissue distribution of PBDEs in mandarin fish[J]. Environmental Science, 2007, 28(12): 2806-2810.
[48] Law R J, Alaee M, Allchin C R, et al. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife[J]. Environment International, 2004, 29(6): 757-770.
[49] Bekele T G, Zhao H, Wang Q, et al. Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China[J]. Environmental Science & Technology, 2019, 53(22): 3417-13426.
[50] Kierkegaard A, Balk L, Tj?rnlund U, et al. Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss)[J]. Environmental Science & Technology, 1999, 33(10): 1612-1617.
[51] Wan Y, Hu J, Zhang K, et al. Trophodynamics of polybrominated diphenyl ethers in the marine food web of Bohai Bay, North China[J]. Environmental Science and Technology, 2008, 42(4): 1078-1083.
[52] He M, Luo X, Chen M, et al. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China[J]. Science of the Total Environment, 2012, 419(3): 109-115.
[53] Zheng S, Wang P, Sun H, et al. Tissue distribution and maternal transfer of persistent organic pollutants in Kentish Plovers (Charadrius alexandrines) from Cangzhou Wetland, Bohai Bay, China[J]. Science of the Total Environment, 2018, 612: 1105-1113.
[54] 王志增, 趙文晉, 馬小凡. 珠江口水環境中多溴聯苯醚生態風險分析[J]. 環境保護科學, 2010, 36(4): 65-68.Wang Zhizeng, Zhao Wenjin, Ma Xiaofan. Ecolo-gi-cal risk analysis on PBDEs in the water environment of Pearl River Estuary[J]. Environmental Protection Science. 2010, 36(4): 65-68.
[55] 趙恒, 孟祥周, 向楠, 等.上海市受納污水河流中多溴聯苯醚的生態風險評價[J]. 環境化學, 2012, 31(5): 573-579. Zhao Heng, Meng Xiangzhou, Xiang Nan, et al. Ecological risk assessment of polybrominated diphenyl ethers in river receiving wastewater in Shanghai[J]. Environmental Chemistry, 2012, 31(5): 573-579.
[56] Wang X, Chen L, Wang X, et al. Occurrence, profiles and ecological risks of polybrominated diphenyl ethers (PBDEs) in river sediments of Shanghai, China[J]. Chemosphere, 2015, 133: 22-30.
[57] Liu J, Lu G, Xie Z, et al. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants[J]. Science of the Total Environment, 2015, 511: 54-62.
[58] Environment Canada. Federal Environmental Quality Guidelines Polybrominated Diphenyl Ethers (PBDEs)[R]. Gatineau, Environment Canada, February 2013.
[59] Environment Canada. Guidance manual for the categorization of organic and inorganic substances on Canada's Domestic Substances List: Determining persistence, bioaccumulation potential and inherent toxicity to non-human organisms existing substances branch[EB/ OL]. [2017-3-5]. http://www.ec.gc.ca/substances/ese/eng/ dsl/cat_index/cfm.
[60] Burreau S, Axelman J, Broman D, et al. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet[J]. Environmental Toxicology and Chemistry, 1997, 16(12): 2508-2513.
[61] 孟范平, 于騰. 多溴聯苯醚在海洋生物中的富集及毒性效應評述[J]. 熱帶海洋學報, 2010, 29(5): 1-9.Meng Fanping, Yu Teng. Review on bioaccumulation and toxicity of polybrominated diphenyl ethers in marine organisms[J]. Journal of Tropical Oceanography, 2010, 29(5): 1-9.
[62] Ramu K, Kajiwara N, Sudaryanto A, et al. Asian mussel watch program: contamination status of polybrominated diphenyl ethers and organochlorines in coastal waters of Asian countries[J]. Environmental science & technology, 2007, 41(13): 4580-4586.
[63] Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7): 2280- 2286.
[64] Meng X Z, Yu L, Guo Y, et al. Congener-specific distribution of polybrominated diphenyl ethers in fish of China: Implication for input sources[J]. Environmental Toxicology and Chemistry: An International Journal, 2008, 27(1): 67-72.
[65] United States Environmental Protection Agency Office of Water. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 1: Fish Sampling and Analysis[M]. Office of Science and Technology Office of Water, U.S. Environmental Protection Agency, Washington, DC, 2000.
[66] 段小麗, 黃楠, 王貝貝, 等. 國內外環境健康風險評價中的暴露參數比較[J]. 環境與健康雜志, 2012, 29(2): 114-117. Duan Xiaoli, Huang Nan, Wang Beibei, et al. Development of exposure factors research methods in environmental health risk assessment[J]. Environmental Health, 2012, 29(2): 114-117.
[67] 周昇昇, 李磊, 張杰, 等. 食品中環境污染物多溴聯苯醚的風險評估[J]. 環境衛生學雜志, 2014, 4(3): 272-275. Zhou Shengsheng, Li Lei, Zhang Jie, et al. Risk assessment of polybrominated diphenyl ethers(PBDEs) in food in chinese urban area[J]. Journal of Environmental Hygiene, 2014, 4(3): 272-275.
[68] 段文佳, 張曉燕, 周德慶. 水產品來源的甲醛膳食暴露評估初步研究[J]. 食品工業科技, 2012, 33(3): 305-308.Duan Wenjia, Zhang Xiaoyan, Zhou Deqing. Primary study on exposure assessment of formaldehyde in fishery products[J]. Science and Technology of Food Industry, 2012, 33(3): 305-308.
[69] Zhang L, Yin S, Zhao Y, et al. Polybrominated diphenyl ethers and indicator polychlorinated biphenyls in human milk from China under the Stockholm Convention[J]. Chemosphere, 2017, 189: 32-38.
[70] Liu X, Bing H, Chen Y, et al. Brominated flame retardants and dechlorane plus on a remote high mountain of the eastern Tibetan Plateau: implications for regional sources and environmental behaviors[J]. Environmental geochemistry and health, 2018, 40(5): 1887-1897.
[71] Liao W, Wang G, Li K, et al. Change of arsenic speciation in shellfish after cooking and gastrointestinal digestion[J]. Journal of agricultural and food chemistry, 2018, 66(29): 7805-7814.
[72] Yu Y, Zhao Z, Chong D, et al. Novel in vitro method for measuring the mass fraction of bioaccessible atmospheric polycyclic aromatic hydrocarbons using simulated human lung fluids[J]. Environmental pollution, 2018, 242: 1633-1641.
[73] Li C, Zhao Z, Lei B, et al. Polybrominated diphenyl ethers in the air and comparison of the daily intake and uptake through inhalation by Shanghai residents with those through other matrices and routes[J]. Environmental Science and Pollution Research, 2015, 22(3): 1750-1759.
[74] Wang G, Peng J, Yang D, et al. Current levels, composition profiles, source identification and potentially ecological risks of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the surface sediments from Bohai Sea[J]. Marine pollution bulletin, 2015, 101(2): 834-844.
[75] Liu Y, Liu J, Yu M, et al. Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure[J]. Environmental Pollution, 2018, 233: 604-611.
[76] Eguchi A, Nomiyama K, Devanathan G, et al. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India[J]. Environment international, 2012, 47: 8-16.
Distribution and risk assessment of polybrominated diphenyl ethers in the Bohai Sea
WANG Rui, LIN Kun, WANG Jiang-tao, TAN Li-ju
(Key Laboratory of Marine Chemistry Theory and Technology/Ministry of Education, Ocean University of China, Qingdao 266100, China)
In the past few decades polybrominated diphenyl ethers(PBDEs) have emerged as a new class of persistent organic pollutants (POPs) owing to their accumulation in the marine environments all across the globe. PBDEs are widely used as a flame-retardant and are fount to exist is in a variety of industrial products including textiles, paints, rugs, automobiles, and airplanes. The characteristics of persistence, bioaccumulation, and long-range transportation make PBDEs a serious threat to marine ecosystems and human health. The Bohai Sea is the only semi-enclosed inland sea in China. Its poor ability of self-purification and exchange water with the outside of Bohai Sea has been found to be associated with the high pollution load present in this waterbody. Evaluation of PBDEs accumulation in the Bohai Sea region has received a significant attention in the recent decades. The current study aimed to provide an overview of the pollution status of the Bohai Sea and evaluate the harmful effects of the accumulated PBDEs. With a view to provide an overview of the pollution status of the Bohai Sea and the harmful effects of the accumulated PBDEs, the present work describes in detail the pollution characteristics and concentration levels of PBDEs in sea water, sediments and biological media of the Bohai Sea, methods used for ecological and environmental risk assessment, and distributions of PBDEs in water and sediment. The information thus obtained will be helpful in the prevention and control of pollution arising due to PBDEs accumulation which will further maintain the ecological and environmental serenity/balance of the Bohai Sea in the near future.
polybrominated diphenyl ethers; Bohai Sea; concentration; distribution; eco-environmental risk
Jul. 17, 2020
X145
A
1000-3096(2021)04-0189-12
10.11759/hykx20200717001
2020-07-17;
2020-08-16
國家重點研發計劃項目(2019YFC1407802)
[National Key Research and Development Project of China, No.2019YFC1407802]
王睿(1995—), 男, 山東省濟南市人, 主要從事海洋污染生態化學研究, E-mail: wangrui-ouc@foxmail.com; 王江濤(1967—),通信作者, 男, 河北省承德市人, 教授, 主要從事海洋化學和生態學研究, E-mail: jtwang@ouc.edu.cn
(本文編輯: 趙衛紅)