趙銳 王譯晗 朱悅 陶琳 單軍
【摘要】 骨質疏松癥是臨床常見的代謝性骨病。骨質疏松的發生是由各種原因導致的成骨細胞介導的骨生成減少或破骨細胞介導的骨吸收增加。骨生成作用主要由成熟的成骨細胞完成,成骨細胞主要來源于間充質干細胞(mesenchymal stem cells,MSCs),在一系列信號通路及細胞因子等的調控下,MSCs可以分化為成骨細胞,進而發揮骨生成作用。因此增強成骨細胞的分化能力至關重要。目前已知多條信號通路參與到MSCs向成骨細胞分化的過程中,例如Wnt/β-catenin、BMP-Smads、Hedgehog、Notch、PI3K/AKT、MAPKs信號通路等,同時Runx2、Osterix或PPARγ等關鍵轉錄因子也在成骨分化過程中起到重要調控作用,這些信號通路與轉錄因子的激活或抑制影響著MSCs向成骨細胞或脂肪細胞的分化傾向,但這些信號通路與轉錄因子之間是否存在相互聯系,以及它們是如何協同發揮調控成骨細胞分化的作用目前尚不明確。因此,本文針對成骨細胞分化相關重要信號通路以及轉錄因子研究進展做一綜述,為臨床上大量的骨代謝異常相關疾病尋找發病機制以及治療靶點。
【關鍵詞】 成骨分化 信號通路 Runx2 Osterix
Advances in Signaling Pathways and Cytokines Regulating Osteoblastic Differentiation/ZHAO Rui, WANG Yihan, ZHU Yue, TAO Lin, SHAN Jun. //Medical Innovation of China, 2021, 18(05): -176
[Abstract] Osteoporosis is a common clinical metabolic osteopathy. Osteoporosis occurs due to decreasing of bone formation by osteoblasts or increasing of bone resorption by osteoclasts. Bone formation is done by mature osteoblasts, which are mainly derived from mesenchymal stem cells (MSCs). MSCs can differentiate into osteoblasts under the control of a series of signalling pathways and transcription factors. Therefore, it is important to enhance the differentiation of osteoblasts. Several signalling pathways are known to be involved in MSCs differentiation into osteoblasts, such as Wnt/β-catenin, BMP-Smads, Hedgehog, Notch, PI3K/AKT, MAPKs signalling pathways, meanwhile transcription factors such as Runx2, Osterix and PPARγ also play an important regulatory role in osteoblast differentiation. The activation or suppression of these signalling pathways and transcription factors affect tendency of MSCs differentiation into osteoblasts or fat cells, but it is not clear whether these signalling pathways and transcription factors are related to each other and how they work together to regulate osteoblast differentiation. Therefore, this paper makes a review of the important signalling pathways and transcription factors related to osteoblast differentiation, and seeks the pathogenesis and treatment targets for a large number of bone metabolic abnormality-related diseases in clinical.
[Key words] Osteoblast differentiation Signalling pathway Runx2 Osterix
First-authors address: Shenyang Orthopedic Hospital, Shenyang 110044, China
doi:10.3969/j.issn.1674-4985.2021.05.043
骨質疏松癥是臨床常見的代謝性骨病,一般表現為骨量減少、骨脆性增加,進而導致骨折風險增高等。成骨細胞介導的骨生成與破骨細胞介導的骨吸收之間的平衡維持著骨的穩態[1]。骨質疏松的發生由各種原因導致這種平衡被打破,出現成骨細胞介導的骨生成降低或者破骨細胞介導的骨吸收增加。骨生成作用主要由成熟的成骨細胞完成,成骨細胞主要由間充質干細胞(mesenchymal stem cells,MSCs)分化而來,間充質干細胞具有可分化為成骨細胞、脂肪細胞、軟骨細胞等的能力,在一系列信號通路及細胞因子的調控下,MSCs可以分化為
成骨細胞,并在進一步調控下成為成熟的成骨細胞,發揮骨生成作用。因此增強成骨細胞的分化及成熟能力至關重要。所以,為了更好地揭示成骨細胞分化及骨形成過程的機制,迫切需要闡明這些信號通路及細胞因子是如何在成骨細胞分化過程中發揮調控作用,以期在骨質疏松癥的治療中尋找新的藥物靶點。現對參與調控成骨細胞分化的重要信號通路及細胞因子做一綜述。
1 參與成骨分化調控的細胞因子Runx2與Osterix
Runx2也稱核心結合因子1(Cbfa1),屬于Runt結構域基因家族成員之一,因為在成骨細胞的分化和成熟過程中起著至關重要的作用[2-3],同時可以抑制MSCs向脂肪細胞的分化[4],所以被認定為成骨分化過程中最重要的轉錄因子之一。體內實驗證實,敲除Runx2基因的小鼠顯示出完全性骨生成障礙[5]。Runx2與成骨細胞中堿性磷酸酶(ALP)、骨鈣素(OCN)、Ⅰ型膠原蛋白(COLL-1)、骨脂蛋白(BSP)及骨橋蛋白(OPN)等主要成骨分化相關基因的表達密切相關,因為以上基因的啟動子序列中都存在成骨特異性順式元件(OSE),而Runx2能夠與之結合,從而激活這些相關基因的表達[6-7]。
Osterix(Osx)同樣是與成骨細胞分化過程密切相關的一種轉錄因子。有研究表明,敲除小鼠Osterix基因后,小鼠體內骨皮質和骨小梁發育障礙,證實了Osx與Runx2同樣是成骨細胞分化過程中所必需的關鍵轉錄因子,進一步研究發現Runx2基因敲除小鼠體內的Osx同樣不表達,提示Osx的表達受Runx2調控,Osx位于Runx2的下游[8]。
2 參與成骨分化調控的信號通路
骨形成受多種合成代謝信號通路的調節,包括PI3K/AKT、Wnt/β-catenin、BMP/TGF-β/Smad、MAPK、Notch、Hedgehog等信號通路[9-12]。這些信號通路通過調控Runx2的表達,進而影響骨形成[10,13-14]。下面對重要的成骨分化相關信號通路構成以及目前研究現狀做一概述。
2.1 Wnt/β-catenin信號通路 Wnt信號通路分為經典和非經典信號通路。其中,經典Wnt信號通路(即Wnt/β-catenin通路)被認為是在成骨細胞分化過程中起到重要調控作用的信號通路之一。經典Wnt/β-catenin信號通路由Wnt配體及其受體以及細胞內信號分子等組成,其成員主要包括膜外Wnt蛋白(配體)、卷曲蛋白受體(frizzled receptors)、低密度脂蛋白受體相關蛋白(LRP5/6)、連環蛋白(β-catenin)、糖原合成激酶3β(GSK3β)、下游靶基因(如Runx2、Osterix等),以及其他與Wnt/β-catenin信號通路相關的因子,如Dkks(Dickkopfs)、SCF β-TrCP等。
研究表明,當細胞外缺乏Wnt蛋白時,GSK3β以復合體形式存在,復合體形式下的GSK3β可磷酸化β-catenin,磷酸化的β-catenin會被E3泛素連接酶SCFβ-TrCP識別結合后經由泛素蛋白酶體系統降解,從而降低胞質內β-catenin的濃度,進而阻斷Wnt/β-catenin信號通路[15]。Wnt/β-catenin信號通路的激活需要Wnt蛋白激活細胞表面的Frizzled受體,并進一步與LRP5/6受體結合,抑制GSK3β的活性,阻止β-catenin磷酸化,保持了β-catenin蛋白的穩定,使未磷酸化的β-catenin轉移至細胞核內,進而增加TCF/LEF的轉錄活性和成骨相關基因的表達。
Wnt/β-catenin信號通路具有促進成骨分化和抑制成脂分化的作用[16]。這種作用已在多種細胞模型中被證實。例如,在3T3-L1細胞系中,Wnt/β-catenin信號通路和成脂特異性轉錄因子過氧化物酶體增殖物激活受體γ(PPARγ)相互調節以調控細胞的成脂分化趨勢[17]。加入Wnt3a可增強BM-MSC和C3H10T1/2細胞的成骨分化,同時抑制向脂肪細胞的分化[18-19]。加入Dkk1,可加強3T3-L1細胞成脂分化效果,敲除Dkk1導致MSCs的成脂分化效應降低,而MC3T3-E1細胞和BM-MSCs成骨分化效應增強[17,20]。
Wnt/β-catenin信號通路在調節成骨細胞分化及骨形成方面最終作用于Runx2,Wnt/β-catenin信號通路通過調控Runx2的表達,進而發揮Runx2調節成骨分化相關基因ALP、OCN、COLL-1、BSP及OPN等表達的作用,促進了成骨細胞的分化與成熟。Runx2基因啟動子序列中存在一個TCF作用元件,β-catenin通過與此作用元件進行結合,繼而啟動Runx2及下游靶基因的表達,從而對成骨細胞分化及骨形成進行調控[21]。
2.2 BMP/Smads信號通路 在參與成骨細胞分化過程的眾多信號通路中,BMP/Smads信號通路是激活成骨細胞分化及骨形成十分重要的一條通路。BMPs是TGF-β超家族中的重要成員。其中BMP2、4、7、9等,在成骨細胞分化過程中起到重要的調節作用,因此被認為是目前骨代謝領域的研究熱點之一[22],同時多數學者認為BMPs對成骨細胞分化的調控作用更具有特異性[23]。BMP/Smads/Runx2/Osterix信號通路被認為是介導成骨細胞分化最重要以及最特異性的通路之一,研究表明,BMPs通過結合細胞膜上特異性受體進而激活BMP/Smads通路,使下游的Smads蛋白(如Smad1、5)發生磷酸化,然后進一步啟動成骨細胞特異性轉錄因子基因(如Runx2、Osterix等)轉錄,Runx2、Osterix繼續促進成骨分化相關基因ALP、OCN、COLL-1、BSP及OPN等的表達,從而增強了MSCs向成骨細胞分化及骨形成的能力[10,23]。
泛素蛋白酶體系統在BMP/Smads信號通路中發揮了重要調控作用,特別是屬于E3泛素連接酶的Smurf蛋白,其中最具代表性的Smurf1,它能特異性識別和結合Runx2及Smad1,促使它們經過泛素蛋白酶體途徑降解,進而抑制了由BMP/Smads信號通路介導的成骨細胞分化及骨形成[24-25]。human MSCs(hMSCs)細胞在經過成骨誘導后泛素特異性蛋白酶USP34的表達增加,敲除USP34會抑制hMSCs細胞成骨分化。選擇性敲除小鼠MSCs細胞中的USP34導致細胞骨形成能力下降。此外,USP34的缺失會減弱BMP2介導的骨分化,進而損害骨生成能力,而進一步敲除Smurf1恢復了USP34缺失MSCs細胞在體外的成骨潛力。證明了,USP34通過減弱Smurf1介導的泛素化降解Smad1和Runx2的能力,穩定了Smad1和Runx2,進而促進成骨細胞分化及骨形成[26]。有研究表明,TGF-β/BMP-2信號通路是在成骨細胞分化晚期細胞成熟過程中,而非早期發揮主要作用[27]。
由此可見,BMP/Smads通路是參與調控成骨細胞分化的重要信號通路之一,與Wnt/β-catenin信號通路類似,BMP/Smads信號通路可通過作用于Runx2、Osterix從而起到增強MSCs向成骨細胞分化的效果,同時其自身也受到多種因素的調節,例如蛋白磷酸化、泛素化途徑等。
2.3 Hedgehog信號通路 Hedgehog信號通路是由Hedgehog相應配體(Ihh、Shh、Dhh)、受體(Ptc、Smo)及細胞內信號分子(Gli)等組成。缺失Hedgehog蛋白時,Ptc抑制Smo的活性;當Hedgehog與Ptc1受體結合后,Smo受體被激活,激活的Smo進一步激活Gli,促使它們入核,進而啟動下游靶基因的表達。
近期研究發現,Hedgehog信號通路主要參與促進MSCs向成骨細胞分化,并阻止其向脂肪細胞分化[28],而且這種作用是通過調控Runx2的表達而實現的[2,29-31]。其中,Shh在成骨分化早期而Ihh主要在分化后期起主要作用[32-33]。研究表明,在MSCs細胞中,過表達Gli2能增強成骨細胞分化及礦化能力,敲除Runx2后這種促進效果被消除[29];而在未敲除Runx2的MSCs中,通過降低Gli2的表達能顯著抑制Ihh介導的成骨分化,證明了Ihh及Gli2對成骨分化具有促進作用,同時這種作用依賴于Runx2的表達增高。有研究證明Runx2對Hedgehog信號通路也存在調節作用,Runx2可以直接調節軟骨細胞、成骨前體細胞和成骨細胞中的Ihh表達,同時可以影響成骨前體細胞和成骨細胞中的Gli1和Ptc1表達[34]。同時也有實驗證明,在細胞成骨分化過程中Hedgehog信號通路的調節作用不是持續存在的,在某些成骨分化階段其他調節成骨分化信號通路發揮主導作用,例如Wnt通路等[31]。
總之,Hedgehog信號通路與Wnt/β-catenin、BMP/Smads信號通路一樣具有通過調控Runx2的表達來調節成骨細胞分化及骨形成的作用,因而同樣被視作調控成骨細胞分化及骨形成的關鍵信號通路之一,但這種調控作用是由Hedgehog信號通路單獨直接調控,還是必須借助Wnt/β-catenin或BMP/Smads信號通路而協同發揮作用尚無法確定,此外,對于Hedgehog信號通路于體內外發揮促進成骨分化作用是否存在時限性仍有爭議。
2.4 其他參與成骨分化的信號通路 大量實驗證實,Notch信號通路在調節MSCs向成骨細胞分化過程中起到重要作用,但得到的研究結果并不完全一致,多數研究認為Notch信號通路發揮抑制成骨細胞分化以及降低骨量的作用[35-37]。另一方面,也有研究表明,Notch信號通路在體外具有促進成骨細胞分化的作用,而且這種促進效果伴隨著BMP2的表達增加[38]。PI3K/AKT信號通路在許多細胞活動中起著重要作用,如細胞生長、增殖等[39]。最近的研究證明,PI3K/AKT信號通路在成骨分化過程中可能起到重要調控作用[40-41]。有研究表明,MAPKs家族成員JNK、ERK和p38MAPK信號通路通過調控成骨分化而影響骨骼的形成[42-43],同時p38MAPK和Prkd1信號通路參與MC3T3-E1細胞的在缺氧條件下的成骨分化[44]。
3 調控成骨分化的細胞因子、信號通路之間的聯系
目前認為Runx2在成骨細胞分化的起始階段發揮主要作用,誘導MSCs分化為未成熟的成骨細胞。而Osx的進一步作用導致成骨細胞的最終分化與成熟,Runx2作為Wnt/β-catenin信號通路下游的信號因子,而Osx是BMP-Smads信號通路下游的信號因子,有文獻認為成骨分化早期Wnt/β-catenin信號通路起主要調控作用,而分化后期BMP-Smads信號通路發揮主導作用使成骨細胞進一步分化成熟[45]。有研究表明,Akt可以通過增強Runx2的穩定性和轉錄活性,進而促進BMPs介導的成骨分化[10],說明Akt信號通路與BMP-Smads信號通路之間存在著相互影響。多項研究證明,Hedgehog信號通路與BMP2發揮協同作用促進MSCs的成骨分化[2,46]。實驗證明,Notch信號通路發揮抑制成骨細胞分化的效果是通過降低Wnt/β-catenin信號通路活性而達到的[35],同時這種抑制效果伴隨著Runx2的表達降低,BMP信號通路可能也參與到對成骨分化抑制的調控[36],但也有文獻表明這種抑制分化效果是通過降低Wnt/β-catenin信號通路活性而非BMP信號通路[37]。
綜上所述,MSCs向成骨細胞分化的調控機制十分復雜,Wnt/β-catenin、BMP-Smads、Hedgehog、Notch、PI3K/AKT、MAPKs等多條主要信號通路可以通過直接或間接作用于Runx2、Osterix或PPARγ等關鍵轉錄因子,而調節MSCs向成骨細胞或脂肪細胞的分化傾向,并且這些信號通路不是孤立存在的,它們通過作用于共同的轉錄因子,或在調控分化過程中的不同時期發揮主導作用而彼此相互聯系,協同參與調控成骨細胞分化。同時通過對這些成骨分化信號通路以及轉錄因子的深入研究,發現它們被激活或抑制的機制也十分復雜,蛋白磷酸化、蛋白泛素化途徑、長鏈非編碼RNA(long noncoding RNA,lncRNA)、微小RNA(microRNAs,miRNAs)、外泌體Exosomes(Exos)等都對成骨細胞分化信號通路以及轉錄因子有重要的調控作用。因此,還需要在現有研究基礎上,全面的、深入的針對成骨分化相關重要信號通路以及轉錄因子開展機制研究,為臨床上大量的骨代謝異常相關疾病尋找發病機制以及治療靶點。
參考文獻
[1] Tsuchiya H,Kitoh H,Sugiura F,et al.Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells[J].Biochem Biophys Res Commun,2003,301(2):338-343.
[2] Yamaguchi A,Komori T,Suda T.Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1[J].Endocr Rev,2000,21(4):393-411.
[3] Komori T.Runx2, an inducer of osteoblast and chondrocyte differentiation[J].Histochem Cell Biol,2018,149(4):313-323.
[4] Komori T.Regulation of skeletal development by the Runx family of transcription factors[J].J Cell Biochem,2005,95(3):445-453.
[5] Komori T,Yagi H,Nomura S,et al.Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts[J].Cell,1997,89(5):755-764.
[6] Cheng A,Genever P G.SOX9 determines Runx2 transactivity by directing intracellular degradation[J].J Bone Miner Res,2010,25(12):2680-2689.
[7] Stein G S,Lian J B,van Wijnen A J,et al.Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression[J].Oncogene,2004,23(24):4315-4329.
[8] Nakashima K,Zhou X,Kunkel G,et al.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation[J].Cell,2002,108(1):17-29.
[9] Radio N M,Doctor J S,Witt-Enderby P A.Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade[J].J Pineal Res,2006,40(4):332-342.
[10] Choi Y H,Kim Y J,Jeong H M,et al.Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation[J].FEBS J,2014,281(16):3656-3666.
[11] Liu J,Yang J.Uncarboxylated osteocalcin inhibits high glucose-induced ROS production and stimulates osteoblastic differentiation by preventing the activation of PI3K/Akt in MC3T3-E1 cells[J].Int J Mol Med,2016,37(1):173-181.
[12] Lin G L,Hankenson K D.Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation[J].J Cell Biochem,2011,112(12):3491-3501.
[13] Park K H ,Kang J W,Lee E M,et al.Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways[J].J Pineal Res,2011,51(2):187-194.
[14] Luchetti F,Canonico B,Bartolini D,et al.Melatonin regulates mesenchymal stem cell differentiation: a review[J].J Pineal Res,2014,56(4):382-397.
[15] Vriend J,Reiter R J.Melatonin,bone regulation and the ubiquitin-proteasome connection: A review[J].Life Sci,2016,145:152-160.
[16] Taipaleenm?ki H,Abdallah B M,AlDahmash A,et al.Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations[J].Exp Cell Res,2011,317(6):745-756.
[17] Ross S E,Hemati N,Longo K A,et al.Inhibition of adipogenesis by Wnt signaling[J].Science,2000,289(5481):950-953.
[18] Hu H,Hilton M J,Tu X,et al.Sequential roles of Hedgehog and Wnt signaling in osteoblast development[J].Development,2005,132(1):49-60.
[19] Gong Y,Slee R B,Fukai N,et al.LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development[J].Cell,2001,107(4):513-523.
[20] Wang F S,Ko J Y,Yeh D W,et al.Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss[J].Endocrinology,2008,149(4):1793-1801.
[21] Hill T P,Sp?ter D,Taketo M M,et al.Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes[J].Dev Cell,2005,8(5):727-738.
[22] Beederman M,Lamplot J D,Nan G,et al.BMP signaling in mesenchymal stem cell differentiation and bone formation[J].
J Biomed Sci Eng,2013,6(8A):32-52.
[23] Chen G,Deng C,Li YP.TGF-β and BMP signaling in osteoblast differentiation and bone formation[J].Int J Biol Sci,2012,8(2):272-288.
[24] Lian C,Wu Z,Gao B,et al.Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein[J].J Pineal Res,2016,61(3):317-327.
[25] Sun X,Xie Z,Ma Y,et al.TGF-β inhibits osteogenesis by upregulating the expression of ubiquitin ligase SMURF1 via MAPK-ERK signaling[J].J Cell Physiol,2018,233(1):596-606.
[26] Guo Y C,Wang M Y,Zhang S W,et al.Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling[J].EMBO J,2018,37(20)
[27] Bais M V,Wigner N,Young M,et al.BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells[J].Bone,2009,45(2):254-266.
[28] Spinella-Jaegle S,Rawadi G,Kawai S,et al.Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation[J].J Cell Sci,2001,114(Pt 11):2085-2094.
[29] Shimoyama A,Wada M,Ikeda F,et al.Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function[J].Mol Biol Cell,2007,18(7):2411-2418.
[30] St-Jacques B,Hammerschmidt M,McMahon A P.Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation[J].Genes Dev,1999,13(16):2072-2086.
[31] Rodda S J,McMahon A P.Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors[J].Development,2006,133(16):3231-3244.
[32] Tu X,Joeng K S,Long F.Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation[J].Dev Biol,2012,362(1):76-82.
[33] Cai J Q,Huang Y Z,Chen X H,et al.Sonic hedgehog enhances the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells[J].Cell Biol Int,2012,36(4):349-355.
[34] Qin X,Jiang Q,Miyazaki T,et al.Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells[J].Hum Mol Genet,2019,28(6):896-911.
[35] Zanotti S,Smerdel-Ramoya A,Stadmeyer L,et al.Notch inhibits osteoblast differentiation and causes osteopenia[J].Endocrinology,2008,149(8):3890-3899.
[36] Zamurovic N,Cappellen D,Rohner D,et al.Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity[J].J Biol Chem,2004,279(36):37704-37715.
[37] Deregowski V,Gazzerro E,Priest L,et al.Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling[J].
J Biol Chem,2006,281(10):6203-6210.
[38] Ugarte F,Ryser M,Thieme S,et al.Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells[J].Exp Hematol,2009,37(7):867-875.
[39] Guntur A R,Rosen C J.The skeleton: a multi-functional complex organ: new insights into osteoblasts and their role in bone formation: the central role of PI3Kinase[J].J Endocrinol,2011,211(2):123-130.
[40] Ghosh-Choudhury N,Abboud S L,Nishimura R,et al.
Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription[J].J Biol Chem,2002,277(36):33361-33368.
[41] Fujita T,Azuma Y,Fukuyama R,et al.Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling[J].J Cell Biol,2004,166(1):85-95.
[42] Lin F H,Chang J B,Brigman B E.Role of mitogen-activated protein kinase in osteoblast differentiation[J].J Orthop Res,2011,29(2):204-210.
[43] Greenblatt M B,Shim J H,Glimcher L H.Mitogen-activated protein kinase pathways in osteoblasts[J].Annu Rev Cell Dev Biol,2013,29:63-79.
[44] Son J H,Cho Y C,Sung I Y,et al.Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways[J].J Pineal Res,2014,57(4):385-392.
[45] McCarthy T L,Centrella M.Novel links among Wnt and TGF-β signaling and Runx2[J].Mol Endocrinol,2010,24(3):587-597.
[46] Yuasa T,Kataoka H,Kinto N,et al.Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2[J].J Cell Physiol,2002,193(2):225-232.
(收稿日期:2020-06-03) (本文編輯:張爽)