








[摘要] 目的 識別冠心?。–HD)的差異表達基因(DEGs),通過分析DEGs參與的生物學途徑闡明CHD疾病發生涉及的細胞內通路。
方法 從GEO數據庫下載兩個已發表的CHD微陣列數據集中mRNA表達芯片的原始數據。篩選DEGs并對其進行生物信息學分析,包括Venn分析、基因本體(GO)注釋分析、KEGG(Kyoto Encyclopedia of Genes and Genomes)細胞通路富集分析、蛋白質相互作用(PPI)網絡分析。采用實時熒光定量聚合酶鏈反應(RT-qPCR)驗證CHD病例外周血中核心DEGs的表達水平。
結果 共篩選出122個CHD的DEGs。GO及KEGG分析顯示,這些DEGs參與了DNA轉錄和mRNA剪接調控。PPI網絡分析顯示,表達下調基因LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2和NKTR位于網絡中心,且這些基因均為DNA轉錄和RNA剪接相關基因。RT-qPCR檢測證實以上基因在CHD中均表達下降,與前期芯片結果一致。
結論 RNA剪接在CHD的發生過程中可能發揮了重要作用。
[關鍵詞] 冠心病;基因表達;計算生物學;RNA剪接
[中圖分類號] R541.4
[文獻標志碼] A
[文章編號] 2096-5532(2021)06-0852-08
doi:10.11712/jms.2096-5532.2021.57.204
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.r.20211230.1017.011.html;2021-12-30 14:59:52
IDENTIFICATION AND BIOINFORMATICS ANALYSIS OF DIFFERENTIALLY EXPRESSED GENE IN CORONARY HEART DI-SEASE
LI Zhaoshui, WANG Guangjing, QIAO Youjin, SHENG Wei, HUANG Qiang, CHI Yifan
(Department of Car-diovascular Surgery, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China)
[ABSTRACT]Objective To identify the differentially expressed genes (DEGs) in coronary heart disease (CHD), and to clarify the cellular pathways involved in the onset of CHD by analyzing the biological pathways involving such DEGs.
Methods The raw data of two published mRNA expression microarray datasets of CHD were downloaded from the GEO database. DEGs were screened out and a bioinformatics analysis was performed, including Venn analysis, gene ontology (GO) annotation analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RT-qPCR was used to validate the expression levels of core DEGs in peripheral blood of patients with CHD.
Results A total of 122 DEGs were screened out in CHD. GO and KEGG analyses showed that these DEGs were involved in DNA transcription and mRNA splicing regulation. The PPI network analysis showed the downregulated genes LUC7L3, HNRNPA1, SF3B1, ARGLU1, SRSF5, SRSF11, SREK1, PNISR, DIDO1, ZRSR2, and NKTR were located in the center of the network, and all these genes were associated with DNA transcription and RNA splicing regulation. RT-qPCR confirmed that all the above genes were downregulated in CHD, which was consistent with the previous microarray results.
Conclusion RNA splicing may play an important role in the development of CHD.
[KEY WORDS]coronary disease; gene expression; computational biology; RNA splicing
心血管疾病是目前世界上人類死亡的主要原因之一。冠心?。–HD)是最常見的一種心血管疾病,在全球范圍內每年導致超過700萬人死亡[1]。2014年的一項研究顯示,近1/5的男性和1/10的女性死于CHD[2-4]。據估計,未來20年CHD患病率將增加約10%[5]。CHD已成為威脅人類健康的重要疾病之一,對CHD發病機制及有效療法的研究和探索從未停止。CHD的主要危險因素包括血脂異常、糖尿病、動脈硬化、肥胖、吸煙、久坐的生活方式、壓力、年齡、男性和家族病史等[6],但其具體發病機制尚不完全清楚。既往研究顯示,遺傳因素在心血管疾病的發生過程中發揮了極大的作用[7]。CHD發生的生物學機制有多種,其中研究較為清楚的為炎癥反應,炎癥反應失調是CHD發生的一種潛在的生物學機制[8]。相關研究表明,基因表達差異,尤其是炎癥調控相關基因表達異常與CHD的發生緊密關聯[9]。除了炎癥異常調控外,還有其他因素的變化參與CHD的發生。本研究旨在通過對GEO數據庫中CHD發生的基因表達譜進行生物信息學分析,揭示與CHD疾病發生相關的生物學過程及信號通路,為進一步闡明CHD的發病機制提供有價值的信息,并為CHD的診斷、治療提供新的思路。
1 資料和方法
1.1 基因微陣列數據收集
CHD樣本的基因表達芯片來自GEO數據庫(http://www.ncbi.nlm.nih.gov/geo/)[10-12]。以“Coronary Heart Disease”為關鍵詞在GEO數據庫中進行檢索,最終在210個相關數據集中選取2個來自Affymetrix Human Genome U133 Plus 2.0 Array分析平臺的基因集GSE71226及GSE19339,共包含7個CHD樣本和7個正常樣本的表達矩陣。
1.2 原始數據預處理及差異表達基因(DEGs)鑒別
下載原始數據,采用R語言(affy,limma包)對其進行噪聲去除、分位數歸一化等處理,然后篩選CHD組和正常對照組的DEGs。篩選DEGs的閾值設定為P值<0.05,且|log2(Fold change)|≥1。最后,采用R語言(pheatmap包)對基于mRNA表達水平的組樣本進行可視化層次聚類分析。
1.3 GSE71226和GSE19339中共有差異表達基因(co-DEGs)的Venn分析
通過Draw Venn Diagram線上數據庫(http://bioinformatics.psb.ugent.be/webtools/Venn/)對GSE71226和GSE19339數據集中的co-DEGs進行分析[13-15]。將待分析基因列表上傳到數據庫,即可顯示維恩圖及相關共有基因列表。
1.4 基因本體(GO)和基因通路富集分析
GO注釋分析通常用于大規模轉錄組數據的功能研究。KEGG(Kyoto Encyclopedia of Genes and Genomes)包含了多種生物化學通路。將待分析基因列表上傳至DAVID生物信息學資源6.8數據庫(https://david.ncifcrf.gov/)[16-17],即可顯示GO及 KEGG分析結果,將其下載為文本文件。最后,通過R語言(ggplot2包)可視化GO結果。
1.5 基因集富集分析(GSEA)
將特定規格的矩陣表格加載到GSEA_4.0.2軟件,通過GSEA online進行可視化即可完成GSEA分析[18-19]。DEGs途徑富集的閾值為P值<0.01。
1.6 蛋白質調控網絡分析
DEGs的蛋白質相互作用(PPI)網絡分析通過STRING (https://string-db.org/)在線分析軟件完成[19-20]。將基因列表上傳到多個蛋白質分析菜單欄,稍后即可顯示PPI結果。最后用Cytoscape軟件將具體的網絡圖可視化。
1.7 實時熒光定量聚合酶鏈反應(RT-qPCR)驗證CHD病人核心DEGs的表達水平
取青島市市立醫院心臟外科10例50~80歲CHD病人和10例同齡健康人的外周血樣本,使用高效血液總RNA提取試劑盒(天根生化科技(北京)有限公司,Lot#DP443)提取總RNA。用Oligo(dT)引物(Takara, cat#3806,Lot#T2301AA)在65 ℃條件下退火5 min得到mRNA,用RevertAid逆轉錄酶(Thermo Scientific,#EP0441)和dNTP混合物(Takara,Cat#4019, Lot#AI11312A)進行逆轉錄得到cDNA模板。最后使用PowerTrack SYBR Green Master Mix(Thermo Scientific,#4367659)及基因特異性引物進行RT-qPCR,檢測目的基因的相對mRNA水平。引物序列見表1。
2 結果
2.1 CHD DEGs的篩選
從GEO數據庫中收集了7例CHD病人和7例正常對照者的mRNA表達譜。根據|log2(Foldchange)|≥1、P值<0.05的篩選條件,GSE71226數據集中共鑒定出2 262個DEGs,其中包含上調基因694個及下調基因1 568個(圖1A);GSE19339數據集中共鑒定出537個DEGs,其中包含上調基因263個及下調基因274個(圖1B)。對這些DEGs進行熱圖聚類分析結果顯示,CHD組和正常對照組的基因表達模式差異顯著(圖1C、D)。
由于樣本來源不同(GSE71226數據集中樣本來自CHD病人和正常人的外周血;GSE19339數據集中樣本分別來自經皮冠狀動脈介入治療的CHD病人冠狀動脈閉塞部位的血管和正常人外周血),兩個數據集中分析得到的DEGs具有一定差別。而且,兩個數據集中病人信息極少,故無法分析年齡、性別和病史對CHD DEGs的影響。
2.2 co-DEGs的Venn分析
為了較為精確地研究CHD的DEGs,本研究分析了GSE71226和GSE19339兩個數據集中的co-DEGs。結果篩選得到兩個數據集中共同上調基因8個及共同下調基因114個,共計122個co-DEGs。見圖2。兩個數據集中大部分co-DEGs均為表達下調基因,提示這些共同下調基因可能是CHD發病的關鍵基因。
2.3 CHD co-DEGs的GO和KEGG分析
為了闡明DEGs的生物學功能,對以上122個co-DEGs進行了GO富集分析。結果顯示,CHD中大多數的co-DEGs參與的生物學過程(biological process)為mRNA加工和剪接調控、細胞內轉錄調控(圖3A);co-DEGs所屬的細胞成分(cell components)為核質、細胞核和細胞質(圖3B);其分子功能(molecular functions)主要為poly(A)RNA結合、蛋白結合、DNA結合(圖3C)。KEGG富集分析顯示,大多數co-DEGs顯著富集的信號通路為剪接體(圖3D)。以上分析結果表明,CHD的發生與細胞整體蛋白質表達調控紊亂或RNA剪接紊亂具有重要關聯。
2.4 CHD DEGs的GSEA分析
為了進一步分析CHD DEGs可能參與的信號通路,本研究對其進行了GSEA分析。結果顯示,兩個GEO數據集中DEGs共同低表達的基因富集的信號通路為mRNA過程的調節及DNA損傷修復(DNA damage repair)(圖4)。表明CHD發生過程中,涉及mRNA調節過程及DNA損傷修復途徑的相關基因表達水平下降。GSEA分析結果與GO分析結果相一致。
2.5 CHD DEGs的蛋白質調控網絡分析
為了篩選CHD的關鍵DEGs,本研究對122個co-DEGs進行了PPI分析。結果顯示,兩個數據集共同下調的基因大部分處于PPI網絡中間,而共同上調的基因則處于網絡邊緣。其中,位于PPI網絡中心的基因分別為LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2及NKTR(圖5)。提示這些基因的異常低表達可能在CHD的發生過程中發揮了重要作用。
2.6 CHD關鍵DEGs分析
篩選出的11個關鍵DEGs在CHD中均顯著低表達(圖6)。GO分析結果顯示,這些關鍵DEGs涉及的生物學過程為DNA轉錄和RNA剪接體調控(表2)。表明CHD的發生與RNA剪接異常調控具有重要關系。
2.7 RT-qPCR驗證CHD關鍵DEGs的表達
分別收集10例CHD病人及10例正常人的外周血,對篩選出的關鍵DEGs的表達水平進行了RT-qPCR驗證。結果顯示,CHD病人外周血中這些DEGs的表達水平均較正常人顯著下調。見表3。
3 討論
盡管對CHD進行了40多年的基礎和臨床研究,但其具體發病機制仍不完全清楚。通過分析CHD發生過程中涉及的生物學途徑,增加對CHD發病機制的了解,可為CHD的臨床治療及預后判斷提供新思路。
剪接體被證明是一種蛋白質定向金屬酶[21]。作為真核細胞中最復雜的調控機制之一,剪接體從初級轉錄本中去除內含子序列,生成功能性mRNA和長鏈非編碼RNA(lncRNA)[22],這一過程稱為選擇性剪接。選擇性剪接是一個動態且受調控的生物學過程,受到一系列變量的影響,如順式調控序列和反式作用因子、轉錄過程和DNA/RNA的甲基化等[23-24]。多項研究表明,異??勺兗艚优c人類疾病有關,它既可能是疾病的發生原因,也可能是疾病造成的結果[25]。有研究結果表明,參與剪接體正常功能的基因突變被認為是脊髓性肌萎縮、色素性視網膜炎和普瑞德-威利綜合征等的關鍵因素[26-28]。然而,剪接因子中導致人類心臟病變的突變并不多見。到目前為止,只有剪接因子RNA結合基序蛋白20(RBM20)的突變被證實與心臟病有因果關系[29-31]。此外,相關研究結果表明,與RNA剪接相關基因在心臟病中異常表達。例如,剪切因子SF3B1在患病的人和小鼠心臟中均表達上調[32],Rbfox1基因在人類和小鼠心臟中表達下調[33]。然而,CHD病人中DEGs一直未被明確闡述。
本研究分析了GEO數據庫的GSE71226和GSE19339數據集中CHD病人的基因表達數據,擬篩選與CHD發生密切相關的DEGs,探討CHD基因水平的發病機制。結果顯示,1.118%~2.954%(GSE71226:2.954%;GSE19339:1.118%)的基因表達水平上調,同時有1.165%~6.667%(GSE71226:6.667%;GSE19339:1.165%)的基因表達水平下調,表明CHD的發生與細胞中基因表達的變化密切相關。由于樣本來源和各微陣列平臺研究都存在差別,綜合分析各種微陣列數據集可以獲得更為準確的結果,故選擇了兩個數據集中8個共同表達上調基因及114個共同表達下調基因進行進一步分析。GO注釋分析結果表明,這些DEGs參與了DNA轉錄和mRNA剪接調控,提示CHD的發生與細胞中RNA剪接紊亂有關。選擇性剪接是一種可實質上改變基因表達模式的轉錄后機制。高達95%的人類基因具有多外顯子可變剪接形式,表明可變剪接是人類基因組功能復雜性的最重要組成部分之一。本研究結果表明,大部分的CHD DEGs是可變剪接相關的基因,提示可變剪接調控在心臟病的研究中應受到更多的重視。
在DEGs調控網絡中,表達下調的LUC7L3、HNRNPA1、SF3B1、ARGLU1、SRSF5、SRSF11、SREK1、PNISR、DIDO1、ZRSR2和NKTR位于網絡控制中心,且均為DNA轉錄和RNA剪接調控相關基因。既往研究表明,LUC7L3通過RE和RS域參與了剪接體的形成,在心臟鈉通道剪接調節人類心力衰竭中發揮作用[34-35]。HNRNPA1為異質性核糖核蛋白(hnRNP)復合體中含量最豐富的核心蛋白之一,在選擇性剪接的調控中發揮關鍵作用。SF3B1為一種重要的pre-mRNA剪接因子,與癌癥突變相關,并可以作為靶向藥物治療靶點[36-40]。在剪接體裝配的早期階段,SF3B1在pre-mRNA剪接位點的小核核糖核酸蛋白(snRNP)之間促發了一系列依賴ATP的結構和成分重排,最終完成pre-mRNA剪接的行為[36,41-42],但其在CHD中的作用尚未得到證實。據報道,ARGLU1為一種轉錄共激活因子和剪接調節因子,對應激性激素信號轉導和發育以及多種癌癥調控非常重要[43-44]。SRSF5是pre-mRNA剪接因子中SR的家族成員,是剪接體的一部分[45]。已有研究結果表明,SRSF5作為一種新型的致癌剪接因子,在多種癌癥和免疫調節中發揮關鍵作用[46-51],但其在CHD中的作用未見報道。SRSF11為一種在可變剪接過程中發揮作用的剪接因子[52]。SREK1為富含SR剪接蛋白家族的一個成員[53]。PNISR,又被稱為SFRS18,使用公開交互數據庫的數據挖掘也支持了LUC7L3和SFRS18在RNA剪接中的相互作用[54]。GARCIA-DOMINGO等[55-56]研究表明,DIDO1通過上調procaspase 3和9參與細胞凋亡的激活。此外,F TTERER等[57]觀察到,小鼠中DIDO的缺失與骨髓增生異常綜合征相關。FLEISCHMAN等[58]的研究則表明,ZRSR2突變病人的常見臨床特征為白細胞減少、血小板減少或骨髓母細胞百分比增加的大細胞性貧血。本研究中篩選到的CHD DEGs大部分都是mRNA剪接相關基因,這些基因通過RNA剪接功能調控不同的人類疾病。但是,這些基因與CHD之間的關系目前尚未被報道。
綜上所述,本文結果顯示,CHD病人RNA剪接相關基因的表達水平發生顯著改變,表明RNA剪接調控在CHD的發生過程中可能發揮了重要作用,但其在CHD中的具體作用機制仍有待進一步研究。本研究結果為CHD的進一步研究及高危人群的篩查提供了新的思路。
[參考文獻]
[1]WONG N D. Epidemiological studies of CHD and the evolution of preventive cardiology[J].Nature Reviews Cardiology, 2014,11(5):276-289.
[2]SHEPARD D, VANDERZANDEN A, MORAN A, et al. Ischemic heart disease worldwide, 1990 to 2013: estimates from the global burden of disease study 2013[J].Circulation Cardiovascular Quality and Outcomes, 2015,8(4):455-456.
[3]BENZIGER C P, ROTH G A, MORAN A E. The global burden of disease study and the preventable burden of NCD[J].Global Heart, 2016,11(4):393-397.
[4]FOLEY J R J, PLEIN S, GREENWOOD J P. Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques[J].World Journal of Cardiology, 2017,9(2):92-108.
[5]MADJID M, FATEMI O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update[J].Texas Heart Institute Journal, 2013,40(1):17-29.
[6]NASI OWSKA-BARUD A, ZAPOLSKI T, BARUD M, et al. Overt and covert anxiety as a toxic factor in ischemic heart disease in women: the link between psychological factors and heart disease[J].Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017,23:751-758.
[7]DUCIMETI RE P, CAMBIEN F. Coronary heart disease ae-tiology: associations and causality[J].Comptes Rendus Biologies, 2007,330(4):299-305.
[8]WIRTZ P H, VON KNEL R. Psychological stress, inflammation, and coronary heart disease[J].Current Cardiology Reports, 2017,19(11):1-10.
[9]殷惠軍,馬曉娟,蔣躍絨,等. 冠心病差異基因表達譜的構建及目標基因的功能分析[J]. 科學通報, 2009,54(3):354-359.
[10]LI Z J, DENG X W, LAN Y Q. Identification of a potentially functional circRNA-miRNA-mRNA regulatory network in type 2 diabetes mellitus by integrated microarray analysis[J].Minerva Endocrinology, 2021. doi:10.23736/S2724-6507.21.03370-8.
[11]CHEN X Y, LIANG R, YI Y C, et al. The m6A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m6A-dependent manner[J].Frontiers in Cell and Developmental Biology, 2021,9:647702.
[12]SHAO Y, KONG J, XU H Z, et al. OPCML methylation and the risk of ovarian cancer: a meta and bioinformatics analysis[J].Frontiers in Cell and Developmental Biology, 2021,9:570898.
[13]KITTISENACHAI S, ROJPIBULSTIT P, VILAICHONE R K, et al. FBPAII and rpoBC, the two novel secreted proteins identified by the proteomic approach from a comparative study between antibiotic-sensitive and antibiotic-resistant Helicobac-ter pylori-associated gastritis strains[J].Infection and Immunity, 2021,89(6):e00053-e00021.
[14]LIU Q W, WANG Y Y, DUAN M Y, et al. Females and males show differences in early-stage transcriptomic biomar-kers of lung adenocarcinoma and lung squamous cell carcinoma[J].Diagnostics, 2021,11(2):347.
[15]FENG S H, ZHAO B, ZHAN X, et al. Danggui buxue decoction in the treatment of metastatic colon cancer: network pharmacology analysis and experimental validation[J].Drug Design, Development and Therapy, 2021,15:705-720.
[16]HUANG D W, SHERMAN B T, LEMPICKI R A. Systema-tic and integrative analysis of large gene lists using DAVID bioinformatics resources[J].Nature Protocols, 2009,4(1):44-57.
[17]HUANG D W, SHERMAN B T, LEMPICKI R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J].Nucleic Acids Research, 2009,37(1):1-13.
[18]MENG Y L, CAI K, ZHAO J J, et al. Transcriptional profiling reveals kidney neutrophil heterogeneity in both healthy people and ccRCC patients[J].Journal of Immunology Research, 2021,2021:5598627.
[19]HUANG J J, LIU L, QIN L L, et al. Weighted gene coexpression network analysis uncovers critical genes and pathways for multiple brain regions in Parkinson’s disease[J].BioMed Research International, 2021,2021:6616434.
[20]LIU H, QU Y D, ZHOU H, et al. Bioinformatic analysis of potential hub genes in gastric adenocarcinoma[J].Science Progress, 2021,104(1):368504211004260.
[21]SHI Y G. The spliceosome: a protein-directed metalloribozyme[J].Journal of Molecular Biology, 2017,429(17):2640-2653.
[22]PAPASAIKAS P, VALC RCEL J. The spliceosome: the ultimate RNA chaperone and sculptor[J].Trends in Biochemical Sciences, 2016,41(1):33-45.
[23]BARASH Y, CALARCO J A, GAO W J, et al. Deciphering the splicing code[J].Nature, 2010,465(7294):53-59.
[24]VAN DEN HOOGENHOF M M, PINTO Y M, CREEMERS E E. RNA splicing: regulation and dysregulation in the heart[J].Circulation Research, 2016,118(3):454-468.
[25]WANG G S, COOPER T A. Splicing in disease: disruption of the splicing code and the decoding machinery[J].Nature Reviews Genetics, 2007,8(10):749-761.
[26]LEFEBVRE S, B RGLEN L, REBOULLET S, et al. Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell, 1995,80(1):155-165.
[27]LIU M M, ZACK D J. Alternative splicing and retinal dege-neration[J].Clinical Genetics, 2013,84(2):142-149.
[28]KISHORE S, STAMM S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C[J].Science, 2006,311(5758):230-232.
[29]BRAUCH K M, KARST M L, HERRON K J, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy[J].Journal of the American College of Cardiology, 2009,54(10):930-941.
[30]LI D X, MORALES A, GONZALEZ-QUINTANA J, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy[J].Clinical and Translational Science, 2010,3(3):90-97.
[31]REFAAT M M, LUBITZ S A, MAKINO S, et al. Genetic variation in the alternative splicing regulator RBM20 is asso-ciated with dilated cardiomyopathy[J].Heart Rhythm, 2012,9(3):390-396.
[32]MIRTSCHINK P, KRISHNAN J, GRIMM F, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease[J].Nature, 2015,522(7557):444-449.
[33]GAO C, REN S X, LEE J H, et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure[J].The Journal of Clinical Investigation, 2016,126(1):195-206.
[34]GAO G, DUDLEY S C Jr. RBM25/LUC7L3 function in car-diac sodium channel splicing regulation of human heart failure [J].Trends in Cardiovascular Medicine, 2013,23(1):5-8.
[35]GAO G, XIE A, HUANG S C, et al. Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure[J].Circulation, 2011,124(10):1124-1131.
[36]MAJI D, GROSSFIELD A, KIELKOPF C L. Structures of SF3b1 reveal a dynamic Achilles heel of spliceosome assembly: Implications for cancer-associated abnormalities and drug discovery[J].Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2019,1862(11-12):194440.
[37]JIMNEZ-VACAS J M, HERRERO-AGUAYO V, G MEZ-G MEZ E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer[J].Translational Research: the Journal of Laboratory and Clinical Medicine, 2019,212:89-103.
[38]DANSET M, MILLEY S, HAROU O, et al. Concomitant GNA11 and SF3B1 mutations in two cases of melanoma asso-
ciated with blue Naevus[J].Clinical and Experimental Dermatology, 2020,45(1):123-126.
[39]BOIOCCHI L, HASSERJIAN R P, POZDNYAKOVA O, et al. Clinicopathological and molecular features of SF3B1-mutated myeloproliferative neoplasms[J].Human Pathology, 2019,86:1-11.
[40]WANG L L, BROOKS A N, FAN J, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia[J].Cancer Cell, 2016,30(5):750-763.
[41]EFFENBERGER K A, URABE V K, PRICHARD B E, et al. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages[J].RNA (New York, N Y), 2016,22(3):350-359.
[42]KFIR N, LEV-MAOR G, GLAICH O, et al. SF3B1 association with chromatin determines splicing outcomes[J].Cell Reports, 2015,11(4):618-629.
[43]MAGOMEDOVA L, TIEFENBACH J, ZILBERMAN E, et al. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development[J].Nucleic Acids Research, 2019,47(6):2856-2870.
[44]ZHANG D X, JIANG P P, XU Q Q, et al. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth[J].The Journal of Biological Chemistry, 2011,286(20):17746-17754.
[45]SEBBAG-SZNAJDER N, RAITSKIN O, ANGENITZKI M, et al. Regulation of alternative splicing within the supraspliceosome[J].Journal of Structural Biology, 2012,177(1):152-159.
[46]YANG S S, JIA R, BIAN Z. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma[J].Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2018,1865(9):1161-1172.
[47]VAUTROT V, AIGUEPERSE C, OILLO-BLANLOEIL F, et al. Enhanced SRSF5 protein expression reinforces lamin A mRNA production in HeLa cells and fibroblasts of progeria patients[J].Human Mutation, 2016,37(3):280-291.
[48]KIM H R, LEE G O, CHOI K H, et al. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer[J].Lung Cancer, 2016,99:57-65.
[49]CHEN Y H, HUANG Q Y, LIU W, et al. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth[J].Nature Communications, 2018,9:2464.
[50]LUO Z, GE M L, CHEN J B, et al. HRS plays an important role for TLR7 signaling to orchestrate inflammation and innate immunity upon EV71 infection[J].PLoS Pathogens, 2017,13(8):e1006585.
[51]ELINAV H, WU Y F, COSKUN A, et al. Human CRM1 augments production of infectious human and feline immuno-
deficiency viruses from murine cells[J].Journal of Virology, 2012,86(22):12053-12068.
[52]WANG H Y, WEN J G, CHANG C C, et al. Discovering transcription and splicing networks in myelodysplastic syndromes[J].PLoS One, 2013,8(11):e79118.
[53]ZHANG D L, SUN X J, LING L J, et al. Molecular cloning, characterization, chromosomal assignment, genomic organization and verification of SFRS12(SRrp508), a novel member of human SR protein superfamily and a human homolog of rat SRrp86[J].Yi Chuan Xue Bao, 2002,29(5):377-383.
[54]SZLAVICZ E, SZABO K, GROMA G, et al. Splicing factors differentially expressed in psoriasis alter mRNA maturation of disease-associated EDA+ fibronectin[J].Molecular and Cellular Biochemistry, 2017,436(1-2):189-199.
[55]GARC A-DOMINGO D, LEONARDO E, GRANDIEN A, et al. DIO-1 is a gene involved in onset of apoptosis in vitro, whose misexpression disrupts limb development[J].Procee-
dings of the National Academy of Sciences of the United States of America, 1999,96(14):7992-7997.
[56]GARC A-DOMINGO D, RAM REZ D, GONZ LEZ DE BUITRAGO G, et al. Death inducer-obliterator 1 triggers apoptosis after nuclear translocation and caspase upregulation[J].Molecular and Cellular Biology, 2003,23(9):3216-3225.
[57]F TTERER A, CAMPANERO M R, LEONARDO E, et al. Dido gene expression alterations are implicated in the induction of hematological myeloid neoplasms[J].The Journal of Clinical Investigation, 2005,115(9):2351-2362.
[58]FLEISCHMAN R A, STOCKTON S S, COGLE C R. Refractory macrocytic anemias in patients with clonal hematopoietic disorders and isolated mutations of the spliceosome gene ZRSR2[J].Leukemia Research, 2017,61:104-107.
(本文編輯 馬偉平)