

[摘要] 目的 探討干擾長鏈非編碼RNA(LncRNA)NEAT1表達對1-甲基-4苯基-吡啶離子(MPP+)誘導的人神經母細胞瘤細胞SH-SY5Y中腦源性神經營養因子(BDNF)及其受體原肌球蛋白相關激酶B型受體(TrkB)表達的影響。
方法 通過MPP+誘導SH-SY5Y建立帕金森?。≒D)細胞模型,慢病毒干擾LncRNA NEAT1調節BDNF及其受體TrkB的表達。實驗共分為6組,包括Control組、MPP+組、LncRNA NEAT1-NC組、LncRNA NEAT1-NC+MPP+組、shRNA-LncRNA NEAT1組和shRNA-LncRNA NEAT1+MPP+組。采用實時熒光定量PCR(RT-PCR)方法分別檢測各組BDNF和TrkB mRNA相對表達水平。
結果 與Control組相比較,MPP+組LncRNA相對表達水平明顯升高(t=12.25,P<0.001),MPP+組和LncRNA NEAT1-NC+MPP+組BDNF和TrkB mRNA的相對表達水平明顯降低(F=84.36、86.27,q=15.49~16.63,P<0.001);與MPP+組和LncRNA NEAT1-NC+MPP+組比較,shRNA-LncRNA NEAT1+MPP+組BDNF和TrkB mRNA的相對表達水平明顯增加(F=35.15、12.75,q=5.58~10.49,P<0.01)。
結論 干擾LncRNA NEAT1表達可以抑制MPP+誘導的SH-SY5Y PD細胞模型中BDNF及其受體TrkB的降低,有效遏制MPP+對的SH-SY5Y細胞的毒性作用,起到一定的神經保護作用。
[關鍵詞] 帕金森病;RNA,長鏈非編碼;1-甲基-4-苯基吡啶;腦源性神經營養因子;受體,trkB
[中圖分類號] R742.5;R741.02
[文獻標志碼] A
[文章編號] 2096-5532(2021)06-0807-04
doi:10.11712/jms.2096-5532.2021.57.147
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210707.0949.001.html;2021-07-07 11:53:07
EFFECT OF LONG NON-CODING RNA NEAT1 ON THE EXPRESSION OF BRAIN-DERIVED NEUROTROPHIC FACTOR AND TYROSINE KINASE RECEPTOR B IN SH-SY5Y CELLS INDUCED BY 1-METHYL-4-PHENYLPYRIDINIUM
YAO Weichao, XUE Li, LIU Yumei, SHI Wanda, XIE Anmu
\(Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[ABSTRACT]Objective To investigate the effect of interference with the expression of long non-coding RNA (LncRNA) NEAT1 on the expression of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) in human neuroblastoma SH-SY5Y cells induced by 1-methyl-4-phenylpyridinium (MPP+).
Methods SH-SY5Y cells were induced by MPP+ to establish a cell model of Parkinson’s disease (PD), and LncRNA NEAT1 was interfered with lentivirus to regulate the expression of BDNF and its receptor TrkB. The cells were divided into control group, MPP+ group, LncRNA NEAT1-NC group, LncRNA NEAT1-NC+MPP+ group, shRNA-LncRNA NEAT1 group, and shRNA-LncRNA NEAT1+MPP+ group. Quantitative real-time PCR was used to measure the relative mRNA expression levels of BDNF and its receptor TrkB.
Results
Compared with the control group, the MPP+ group had a significant increase in the relative expression of LncRNA (t=12.25,Plt;0.001), and the MPP+ group and the LncRNA NEAT1-NC+MPP+ group had significant reductions in the relative mRNA expression levels of BDNF and TrkB (F=84.36,86.27;q=15.49-16.63;Plt;0.001). Compared with the MPP+ group and the LncRNA NEAT1-NC+MPP+ group, the shRNA-LncRNA NEAT1+MPP+ group had significant increases in the relative expression levels of BDNF and its receptor TrkB (F=35.15,12.75;q=5.58-10.49;Plt;0.01).
Conclusion Interference with the expression of LncRNA NEAT1 can inhibit the reductions in BDNF and its receptor TrkB in an MPP+-induced SH-SY5Y PD cell model and effectively suppress the toxic effect of MPP+ on SH-SY5Y, thus exerting a certain neuroprotective effect. SH-SY5Y, and play a certain neuroprotective effect.
[KEY WORDS]Parkinson disease; RNA, long noncoding; 1-methyl-4-phenylpyridinium; brain-derived neurotrophic factor; receptor, trkB
帕金森?。≒D)是一種以運動遲緩和靜止性震顫等為主要特征的神經退行性疾病[1]。中腦黑質致密部多巴胺能神經元變性、壞死、缺失以及路易小體形成是其主要的病理改變[2]。PD具體的發病機制不清,可能與多種因素相關。在年齡老化及α-突觸核蛋白沉積等PD相關的發病機制研究中證明,腦源性神經營養因子(BDNF)及其受體原肌球蛋白相關激酶B型受體(TrkB)的表達降低[3-4]。另有研究表明,BDNF-TrkB信號通路在PD的神經保護中發揮重要的作用,可能對PD具有治療潛力[5-6]。長鏈非編碼RNA(LncRNA)是一類長度大于200 nt的非編碼RNA,可以通過多種不同機制調控基因的表達[7]。已有研究顯示,LncRNA NEAT1與PD的炎癥、自噬和凋亡等發病機制均有密切的聯系[8]。然而,迄今為止有關LncRNA NEAT1在PD神經保護方面的研究很少。故本實驗采用1-甲基-4苯基-吡啶離子(MPP+)來誘導人神經母細胞瘤細胞SH-SY5Y構建PD細胞模型,進一步干擾LncRNA NEAT1的表達水平,通過對BDNF和TrkB表達水平的檢測,來探討LncRNA NEAT1在SH-SY5Y PD細胞模型中神經保護方面的潛在作用。
1 材料與方法
1.1 實驗材料
胎牛血清由Gibco公司提供;MPP+、二甲基亞砜(DMSO)購自美國Sigma-Aldrich公司;DEME培養基購自美國Hyclone公司;SH-SY5Y細胞由中國科學院上海細胞庫提供;慢病毒購自上海漢恒生物科技有限公司;青霉素/鏈霉素溶液購自索萊寶公司;RNAiso Plus、PCR逆轉錄試劑盒和PCR擴增試劑盒均購自TaKaRa公司。
1.2 細胞培養
用適量DMEM培養液(含有體積分數0.10胎牛血清、100 mg/L鏈霉素和100 kU/L青霉素)將SH-SY5Y細胞傳代后轉移至25 cm2的細胞培養瓶中,放置在37 ℃、含體積分數0.05 CO 2的細胞培養箱中培養。
1.3 分組及干預
將接種于6孔板中的SH-SY5Y細胞分為Control組(A組)、MPP+組(B組)、LncRNA NEAT1-NC(C組)、LncRNA NEAT1-NC+MPP+組(D組)、shRNA-LncRNA NEAT1(E組)和shRNA-LncRNA NEAT1+MPP+組(F組)。待6孔板中的細胞匯合率介于30%~50%時,按照慢病毒說明書配制病毒轉染液進行細胞病毒轉染。吸去6孔板中舊的培養液,A、B組分別加入2 mL新鮮基礎培養液,C、D組分別加入空載病毒感染復數(MOI)為40的基礎培養液2 mL,E、F組則分別加入目的病毒MOI為40的基礎培養液2 mL。培養24 h后,吸除舊培養液,更換新鮮的完全培養液,繼續培養。待感染率達到80%左右時,進行下一步處理。吸除舊培養液,A、C、E組均加入2 mL新鮮基礎培養液,B、D、F組均加入含有1 mol/L MPP+的新鮮基礎培養液2 mL,37 ℃下繼續培養,24 h后收樣。
1.4 實時熒光定量PCR(PT-PCR)檢測BDNF和TrkB mRNA表達
采用TRIzol法提取細胞的總RNA,每孔加入1 mL的TRIzol進行總RNA純化提取。取1 μg純化的總RNA,使用反轉錄試劑盒進行反轉錄。取gDNA Clean Reagent 1 μL、5×gDNA Clean Buffer 2 μL,加RNA和RNase free water使總體積達到10 μL,42 ℃變性2 min。后續加入Evo M-MLVRTase Enzyme Mix 1 μL、RT Master Mix 1 μL、5×RTase Reaction Buffer Mix 4 μL、RNase free water 4 μL,37 ℃反應15 min,85 ℃反應15 s,逆轉錄完成得到cDNA。采用兩步法PCR反應程序檢測BDNF和TrkB mRNA的相對表達。RT-PCR擴增引物及其序列見表1。采用2-△△CT法計算目的基因相對表達量。實驗重復5次,取平均值。
1.5 統計學分析
使用Graphpad Prism 5.0軟件進行統計學分析。所得實驗數據以±s表示,多組比較采用單因素方差分析,繼以Turkey法進行組間兩兩比較。P<0.05表示差異有統計學意義。
2 結果
2.1 MPP+處理對SH-SY5Y細胞LncRNA表達的影響
Control組和MPP+組LncRNA NEAT1的相對表達量分別為1.04±0.10和2.10±0.16,兩組比較差異具有統計學意義(t=12.25,P<0.001)。表明MPP+處理可以上調SH-SY5Y細胞中LncRNA NEAT1的表達,提示PD中LncRNA NEAT1的表達增加。
2.2 干擾LncRNA NEAT1對MPP+誘導的SH-SY5Y細胞BDNF和TrkB mRNA表達影響
與Control組細胞相比,MPP+組和LncRNA NEAT1-NC+MPP+組BDNF和TrkB mRNA的相對表達水平明顯降低(F=84.36、86.27,q=15.49~16.63,P<0.001);與MPP+組和LncRNA NEAT1-NC+MPP+組細胞比較,shRNA-LncRNA NEAT1+MPP+組BDNF和TrkB mRNA的相對表達水平明顯增加(F=35.15、12.75,q=5.58~10.49,P<0.01)。表明MPP+處理可以下調SH-SY5Y細胞中BDNF和TrkB mRNA的表達;干擾LncRNA NEAT1的表達,可以在一定程度上遏制MPP+對SH-SY5Y細胞的毒性作用,起到一定的神經保護作用。見表2。
3 討論
PD是一類發展緩慢、進行性的神經退行性疾病。目前全世界大約有600多萬人患有PD[9]。PD的治療涉及藥物學方法和非藥物學方法。隨著科學研究的不斷進步發展,神經營養因子在神經保護和神經再生方面的作用日益突出。
BDNF最初是由BARDE等[10]在豬腦中提取純化的,并且被證明可以促進感覺神經元的生長。BDNF在成人中樞神經系統(包括皮質區域、海馬區、視皮質以及黑質等多個部位)分布廣泛,尤其是在多巴胺能神經元中含量豐富。BDNF主要在中樞神經系統合成,是體內含量最多的神經營養因子,它通過與TrkB結合發揮作用[11]。在星形膠質細胞中,BDNF可以通過激活Nrf2保護多巴胺能神經元免受鐵蛋白損傷[3]。本研究結果顯示,MPP+誘導的SH-SY5Y PD細胞模型中BDNF的表達水平降低。有研究表明,在PD動物模型中,BDNF可以提高多巴胺能神經元的存活率,改善多巴胺能神經傳遞和運動性能[6]。TrkB是大腦中分布最廣泛的神經營養受體之一,高度富含于新皮質、海馬、紋狀體和腦干[12]。在神經系統中,TrkB常與BDNF結合,在突觸傳遞和突觸重塑等多個方面發揮作用[13-14]。BDNF-TrkB還可以通過激活PI3K/AKT/CREB和Ras/MAPK/Erk信號軸調節神經元的分化和生長[15]。大量證據表明,BDNF和TrkB在黑質多巴胺能神經元中高度表達和激活[16]。在一項加強體育鍛煉預防PD抑郁癥狀的研究中發現,BDNF和TrkB的表達水平上升,體育鍛煉主要通過誘導轉錄因子和與神經元增殖、存活及炎癥反應相關的基因表達來抑制神經變性,進而影響BDNF及TrkB表達,發揮神經保護和神經再生的作用[17]。另外有研究發現,在6-羥基多巴胺(6-OHDA)誘導的PD大鼠模型中,紋狀體內植入基因改造的成纖維細胞,其產生的BDNF可以保護多巴胺能神經元[18]。上述研究說明BDNF/TrkB信號傳導在PD的神經保護方面有重要作用,有治療和預防PD的潛力。
近年來多項研究結果表明,LncRNA在中樞神經系統中大量表達,并且在中樞神經的發生發展中起重要作用[19]。KRAUS等[20]通過對PD病人的lncRNA表達譜研究發現,lncRNA-p21、MALAT1、SNHG1、NEAT1和H19的表達存在顯著差異。一項干擾LncRNA NEAT1促進貝沙羅汀治療創傷性腦損傷小鼠的研究表明,低表達LncRNA NEAT1能在一定程度上抵抗神經損傷作用[21]。本研究結果顯示,MPP+誘導SH-SY5Y的PD細胞模型中LncRNA NEAT1的表達水平升高。有研究發現,LncRNA LINC00641協同miR-497-5p可通過上調BDNF來改善麻醉誘導的神經損傷[22]。另外,一項探討維生素B1和B12對腦癱神經元損傷的保護作用的研究表明,LncRNA MALAT1可以在一定程度上調節BDNF的表達水平,從而抑制腦癱大鼠神經元細胞凋亡和減輕神經損傷[23]。據此推測,干擾LncRNA NEAT1的表達,可能會增強BDNF及其受體TrkB的表達,抑制多巴胺能神經元的損傷,發揮一定的神經保護作用。本實驗采用1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)的毒性代謝產物MPP+誘導SH-SY5Y建立PD細胞模型[24]。結果顯示,MPP+作用于SH-SY5Y細胞時,LncRNANEAT1表達水平明顯升高。進一步干擾LncRNA NEAT1表達的RT-PCR檢測結果顯示,BDNF和TrkB mRNA的相對表達水平升高,提示干擾SH-SY5Y的PD細胞模型LncRNA NEAT1的表達可以抑制BDNF和TrkB的降低,在一定程度上抑制神經細胞受損,起到了神經保護作用。
綜上所述,本研究初步證明了干擾LncRNA NEAT1的表達能夠抑制MPP+誘導的SH-SY5Y PD細胞模型的神經損傷,增加神經營養因子BDNF及其受體TrkB的表達水平,發揮一定的神經保護作用。本研究關于LncRNA在PD神經保護方面的新探索,為PD的預防和治療提供了新的思路。
[參考文獻]
[1]HAYES M T. Parkinson’s disease and Parkinsonism[J]. The American Journal of Medicine, 2019,132(7):802-807.
[2]KALIA L V, LANG A E. Parkinson’s disease[J]. The Lancet, 2015,386(9996):896-912.
[3]ISHII T, WARABI E, MANN G E. Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopa-
minergic neurons from ferroptosis[J]. Free Radical Biology amp; Medicine, 2019,133:169-178.
[4]KANG S S, ZHANG Z T, LIU X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(40):10773-10778.
[5]DING Y X, XIA Y, JIAO X Y, et al. The TrkB-positive dopaminergic neurons are less sensitive to MPTP insult in the substantia nigra of adult C57/BL mice[J]. Neurochemical Research, 2011,36(10):1759-1766.
[6]PALASZ E, WYSOCKA A, GASIOROWSKA A, et al. BDNF as a promising therapeutic agent in Parkinson’s disease[J]. International Journal of Molecular Sciences, 2020,21(3):E1170.
[7]RIVA P, RATTI A, VENTURIN M. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis[J]. Current Alzheimer Research, 2016,13(11):1219-1231.
[8]YAN W, CHEN Z Y, CHEN J Q, et al. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein[J]. Biochemical and Biophysical Research Communications, 2018,496(4):1019-1024.
[9]ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]. JAMA, 2020,323(6):548-560.
[10]BARDE Y A, EDGAR D, THOENEN H. Purification of a new neurotrophic factor from mammalian brain[J]. The EMBO Journal, 1982,1(5):549-553.
[11]NAGAHARA A H, TUSZYNSKI M H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders[J]. Nature Reviews Drug Discovery, 2011,10(3):209-219.
[12]HAGG T. Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo[J]. Experimental Neurology, 1998,149(1):183-192.
[13]BRAMHAM C R, MESSAOUDI E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis[J]. Progress in Neurobiology, 2005,76(2):99-125.
[14]OHIRA K, HAYASHI M. A new aspect of the TrkB signaling pathway in neural plasticity[J]. Current Neuropharmaco-
logy, 2009,7(4):276-285.
[15]HONG Z Y, YU S S, WANG Z J, et al. SCM-198 ameliorates cognitive deficits, promotes neuronal survival and enhances CREB/BDNF/TrkB signaling without affecting Aβ burden in AβPP/PS1 mice[J]. International Journal of Molecular Sciences, 2015,16(8):18544-18563.
[16]HUANG E J, REICHARDT L F. Trk receptors: roles in neuronal signal transduction[J]. Annual Review of Biochemistry, 2003,72:609-642.
[17]TUON T, VALVASSORI S S, DAL PONT G C, et al. Phy-
sical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease[J]. Brain Research Bulletin, 2014,108:106-112.
[18]LEVIVIER M, PRZEDBORSKI S, BENCSICS C, et al. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s di-
sease[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1995,15(12):7810-7820.
[19]NG S Y, LIN L, SOH B S, et al. Long noncoding RNAs in development and disease of the central nervous system[J]. Trends in Genetics: TIG, 2013,29(8):461-468.
[20]KRAUS T F J, HAIDER M, SPANNER J, et al. Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report[J]. Molecular Neurobiology, 2017,54(4):2869-2877.
[21]ZHONG J J, JIANG L, HUANG Z J, et al. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice[J]. Brain, Behavior, and Immunity, 2017,65:183-194.
[22]CHEN Q X, YAN J J, XIE W J, et al. LncRNA LINC00641 sponges miR-497-5p to ameliorate neural injury induced by anesthesia via up-regulating BDNF[J]. Frontiers in Molecular Neuroscience, 2020,13:95.
[23]LI E Y, ZHAO P J, JIAN J, et al. Vitamin B1 and B12 mitigates neuron apoptosis in cerebral palsy by augmenting BDNF expression through MALAT1/miR-1 axis[J]. Cell Cycle (Georgetown, Tex), 2019,18(21):2849-2859.
[24]賈翼,鄧晗,馬澤剛. JWH133對MPP+誘導的原代星形膠質細胞COX-2和iNOS表達的影響[J]. 青島大學學報(醫學版), 2020,56(2):156-160.
(本文編輯 馬偉平)