


[摘要] 目的 探討低幅度機械牽張力對肌成纖維細胞再分化的誘導作用及增生性瘢痕的轉歸機制。
方法
體外培養健康人皮膚成纖維細胞,應用10%幅度牽張力誘導構建肌成纖維細胞模型。實驗分為陰性對照組、陽性對照組、實驗組,以人正常成纖維細胞為陰性對照組,應用2%幅度牽張力體外培養;以肌成纖維細胞作為實驗組和陽性對照組,分別應用2%、10%幅度牽張力繼續體外培養,誘導細胞再分化。實驗第7天,應用CCK-8法檢測細胞增殖能力,SYBR Green qPCR法檢測整合素β1、轉化生長因子-β1(TGF-β1)、α-平滑肌肌動蛋白(α-SMA)和Ⅰ型膠原的mRNA表達,ELISA法檢測TGF-β1、Ⅰ型膠原含量;Western-Blot法檢測整合素β1、α-SMA蛋白表達量。
結果 與陰性對照組比較,實驗組肌成纖維細胞的增殖能力增高(F=67.75,Plt;0.05),細胞內TGF-β1、Ⅰ型膠原的蛋白含量、α-SMA的蛋白表達及各指標的mRNA表達水平均增高(F=132.64~981.60,Plt;0.05),細胞內整合素β1 mRNA和蛋白表達水平差異無統計學意義(Pgt;0.05);陽性對照組和實驗組肌成纖維細胞內α-SMA mRNA和蛋白表達差異無統計學意義(Pgt;0.05);而陽性對照組肌成纖維細胞內TGF-β1、Ⅰ型膠原的mRNA和蛋白含量與整合素β1的mRNA和蛋白表達水平均較實驗組增高,差異有統計學意義(Plt;0.05)。
結論 低幅度牽張力不能誘導肌成纖維細胞再分化,可能存在其他機制介導了張力誘導肌成纖維細胞再分化的過程。
[關鍵詞] 機械張力;肌成纖維細胞;成纖維細胞;細胞分化;瘢痕
[中圖分類號] R329.24
[文獻標志碼] A
[文章編號] 2096-5532(2021)03-0432-05
doi:10.11712/jms.2096-5532.2021.57.017
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200802.1242.004.html;2020-08-04 10:18:36
EFFECT OF LOW-AMPLITUDE MECHANICAL STRAIN IN INDUCING THE REDIFFERENTIATION OF MYOFIBROBLASTS
AN Yu, HAO Rongan, KUANG Ruixia, HU Chunnan, CHEN Lu, WANG Zhiguo
(Department of Burns and Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective To explore the effect of low-amplitude mechanical strain in inducing the redifferentiation of myofibroblasts, and to investigate the prognostic mechanism of hyperplastic scars.
Methods Fibroblasts from the skin of healthy people were cultured in vitro, and a model of myofibroblasts was established by applying a strain at an amplitude of 10%. The experiment included three groups, i.e., negative control group, positive control group, and experimental group. Normal human fibroblasts were taken as the negative control group, which were subjected to a strain at an amplitude of 2% when cultured in vitro. Myofibroblasts, which were subjected to a strain at amplitudes of 2% and 10% to induce cell redifferentiation during in vitro culture, were taken as the experimental group and positive control group, respectively. On day 7 of the experiment, the CCK-8 was used to determine the proliferative capacity of cells; SYBR Green qPCR assay was used to determine the mRNA expression of integrin β1, transforming growth factor β1 (TGF-β1), alpha-smooth muscle actin (α-SMA), and type Ⅰ collagen; enzyme-linked immunosorbent assay was used to determine the content of TGF-β1 and type Ⅰ collagen; Western Blot was used to determine the protein expression of integrin β1 and α-SMA.
Results Compared with the negative control group, the experimental group had significantly increased proliferative capability of myofibroblasts (F=67.75,Plt;0.05) and significantly increased protein content of TGF-β1 and type Ⅰ collagen, protein expression of α-SMA, and mRNA expression of the three indicators in the cells (F=132.64-981.60,Plt;0.05), but there were no significant differences in the mRNA and protein expression levels of integrin β1 in cells between the two groups (Pgt;0.05). There were no significant differences in the mRNA and protein expression of α-SMA in myofibroblasts between the positive control group and the experimental group (Pgt;0.05), while the former group had significantly higher mRNA expression and protein content of TGF-β1 and type Ⅰ collagen and mRNA and protein expression of integrin β1 in myofibroblasts than the latter group (Plt;0.05).
Conclusion Low-amplitude mechanical strain cannot induce the redifferentiation of myofibroblasts. The strain-induced redifferentiation of myofibroblasts may be mediated by some other mechanisms.
[KEY WORDS]mechanical stretch; myofibroblasts; fibroblasts; cell differentiation; cicatrix
肌成纖維細胞的異質性是決定病理性瘢痕發生和轉歸的重要機制[1]。誘導肌成纖維細胞再分化為其他類型的細胞可能是治療病理性瘢痕的有效方法之一。機械張力是導致病理性瘢痕形成的重要因素[2]。創面愈合初期,高張力下的創面刺激成纖維細胞大量增殖聚集,成纖維細胞高表達α-平滑肌肌動蛋白(α-SMA),分化為肌成纖維細胞來維持細胞內外的力學平衡[3]。而創面愈合后期,伴隨著創周張力的降低,肌成纖維細胞逐漸再分化、凋亡最終形成成熟瘢痕,或在持續高張力作用下持續異常增殖而形成病理性瘢痕[4]。機械張力參與了肌成纖維細胞形成與再分化的全部過程。在前期研究中,我們應用力學技術成功誘導皮膚成纖維細胞轉化為肌成纖維細胞,構建肌成纖維細胞力學模型,闡明了機械張力在瘢痕形成過程中的作用及其機制[4-7]。本文研究探討肌成纖維細胞在微張力作用下的轉歸情況,為研究病理性瘢痕的轉歸提供理論依據。現將結果報告如下。
1 材料和方法
1.1 主要實驗儀器及試劑
多通道細胞應力加載儀(BF-3001C;Flex-cell公司,美國);6孔彈性基底膜培養板(BF-3001C;Flex-cell公司,美國);CO2培養箱(Panasonic公司,日本);倒置光學顯微鏡(Olympus公司,日本);酶聯免疫檢測儀(BioTek公司,美國);ABI ViiATM 7 SYBR Green qPCR儀(ABI公司,美國);化學發光成像系統(ALPHA FCE公司,美國)。Eagle培養基(CORNING公司,美國)、FBS、含EDTA的胰酶(Gibco公司,美國);Cell Counting Kit-8(CCK-8)試劑盒(同仁化學,日本);ELISA試劑盒(Ramp;D Systems公司,美國);TRIzol試劑(Ambion公司,美國);反轉錄試劑盒、熒光定量PCR試劑盒(大連寶生物工程有限公司);PCR引物及其序列由上海生工生物工程技術服務有限公司設計合成;
整合素β1、α-SMA兔抗人單克隆抗體(Abcam公司,英國),山羊抗兔二抗(Abgent公司,蘇州),PVDF膜、ECL發光液(Millipore公司,美國)。
1.2 細胞培養與分組
人體背部正常皮膚標本3例均取自青島大學附屬醫院美容整形外科行色素痣切除術的病人,均為女性,年齡分別為26、36、41歲。本文研究通過青島大學附屬醫院倫理委員會批準,所有病人均簽署知情同意書。應用組織塊法體外培養成纖維細胞,取第3~5代細胞進行實驗。
調整細胞懸液密度至1×107/L,均勻地接種于6孔彈性基底膜培養板,每孔2 mL。于37 ℃、含體積分數0.05 CO2及飽和濕度條件下培養24 h,倒置顯微鏡下觀察細胞融合度達30%后,更換培養基。根據前期研究方法構建肌成纖維細胞模型[4],設置加載機械張力參數為:拉伸幅度10%,加力頻率0.1 Hz,加力波形為正弦波,加載機械張力7 d。實驗分為陰性對照組、陽性對照組、實驗組。陰性對照組:正常皮膚成纖維細胞,加載2%幅度牽張力;陽性對照組:肌成纖維細胞,加載10%幅度牽張力;實驗組:肌成纖維細胞,加載2%幅度牽張力。各組加載牽張力時間為7 d, 37 ℃、含體積分數0.05 CO2飽和濕度條件下培養,每隔2 d每孔補充含體積分數0.10血清培養液0.5 mL。每組實驗重復3次。
1.3 檢測指標及方法
1.3.1 CCK-8法檢測細胞增殖能力 加力結束后,各組取3孔細胞,每孔加入CCK-8試劑200 μL,輕搖培養板將試劑混勻后繼續在培養箱中培養3 h。分別取200 μL細胞培養上清液,置于96孔板中,以不含細胞的培養基作為空白孔,用酶聯免疫檢測儀檢測450 nm波長處吸光度值,以其表示細胞數量。
1.3.2 SYBR Green qPCR法檢測細胞內整合素β1、轉化生長因子-β1(TGF-β1)、α-SMA和Ⅰ型膠原的mRNA表達 加力結束后,各組取3孔細胞,應用Trizol 法提取細胞總RNA,進行逆轉錄反應后,行SYBR Green qPCR檢測。PCR反應體系20 μL,內含有:SYBR Premix Ex Taq Ⅱ10 μL,上下游引物各0.8 μL,ROX Reference Dye Ⅱ 0.4 μL,滅菌蒸餾水6 μL,cDNA溶液2 μL。應用ABI ViiATM 7 SYBR Green qPCR儀進行擴增反應,以95 ℃、30 s,95 ℃、5 s,60 ℃、30 s重復45個循環。擴增完成后,應用ABI ViiATM 7軟件對反應產物的熔解曲線進行自動定量分析。以GAPDH作為內參,各引物序列見表1。采用相對定量法2-ΔΔCt計算各目的基因的mRNA含量。ΔΔCt=(Ct目的-Ct內參)-(Ct對照-Ct內參)。
1.3.3 ELISA法檢測TGF-β1、Ⅰ型膠原含量 收集各組培養板孔內細胞上清液,按照TGF-β1、Ⅰ型膠原ELISA試劑盒說明書進行操作。
1.3.4 Western-Blot法檢測細胞內整合素β1、α-SMA蛋白表達量 加力結束后,各組取3孔細胞,將蛋白裂解液和蛋白酶抑制劑按100∶1的比例制成混合溶液,裂解細胞30 min后,提取總蛋白,用BCA法測定蛋白濃度,測定后加入1/4樣品體積量的上樣緩沖液,95 ℃金屬浴5 min后室溫備用。調整電泳參數為:濃縮膠80 V、30 min,分離膠120 V、60 min。取出凝膠后濕轉法轉膜,轉膜參數280 mA 140 min。整合素β1、α-SMA一抗稀釋濃度為1∶5 000,內參β-actin稀釋濃度為1∶1 500;二抗稀釋濃度為1∶10 000。加入一抗4 ℃孵育過夜,加入二抗室溫下孵育1 h后,涂ECL發光液于化學發光成像系統中顯影。應用Image J圖像分析系統測定各種蛋白條帶的灰度值,以灰度值和條帶面積的乘積(IntDen)進行蛋白半定量的分析。蛋白的相對表達量=實驗組(IntDen目的-IntDen內參)/對照組(IntDen目的-IntDen內參)。
1.4 統計學分析
采用SPSS R23.0.0.0軟件進行統計學處理,計量資料結果以±s表示,多組間比較采用單因素方差分析,兩兩比較采用q檢驗。以P<0.05為差異有統計學意義。
2 結" 果
2.1 各組細胞增殖能力比較
各組細胞增殖能力相比較,陽性對照組gt;實驗組gt;陰性對照組,差異具有統計學意義(F=67.75,Plt;0.05),見表2。
2.2 各組整合素β1的mRNA和蛋白表達水平比較
陽性對照組整合素β1 mRNA和蛋白表達高于實驗組(F=807.45、90.23,q=47.86、2.53,Plt;0.05),實驗組和陰性對照組之間比較差異無統計學意義(Pgt;0.05)。見表2。
2.3 各組TGF-β1、α-SMA、Ⅰ型膠原mRNA表達和蛋白表達的比較
各組TGF-β1、Ⅰ型膠原mRNA和蛋白含量比較,陽性對照組gt;實驗組gt;陰性對照組,差異有統計學意義(F=132.63~981.60,Plt;0.05)。實驗組α-SMA mRNA和蛋白表達高于陰性對照組,差異有顯著性(F=496.01、132.64,q=37.43、16.95,Plt;0.05),實驗組和陽性對照組α-SMA蛋白表達差異無統計學意義(Pgt;0.05)。見表2,圖1。
3 討" 論
肌成纖維細胞的異質性是決定增生性瘢痕發生和轉歸的重要機制[1]。最近研究發現,肌成纖維細胞能夠被誘導分化為脂肪細胞[8]。誘導肌成纖維細胞再分化為其他類型細胞,可能是治療病理性瘢痕的有效手段之一。
機械張力是影響創面愈合和瘢痕形成的重要因素[9]。創面愈合早期,皮膚完整性遭到破壞,創面承受機械張力驟增,刺激炎癥細胞浸潤、成纖維細胞大量增殖聚集[10];組織再生期,皮膚成纖維細胞在張力作用下表達α-SMA,分泌大量細胞外基質成分,分化為肌成纖維細胞,肌成纖維細胞籍α-SMA維持細胞內外之間的力學平衡狀態[3,11];創面愈合后期,肌成纖維細胞的轉歸決定了創面愈合的最終結果。研究表明,如果創面修復后不再承受較大的機械張力刺激,肌成纖維細胞逐漸再分化、凋亡,創面最終形成成熟的瘢痕[12];如果創面持續承受較大的機械張力刺激,肌成纖維細胞持續增殖,創面就會形成病理性瘢痕[3,13]。
創面愈合的不同結局提示機械張力參與了肌成纖維細胞形成與再分化的全部過程[14-15]。細胞對機械張力的反應有一定選擇性,在比較適合的張力作用下才會產生明顯的力學-生化信號傳導。有研究表明,在牽張力幅度低于2%時,真皮成纖維細胞不會發生形態學變化[16],本文陰性對照組結果與其一致。因此,我們推測低幅度牽張力可能會誘導肌成纖維細胞再分化。
足夠大的張力微環境和TGF-β1是誘導肌成纖維細胞形成的兩個必要條件[17-18]。整合素-細胞骨架信號通路是機械張力傳導的主要途徑[17-20]。整合素胞外區域與其特異的細胞外基質配體結合后,就會導致細胞骨架蛋白聚集,形成黏著復合體,黏著復合體可以成熟為更大的黏著斑(FA)。只有形成足夠大的FA,成纖維細胞才開始表達α-SMA[21]。整合素、FA、α-SMA都是張力的傳導者,負責把力學信號傳導至胞內影響基因表達[22]。同時,足夠大的機械張力才能通過整合素激活細胞外基質中潛伏狀態的TGF-β1,活化的TGF-β1通過SMAD信號通路調節細胞基因表達[23-24]。
肌成纖維細胞內α-SMA、TGF-β1表達水平較高,而皮膚成纖維細胞表達少量的TGF-β,且幾乎不表達α-SMA[25]。機械張力使成纖維細胞大量分泌TGF-β1,TGF-β1可協同機械張力的作用促使細胞表達α-SMA、Ⅰ/Ⅲ型膠原,促使成纖維細胞轉化為肌成纖維細胞[26-27]。與正常皮膚成纖維細胞相比,肌成纖維細胞合成細胞外基質能力較高,突出表現為α-SMA、TGF-β1、Ⅰ型膠原等重要分子標志物的表達水平提高[28-29]。
基于前期研究結果,本文構建肌成纖維細胞模型作為本次研究的目的細胞,選擇10%和2%幅度的牽張力作為高、低幅度牽張力作用于肌成纖維細胞,以正常成纖維細胞持續加載2%幅度的牽張力為陰性對照組。本文研究結果顯示,10%幅度的牽張力明顯刺激肌成纖維細胞增殖,2%幅度的牽張力作用下肌成纖維細胞的增殖能力高于正常成纖維細胞,再次證明張力對成纖維細胞具有促增殖的作用。同時,在2%幅度牽張力作用下,肌成纖維細胞和成纖維細胞內整合素β1基因和蛋白表達水平明顯低于10%幅度牽張力作用下的水平,說明細胞對較低幅度牽張力的傳導效應較弱,與我們前期的研究結果一致。理論上講,低幅度牽張力作用下,細胞內相關基因表達會降低,生化反應隨之減弱。本文的研究結果顯示,2%幅度牽張力作用7 d后,肌成纖維細胞TGF-β1、Ⅰ型膠原的基因和蛋白表達水平低于10%幅度牽張力作用,仍然高于正常成纖維細胞表達水平;肌成纖維細胞內α-SMA表達水平仍然較高。這一結果說明,低張力微環境下肌成纖維細胞沒有發生明顯變化,這與臨床上病理性瘢痕的轉歸現象不符。因為體外培養不能完全模擬體內細胞所處的復雜環境,推測低幅度牽張力不能直接誘導肌成纖維細胞的再分化,可能存在其他機制介導了張力誘導肌成纖維細胞再分化的過程。
綜上所述,在2%幅度牽張力作用下,肌成纖維細胞仍然高表達α-SMA、TGF-β1和Ⅰ型膠原,肌成纖維細胞的表型沒有發生本質變化。低幅度牽張力作用不能直接誘導肌成纖維細胞再分化,與機體復雜內環境有關,也可能存在其他機制參與了張力誘導肌成纖維細胞再分化的過程,仍需要深入研究。
[參考文獻]
[1]RINKEVICH Y, WALMSLEY G G, HU M S, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential[J]." Science (New York,N.Y.), 2015,348(6232):aaa2151.
[2]FINNERTY C C, JESCHKE M G, BRANSKI L K, et al. Hypertrophic scarring: the greatest unmet challenge after burn injury[J]." Lancet (London,England), 2016,388(10052):1427-1436.
[3]XU Q C, KUANG R X, WEI S Q, et al. Analysis of mechanical behavior of dermal fibroblasts obtained from various anatomical sites in humans[J]." Annals of Plastic Surgery, 2017,79(5):438-443.
[4]朱明宇,李雨珊,王志國,等. 機械牽張力加載時間對誘導正常皮膚成纖維細胞向增生性瘢痕成纖維細胞轉化過程的影響研究[J]." 中國美容醫學, 2018,27(6):55-59.
[5]朱明宇,匡瑞霞,王志國,等. 機械應力導致病理性瘢痕形成的機制[J]." 中華醫學雜志, 2017,26:2072-2074.
[6]王志國,匡瑞霞,陳振雨,等. 不同幅度牽張力對正常皮膚成纖維細胞向病理性瘢痕成纖維細胞轉化的誘導作用[J]." 中華醫學雜志, 2015,95(4):294-298.
[7]王志國,匡瑞霞,徐全臣,等. 人體不同部位正常皮膚成纖維細胞對機械張力反應的研究[J]. 中國修復重建外科雜志, 2015,29(4):467-471.
[8]PLIKUS M V, GUERRERO-JUAREZ C F, ITO M, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]." Science (New York,N.Y.), 2017,355(6326):748-752.
[9]BARNES L A, MARSHALL C D, LEAVITT T, et al. Mechanical forces in cutaneous wound healing:emerging therapies to minimize scar formation[J]. Advances in Wound Care, 2018,7(2):47-56.
[10]MARTINO F, PERESTRELO A R,VINARSKY V, et al. Cellular mechanotransduction: from tension to function[J]." Frontiers in Physiology, 2018,9:824.
[11]HINZ B, MASTRANGELO D, ISELIN C E, et al. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation[J]." The American Journal of Pathology, 2001,159(3):1009-1020.
[12]YAGMUR C, AKAISHI S, OGAWA R, et al. Mechanical receptor-related mechanisms in scar management:a review and hypothesis[J]." Plastic and Reconstructive Surgery, 2010,126(2):426-434.
[13]HINZ B, PHAN S H, THANNICKAL V J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling[J]." The American Journal of Pathology, 2012,180(4):1340-1355.
[14]LEAVITT T, HU M S, MARSHALL C D, et al. Scarless wound healing: finding the right cells and signals[J]." Cell and Tissue Research, 2016,365(3):483-493.
[15]JUNGBAUER S, GAO H J, SPATZ J P, et al. Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates[J]." Biophysical Journal, 2008,95(7):3470-3478.
[16]KLINGBERG F, CHOW M L, KOEHLER A, et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation[J]." Journal of Cell Biology, 2014,207(2):283-297.
[17]MICALLEF L,VEDRENNE N, BILLET F, et al. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair[J]." Fibrogenesis amp; Tissue Repair, 2012,5(Suppl 1):S5.
[18]HOFFMAN B D, GRASHOFF C, SCHWARTZ M A. Dynamic molecular processes mediate cellular mechanotransduction[J]." Nature, 2011,475(7356):316-323.
[19]GOLDMANN W H. Mechanotransduction and focal adhesions[J]." Cell Biology International, 2012,36(7):649-652.
[20]PLOTNIKOV S V, PASAPERA A M, SABASS B, et al. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration[J]." Cell, 2012,151(7):1513-1527.
[21]GOFFIN J M, PITTET P, CSUCS G, et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers[J]." The Journal of Cell Biology, 2006,172(2):259-268.
[22]KUMAR A, SHUTOVA M S, TANAKA K, et al. Filamin A mediates isotropic distribution of applied force across the actin network[J]." The Journal of Cell Biology, 2019,218(8):2481-2491.
[23]HAPPE C L, ENGLER A J. Mechanical forces reshape dif-
ferentiation cues that guide cardiomyogenesis[J]." Circulation Research, 2016,118(2):296-310.
[24]WIPFF P J, RIFKIN D B, MEISTER J J, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix[J]." The Journal of Cell Biology, 2007,179(6):1311-1323.
[25]HINZ B A, MCCULLOCH C M, COELHO N. Mechanical regulation of myofibroblast phenoconversion and collagen contraction[J]." Experiental Cell Research, 2019,379(1):119-128.
[26]HUANG C Y, OGAWA R. The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis?[J]. Wound Repair and Regeneration, 2014,22(4):462-466.
[27]LIU S Y, JIANG L, LI H J, et al. Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis[J]." The Journal of Investigative Dermatology, 2014,134(10):2648-2657.
[28]LODYGA M, HINZ B. TGF-β1-A truly transforming growth factor in fibrosis and immunity[J]." Seminars in Cell Developmental Biology, 2020,101:123-139.
[29]SHU D Y, LOVICU F J. Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis[J]." Progress in Retinal and Eye Research, 2017,60:44-65.
(本文編輯 黃建鄉)