宋紹征,于康英,張婷,陸睿,潘生強,成勇,周鳴鳴
雙轉基因兔的制備及表達檢測
宋紹征1,于康英1,張婷2,陸睿2,潘生強1,成勇2,周鳴鳴1
1無錫太湖學院護理學院基礎醫學系,江蘇無錫 214064;2揚州大學獸醫學院/江蘇省轉基因動物制藥工程研究中心,江蘇揚州 225009
【】雙基因共整合可協同促進轉基因生物的目的基因表達水平提高,研究獲得雙轉基因兔,并比較分析目的基因的表達水平及兔個體生長發育情況,為制備高表達轉基因動物和遺傳育種提供新思路。利用ⅠⅠ雙酶切PCL25/GH質粒和QIAGEN DNA膠純化試劑盒回收顯微注射用基因片段。以3只單轉基因兔(標號K06、K10、K17)作為供體兔,通過FSH/hCG超數排卵、受精卵原核顯微注射、胚胎移植、苯酚/氯仿抽提新生仔兔耳尖組織基因組、PCR整合檢測等方法獲得雙轉基因兔。經ELISA和Western blotting對轉基因兔乳清進行表達檢測,比較分析單、雙基因表達rhPA水平。測量不同月齡的轉基因兔體重,通過監測雙轉基因兔不同生長階段的體重來分析對兔生長發育的影響。成功獲得了約16 700 bp 大小的顯微注射用基因片段,共超排3只供體兔獲得122枚卵,其中103枚受精卵,受精率為84.4%(103/122),顯微注射后挑取形態較好的81枚移植6只同步發情受體兔,5只兔懷孕,妊娠率為83.3%(5/6),妊娠到期共出生32只仔兔。通過PCR檢測鑒定有19只攜帶基因的轉基因兔,其中有11只雙轉基因兔(7♂,4♀),雙基因整合率為34.4%(11/32),且4只rhPA/GH雙轉基因母兔來源親代分別為K06供體兔2只(標號K06-1、K06-2)、K10供體兔1只(標號K10-1)、K17供體兔1只(標號K17-1)。K06號單轉基因兔乳清中表達量為42.2μg·mL-1,K06-1和K06-2號雙轉基因兔乳清中rhPA表達量分別為432、444μg·mL-1;K10號rhPA單轉基因兔乳清中rhPA表達量為42.8μg·mL-1,K10-1號雙轉基因兔乳清中rhPA表達量為636μg·mL-1;K17號rhPA單轉基因兔乳清中rhPA表達量為15.2 μg·mL-1,K17-1號rhPA/GH雙轉基因兔乳清中rhPA表達量為248 μg·mL-1。4只rhPA/GH雙轉基因母兔(K06-1、K06-2、K10-1、K17-1)乳腺表達rhPA含量在248-636μg·mL-1之間,遠遠高于單轉基因母兔(K06、K10、K17)乳腺的表達含量(15.2-42.8μg·mL-1),表達水平顯著提高了約10.2-16.3倍,說明能夠協同促進目的基因在轉基因兔乳腺中的表達水平。Western blotting結果顯示出現一約39.0 kD大小的條帶,與目的蛋白rhPA大小相同,進一步證明轉基因兔乳腺中表達的這種蛋白為目標產物rhPA。對雙轉基因兔從出生到6個月的體重進行連續測量,發現與正常非轉基因兔的體重沒有明顯的差異,繪制生長曲線進一步表明4只整合的轉基因兔與2只未整合的正常兔在生長發育的不同階段體重上沒有顯著性差異,成長至6個月的體重均在4.0-5.0 kg之間,這證明的導入并不影響轉基因兔的存活和正常生長發育至成年。成功地制備了雙轉基因兔,并證明了GH基因的導入能夠顯著地提高目的基因的表達量,且不會對轉基因兔的生長發育產生影響,這為將來制備高表達轉基因兔及其它動物奠定了基礎,也為轉基因動物乳腺生物反應器和轉基因育種建立提供了新思路、新方法。
雙轉基因兔;表達;超數排卵;顯微注射;生長曲線
【研究意義】血栓病是一種嚴重威脅人類生命健康的常見多發病,溶栓療法是目前臨床上應用最廣泛而有效的一種治療方法[1-3]。人組織纖溶酶原激活劑(tissue-type plasminogen activator, tPA)是由血管內皮細胞合成并分泌的一種絲氨酸蛋白酶,能夠高效特異地溶解血栓,屬于一種良好的第二代溶栓藥物[4]。重組人纖溶酶原激活劑(recombinant human plasminogen activator, rhPA)是天然tPA的重組突變體,屬于新型第三代溶栓藥物,具有較天然tPA更加優越的溶栓功效[5]。隨著醫學的不斷發展,高產優質的新型溶栓藥物日趨重要。因此,研究如何穩定提高rhPA的表達水平和產量,對于開發新型溶栓藥物具有重要的指導意義,也為今后其它重組醫藥蛋白的高效表達研究和工業化生產奠定了基礎。【前人研究進展】轉基因技術可應用于動物遺傳育種、生物反應器、疾病模型和器官移植等領域。目前,外源目的基因的表達沉默是轉基因動物研究遇到的一個重要瓶頸,雖然利用友好位點(Rosa26、Hipp11、Pifs501)、定點整合(ZFNs、TALENs、CRISPR/Cas9)、優化順式作用元件(啟動子、內含子、增強子)等措施可克服或減輕基因表達沉默現象,但仍然存在一定的局限性[6-7]。因此,在優化提高轉基因生物目的基因表達水平方面需要有針對性地靈活選擇應用合理的技術手段。有研究證明,通過雙基因共整合獲得的轉基因生物能夠產生協同促進作用,提高目的基因的表達水平[8-9]。例如王林楠等[10]通過慢病毒介導和雙基因轉染大鼠神經干細胞,結果顯示和mRNA相對表達量及蛋白表達量均明顯地高于單基因轉染。陳寧等[11]將與雙基因轉染大鼠BMSCs,顯示雙基因轉染組的目的蛋白表達量明顯地提高。徐莉等[12]利用雙啟動子構建人補體調節蛋白和轉染小鼠成纖維細胞NIH3T3,和雙基因均能夠協同高效共表達,且表達水平明顯得到提高。周慧[13]和呂本浩[14]等其他研究者也得出了雙基因轉染的目的蛋白表達水平高于單基因這一結論。【本研究切入點】家兔是一種應用最廣泛的實驗動物之一,與大型動物牛羊相比,具有排卵多、妊娠期短、繁殖力強、全年多發情等優點;與小鼠相比,具有泌乳量高、適合于生產重組醫藥蛋白等優點,可以填補大型和小型動物間的“空白”[15]。生長激素(growth hormone, GH)是一種由垂體前葉分泌的類似催乳素結構的蛋白質,控制著β-casein與α-LA受體的激活,產生協同作用,具有促進乳腺生長發育及維持泌乳的功能[16-17],這預示著將轉入動物體內可能會在一定程度上提高目的基因的表達水平。因此,在轉基因動物遺傳育種方面發揮著重要的作用。但是,將和雙基因共整合入轉基因兔體內以期提高rhPA表達量的相關研究較少見報道,是否能夠協同促進目的基因在轉基因兔乳腺中高效表達值得進一步研究。【擬解決的關鍵問題】本研究以單轉基因兔[15](PCL25/rhPA乳腺特異性表達載體,以作為調控序列)為試驗兔,其超排獲得的受精卵通過顯微注射的方法額外轉入,旨在提高轉基因兔乳腺表達rhPA的含量,為將來制備高表達轉基因動物和遺傳育種提供了新思路、新方法,也為其他重組醫藥蛋白的生產奠定了基礎。
試驗于2018—2019年在揚州大學江蘇省轉基因動物制藥工程研究中心實驗室和無錫太湖學院基礎醫學實驗室完成。

圖1 乳腺特異性表達載體PCL25/rhPA與PCL25/GH構建圖及PCR檢測原理圖
1.1.2 引物PCR 引物設計借助于Primer Premier 5.0 軟件完成,引物由上海生工生物工程技術有限公司合成(表1)。

表1 PCR擴增引物序列
1.1.3 主要試劑 FSH(寧波三生藥業),HCG(麗珠制藥廠),速眠新II(軍需大學獸醫研究所),FBS(HyClone),透明質酸酶(Sigma),Zoletil50(Virbac),蛋白酶K(Sigma),M2(Sigma),M16(Sigma),鼠抗tPA單克隆抗體(Santa Cruz),羊抗鼠單克隆抗體IgG-HRP(Santa Cruz);DNA 膠純化回收試劑盒購自QIAGEN 公司;各種限制性內切酶和DNA聚合酶購自寶生物工程(大連)有限公司;其他未說明試劑均為國產分析純,分別購自上海藥劑,上海生工生物工程有限公司,南京生興生物有限公司。
1.1.4 實驗動物單轉基因兔(品種為新西蘭兔,標號K06、K10、K17,以山羊為調控元件,且已驗證表達)和正常非轉基因新西蘭兔,均單籠飼養于江蘇省轉基因動物制藥工程研究中心清潔級兔房,溫度20℃,光照12 h(7:00—19:00),顆粒飼料,自由飲水,環境良好。
1.2.1 顯微注射用基因片段的準備 PCL25/GH質粒通過Ⅰ/Ⅰ雙酶切而線性化,1%瓊脂糖凝膠電泳分離不同大小分子量的基因片段,去除原核基因片段,使用QIAGEN DNA膠純化回收試劑盒回收真核基因片段供顯微注射用。使用TE緩沖液(5 mmol·L-1Tris,pH 7.4 0.1 mmol·L-1EDTA)溶解稀釋至 5 ng·μL-1,-20℃保存。
1.2.2 兔超數排卵與同期發情 挑取未發情的單轉基因兔(K06、K10、K17)作為供體,后肢肌肉注射FSH,每次10 IU/只,早晚各一次(間隔12 h),連續3 d。第4天上午7:00肌肉注射FSH 5 IU/只,晚上19:00耳緣靜脈注射hCG 100 IU/只,人工輔助與正常新西蘭公兔配種后再合籠。第5天中午12:00無菌手術取卵[18]。在供體兔配種的同時,挑取8—10月齡自然發情的成年健康新西蘭母兔作為受體,耳緣靜脈注射hCG 100 IU/只,以備次日手術移植。母兔發情的主要標志為陰道黏膜呈潮紅色、分泌粘液較多。
1.2.3 雙轉基因兔的制備 供體兔注射hCG后17 h,麻醉(皮下注射阿托品1 mg·kg-1,15 min后耳緣靜脈注射zoletil-50 7.5 mg·kg-1),仰臥保定,無菌手術輸卵管沖卵,回收受精卵,在體視顯微鏡下觀察、計數。在熒光倒置顯微鏡(IX70,Olympus)下,將顯微注射基因片段導入受精卵的原核內,置于38 ℃、5% CO2、飽和濕度的培養箱中培養 30 min后,手術移植到同步發情的受體母兔輸卵管內,待孕。
1.2.4 轉基因兔的整合篩選 無菌剪取新生仔兔的耳尖組織約2 mm3,添加含200 μg蛋白酶K的組織裂解液,55℃消化過夜,苯酚/氯仿抽提法提取基因組,-20℃預冷的無水乙醇沉淀DNA,進行PCR檢測。針對和兩種基因,分別設計了兩對引物(表1),檢測位點示意圖如圖1所示,其中CMV/tPA引物用于轉基因檢測,PCR 參數為:95℃預變性 5 min ;94℃變性 45 s,55℃退火 45 s,72℃延伸 1 min,共30個循環;72℃延伸10 min。gGH引物用于轉基因檢測,PCR 參數為:95℃預變性 5 min ;94℃變性 45 s,58℃退火30 s,72℃延伸 45 s,共30個循環;72℃延伸10 min。PCR反應產物進行1%瓊脂糖凝膠電泳,確定條帶大小是否正確。
1.2.5 ELISA 表達檢測 轉基因母兔配種懷孕,分娩后擠奶,收集乳汁。乳汁離心,10 000×g,30 min,去除上層脂肪及下層渾濁,吸取乳清,PBS稀釋100倍用于檢測。96-孔酶標板中每孔添加100 μL乳清和100 μL包被液(1.696 g·L-1Na2CO3, 2.856 g·L-1NaHCO3, pH 9.6),4℃過夜。棄去包被液,使用含0.05% Tween-20的PBS洗滌3次,拍干。每孔加入200 μL封閉液(含10%胎牛血清的PBS),37℃水浴2 h。使用鼠抗tPA單克隆抗體作為一抗(sc-59721, Santa Cruz)、羊抗鼠單克隆抗體IgG-HRP作為二抗(sc-2005, Santa Cruz),分別37℃水浴2 h。洗滌后,每孔加入50 μL的顯色液(5 mg OPD, 15 μL30% H2O2, 28.4 g·L-1Na2HPO4, 19.2 g·L-1檸檬酸),37℃避光孵育20 min,顯色后酶標儀測定OD450值,并以阿替普酶(alteplase)作為標準品,繪制標準曲線,計算rhPA表達量,比較雙轉基因兔和單轉基因兔的表達水平。
以百香果、胡蘿卜、白砂糖和鮮乳為主要原料研制復合型酸奶,風味獨特、營養價值高,是一種良好的保健酸奶。通過試驗得到的最佳配方為百香果汁添加量4.5%,胡蘿卜汁添加量23%,白砂糖添加量9%,黃原膠與CMC(1∶1)的復合穩定劑添加量0.1%,菌種接種量0.5%,于43℃條件下發酵6 h。產品呈淺橘黃色,凝固性良好,質地均勻、細膩,酸甜適中,并具兼有百香果和胡蘿卜的香味。
1.2.6 Western blotting檢測 按照常規方法對PBS稀釋100倍的轉基因兔乳清進行12% SDS聚丙烯酰胺凝膠電泳(SDS-PAGE)[18]。使用轉移緩沖液(1.93 g·L-1tris, 9 g·L-1glycine)將丙烯酰胺凝膠轉移至PVDF膜,250 mA,轉印3.5 h。超純水沖洗后,37℃封閉(20 mmol·L-1Tris, 137 mmol·L-1NaCl, 0.1 % Tween-20, 10% fetal bovine serum,pH 7.6),2 h。加入一抗稀釋液(1﹕2 000稀釋,鼠抗tPA單克隆抗體,sc-59721,Santa Cruz),37℃孵育2 h。TTBS(20 mmol·L-1Tris, 137 mmol·L-1NaCl,1 % Tween-20, pH 7.6)洗滌3次后,加入二抗-HRP稀釋液(1﹕2 000稀釋,羊抗鼠單克隆抗體IgG-HRP,sc-2005,Santa Cruz)中,37℃孵育2 h。取出PVDF膜,PBS洗凈后,添加顯色液(DAB 50 mg, 0.05 mol·L-1TB100mL, 30 μL 30% H2O2, pH7.6),室溫15 min,晾干后拍照、記錄并保存。
1.2.7 雙轉基因兔的生長發育監測 在相同的斷奶時間和飼養條件下,分別對不同生長發育階段的雙轉基因兔和正常非轉基因兔的體重進行測量,從出生開始連續測量至6個月齡,以時間(月)為橫坐標、體重(g)為縱坐標,繪制生長曲線,比較雙轉基因兔與正常非轉基因兔的生長發育情況。
經Ⅰ/Ⅰ雙酶切質粒 PCL25/GH,使用膠純化回收試劑盒回收后的基因片段電泳圖譜見圖2所示,從圖中可見一約16 700 bp 大小的明亮條帶,與目標顯微注射基因片段的大小相同。電泳結果表明,成功地酶切和回收了大小約16 700 bp顯微注射用的基因片段。

P:PCL25/GH質粒雙酶切;M:λ-EcoT14 DNA Marker.
正常兔受精卵為卵圓形,透明帶較厚且外圍一厚層粘蛋白,判斷受精的標志是能夠看見兩個相互靠近的原核(胞質凹陷部分),雌原核一般小于雄原核,如圖3-A所示,在卵的中間部位可見兩個相鄰的明顯凹圓,即雌雄原核。將顯微注射用基因片段導入原核的操作如圖3-B所示,可見注射的原核瞬間膨脹變大。

圖3 兔受精卵原核顯微注射
通過對3只單轉基因供體兔(標號K06、K10、K17)的超數排卵獲得122枚卵,其中有103枚受精卵,受精率為84.4%(103/122)。挑選較好的94枚受精卵進行顯微注射,經培養30 min后再挑選其中形態較好的81枚卵移植到6只同步發情的母兔輸卵管中,有5只懷孕并順利分娩,妊娠率為83.3%(5/6),妊娠到期共出生32只仔兔。經PCR檢測,共獲得19只攜帶的轉基因兔,其中11只兔(7♂,4)整合雙基因,通過PCR檢測分別擴增出561 bp()和670 bp()大小條帶(圖4、圖5),雙基因整合率為34.4%(11/32)。其中,4只雙轉基因母兔來源親代分別為K06供體兔2只(標號K06-1、K06-2)、K10供體兔1只(標號K10-1)、K17供體兔1只(標號K17-1),詳見表2。
轉基因兔乳清經ELISA檢測表達水平的結果如圖6和表2所示,其中K06兔乳清中rhPA表達量為42.2 μg·mL-1,K06-1和K06-2兔乳清中rhPA表達量分別為432、444 μg·mL-1,表達水平分別提高了約10.2倍(432/42.2)和10.5倍(444/42.2);K10兔乳清中rhPA表達量為42.8 μg·mL-1,K10-1兔乳清中rhPA表達量為636 μg·mL-1,表達水平提高了約14.9倍(636/ 42.8);K17兔乳清中rhPA表達量為15.2 μg·mL-1,K17-1兔乳清中rhPA表達量為248 μg·mL-1,表達水平提高了約16.3倍(248/15.2)。3只單轉基因兔表達rhPA水平為15.2—42.8 μg·mL-1,而雙轉基因兔表達rhPA水平為248—636 μg·mL-1,表達水平提高了10.2—16.3倍左右。ELISA檢測結果表明,雙轉基因兔乳腺表達rhPA水平明顯高于單轉基因兔,可協同促進在轉基因兔乳腺中的高效表達。

1,4:正常非轉基因兔(陰性對照);2:K06-1轉基因兔;3:K06-2轉基因兔;5:K10-1轉基因兔;6:K17-1轉基因兔;M:DL2000 Marker;7:PCL25/rhPA質粒(陽性對照)

1:正常非轉基因兔(陰性對照);2:K06-1轉基因兔;3:K06-2轉基因兔;4:K10-1轉基因兔;5:K17-1轉基因兔;6:rhPA單基因整合兔(K06);7:PCL25/GH質粒(陽性對照);M:DL2000 Marker

表2 單、雙轉基因兔乳腺表達rhPA含量情況統計表
單、雙轉基因兔乳清的Western blotting檢測結果如圖7所示,可見一大小約39.0 kD的條帶,與陽性對照的條帶大小相同。結果表明,該轉基因兔乳清中成功表達的蛋白為目標產物rhPA,且其蛋白分子量大小正確,與目標蛋白一致。
對整合雙基因的轉基因兔連續測量體重6個月(表3),并與正常非轉基因兔的體重進行比較,未見明顯的差異存在。其中,K10-1轉基因兔前3個月體重偏輕(明顯低于正常兔體重),是由于該兔在出生的第20天生病所致,恢復健康之后,后期體重增長也恢復至正常。從兔的生長曲線(圖8)上可以看出,4只整合GH的轉基因兔(K06-1、K06-2、K10-1、K17-1)與2只未整合GH的正常非轉基因兔(N1、N2)相比,在生長發育的不同階段未見明顯的體重差異,成長至6個月的體重均在4.0—5.0 kg之間。結果表明,的轉入未影響兔的正常生長發育,雙轉基因兔能夠存活、正常生長發育至成年。

阿替普酶濃度分別是0、0.125、0.25、0.5、1.0、2.0、4.0、8.0 μg·mL-1。所有兔乳清均使用PBS稀釋100倍
據世界衛生組織(WHO)統計分析,全球每年由于心血管病死亡的人數約為1 300 萬,其中血栓類疾病占半數以上,且呈現明顯的上升趨勢[5,19]。目前,臨床上主要采用阿替普酶(tPA)、瑞替普酶、孟替普酶、蘭替普酶、替尼普酶等溶栓藥物治療血栓病。本研究的重組人纖溶酶原激活劑(rhPA)是一種新開發的第三代重組溶栓藥物,具有高效、安全、特異、副作用小等優點,臨床使用的溶栓藥物大多是通過原核生物或哺乳動物細胞表達來生產,存在產量低、價格高等局限性,大眾使用推廣一直受到限制[18-20]。因此,如何高效、便捷地低成本生產rhPA一直是科學研究的熱點。自20世紀90年代,WRIGHT等[21]在羊乳腺中成功地表達了人α-抗胰蛋白酶以來,乳腺生物反應器顯示出誘人的前景,為生產重組溶栓藥物提供了較大的可能性。但是rhPA或tPA在動物乳腺中的表達水平一直偏低[22]。因此,積極探索提高非乳蛋白rhPA在動物乳腺中的表達水平尤為重要。

所有兔乳清均使用PBS稀釋100倍
目前,提高動物轉基因表達效率的方法較多[6],雙轉基因生物體內的兩個基因能夠產生協同促進作用,調控生物體基因網絡系統,使外源目的基因表達水平提高[23],這是一種良好的提高目的基因表達的策略,為提高轉基因兔乳腺中rhPA的表達量提供了新思路。自1920年,EVANS首次證實垂體中具有促生長的物質為生長激素以來,學者們對進行了廣泛而深入的研究,并取得了重要成果[24]。有報道證明生長激素()能夠與的序列結合,促進受體激活,協同提高乳蛋白的特異性表達[17,25]。雖然近年來,已有關于雙基因提高外源目的基因表達水平的研究報道,例如韓操等[26]對和雙基因、王林楠等[10]對和雙基因、陳寧等[11]對與雙基因的研究結果顯示,雙基因導入生物體內能夠明顯地提高目的基因的表達水平。但是,關于和雙基因整合兔的相關研究報道較少見。

表3 正常兔和rhPA/GH雙轉基因兔不同生長階段的體重測量
N1和N2是正常非轉基因兔,K06-1、K06-2、K10-1、K17-1是雙轉基因兔
N1 and N2 were normal non-transgenic rabbits, K06-1, K06-2, K10-1 and K17-1 weredouble-transgenic rabbits

N1和N2是正常非轉基因兔,K06-1、K06-2、K10-1、K17-1是rhPA/GH雙轉基因兔
家兔是轉基因試驗中常用的模式生物,也是胚胎工程和乳腺生物反應器研究中應用最廣泛的實驗動物之一。本研究嘗試利用轉基因動物進行二次轉基因,選擇以單轉基因兔(以山羊作為調控序列,且已驗證表達)作為供體兔[15],通過FSH/hCG進行超數排卵獲取103枚受精卵,通過原核顯微注射,分別移植到同步發情的新西蘭受體母兔體內,順利分娩獲得32只仔兔。經PCR整合檢測獲得11只雙轉基因兔(7♂,4),雙基因整合率達到34.4%,這與目前國內外報道的轉基因兔整合效率相一致[15,27-29]。對其中4只雙轉基因母兔(K06-1、K06-2、K10-1、K17-1)的乳腺表達水平檢測結果顯示,雙轉基因兔表達目的蛋白rhPA的含量為248—636 μg·mL-1,遠遠高于單轉基因兔(K06、K10、K17)的表達水平(15.2—42.8 μg·mL-1)。這一結果證明了的導入,能夠大大地促進轉基因兔乳腺中rhPA基因表達水平的提高。
此外,很多轉基因動物的研究報道集中于生長激素能夠調節機體生長,從而獲得個體大小超越一般野生型的“超級”物種[30]。但是,本研究中獲得的雙轉基因兔通過與正常非轉基因兔的生長發育情況比較,發現并沒有對轉基因兔的生長發育產生影響,整合的轉基因兔能夠正常地生長發育至成年。一般情況下,新西蘭成年兔的體重為4.0—5.0 kg[31],本試驗的4只雙轉基因兔成長至6個月的體重均在4.0—5.0 kg之間,與正常非轉基因兔的體重增長沒有明顯的差異。分析原因可能是試驗選擇的來源于山羊,不能夠產生與在山羊體內類似的生理學作用,也不會對兔的生長發育造成影響。而且,基因表達是涉及到整合位點、表觀遺傳、外源基因拷貝數、相關激素水平及基因網絡等多方面的影響[32],因此,相關研究仍需繼續進行。
通過二次轉基因成功制備的雙轉基因兔,不僅使雙基因整合率得到了保證,也使rhPA表達水平更具有比較性。通過對兔乳清中表達rhPA含量和不同生長發育階段的體重監測,證明了雙轉基因兔能夠明顯地提高目的基因的表達量,同時GH對兔的生長發育沒有造成明顯的影響,這為將來制備高表達轉基因兔及其它動物奠定了基礎,也為轉基因動物乳腺生物反應器和轉基因育種建立提供了新技術、新方法。
[1] THIEBAUT A M, GAUBERTI M, ALI C, MARTINEZ DE LIZARRONDO S, VIVIEN D, YEPES M, ROUSSEL B D. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurology, 2018, 17(12):1121-1132.
[2] OHTA T, OKADA K, FUKUDA M, MASAHIRA N, MATSUOKA T, TSUNO T, TAKEMURA M. Safety and efficacy of intravenous low-dose alteplase in relative contraindication patients with acute ischemic stroke.Journal of Stroke & Cerebrovascular Diseases, 2018, 27(7):1844-1851.
[3] GRUMMISCH J A,GRUMMISCH J A, JADAVJI N M,JADAVJI N M, SMITH P D,SMITH P D. The pleiotropic effects of tissue plasminogen activator in the brain: implications for stroke recovery. Neural Regeneration Research, 2016, 11(9):1401-1402.
[4] WYSOCKI N A, BAMBHROLIYA A, ANKROM C, VAHIDY F, ASTUDILLO C, TREVINO A, MALAZARTE R, COSSEY T C, JAGOLINO-COLE A, SAVITZ S, WU T C, SHARRIEF A.Outcomes among patients with ischemic stroke treated with intravenous tPA (Tissue-Type Plasminogen Activator) via telemedicine. Stroke, 2019, 50(4):895-900.
[5] VANDELLI L, MARIETTA M, TRENTI T, VARANI M, BIGLIARDI G, ROSAFIO F, DELL'ACQUA M L, PICCHETTO L, NICHELLI P, ZINI A. Fibrinogen concentrate replacement in ischemic stroke patients after recombinant tissue plasminogen activator treatment. Advances in Clinical and Experimental Medicine, 2019, 28(2):219- 222.
[6] 趙旭東, 黃永志, 畢延震, 董發明.動物轉基因高效表達策略研究進展.生物技術通報, 2020, 36(03):45-53.
ZHAO X D, HUANG Y Z, BI Y Z, DONG F M. Strategies for efficient exogenous gene expression in transgenic animals.Biotechnology Bulletin, 2020, 36(03):45-53. (in Chinese)
[7] LI C, MISHRA A S, GIL S, WANG M, GEORGAKOPOULOU A, PAPAYANNOPOULOU T, HAWKINS R D, LIEBER A. Targeted integration and high-level transgene expression in AAVS1 transgenic mice afternivo HSC transduction with HDAd5/35++ vectors. Molecular Therapy, 2019,27(12):2195-2212.
[8] BAO Z, LIN J, YE L, ZHANG Q, CHEN J, YANG Q, YU Q. Modulation of mammary gland development and milk production by growth hormone expression in GH transgenic goats. Frontiers in Physiology, 2016, 7:278.
[9] 李志然, 馬強, 馬利民. VEGF和Smad7雙基因過表達慢病毒載體的構建. 交通醫學, 2019, 33(02):107-110.
LI Z R, MA Q, MA L M. The construction of lentiviral vector with over-express of VEGF gene and Smad7 gene. Medical Journal of Communications, 2019, 33(02):107-110. (in Chinese)
[10] 王林楠, 汪雷, 宋躍明, 劉立岷, 楊曦, 豐干均, 周春光. 慢病毒介導NEP1-40及NT-3雙基因轉染神經干細胞的實驗研究. 中國修復重建外科雜志, 2018, 32(04):420-427.
WANG L N, WANG L, SONG Y M, LIU L M, YANG X, FENG G J, ZHOU C G. Experimental study of lentivirus-mediated Nogo extracellular peptide residues 1-40 gene and neurotrophin 3 gene co-transduction in neural stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(04):420-427. (in Chinese)
[11] 陳寧, 蔣林彬, 粟謀, 徐威, 李朝旭, 王銳英, 唐際存, 貝朝涌. 雙基因pCDNA 3.1-NGF-IRES-BMP2真核質粒轉染 大鼠BMSCs誘導成骨的研究. 中國矯形外科雜志, 2016, 24 (04):345-351.
CHEN N, JIANG L B, SU M, XU W, LI C X, WANG R Y, TANG J C, BEI C Y. Transfected double gene pCDNA3.1-NGF-IRES-BMP2 eukaryotic plasmid and its inductive effects for osteo-genesis in rat BMSCs. Orthopedic Journal of China, 2016, 24(04):345-351. (in Chinese)
[12] 徐莉, 趙舟宙, 劉輝, 蔣達和, 李文鑫. 人補體調節蛋白DAF、MCP在哺乳動物細胞中的共表達及協同作用研究.生物工程學報, 2008(2):220-225.
XU L, ZHAO Z Z, LIU H, JIANG D H, LI W X. Co-expression and synergic effect of human complement regulatory proteins DAF and MCP. Chinese Journal of Biotechnology, 2008(2):220-225. (in Chinese)
[13] 周慧, 孫利波, 尹若峰, 張明磊. 骨形態發生蛋白-2與血管內皮生長因子雙基因質粒轉染鼠骨髓間充質干細胞的研究. 中華實驗外科雜志, 2015, 32(7): 1531-1533.
ZHOU H, SUN L B, YIN R F, ZHANG M L. Bone marrow mesenchymal stem cells transfected by a dual-gene coexpression plasmid of bone morphogenetic protein-2 and vascular endothelial growth factor. Chinese Journal of Experimental Surgery, 2015, 32(7): 1531-1533. (in Chinese)
[14] 呂本浩, 李勁峰, 馬源, 李成, 尚國偉, 李月白, 王義生. 雙基因重組載體轉染乙醇誘導的兔干細胞對其成脂與成骨基因表達的影響. 中華實驗外科雜志, 2017, 34(12): 2187-2190.
Lü B H, LI J F, MA Y, LI C, SHANG G W, LI Y B, WANG Y S. Influence of double gene recombinant vector transfected alcohol- induced rabbit stem cells on expressions of adipogenic and osteogenic genes. Chinese Journal of Experimental Surgery, 2017, 34(12): 2187-2190. (in Chinese)
[15] SONG S Z, GE X, CHENG Y B, LU R, ZHANG T, YU B L, JI X Q, QI Z Q, RONG Y, YUAN Y G, CHENG Y. High-level expression of a novel recombinant human plasminogen activator (rhPA) in the milk of transgenic rabbits and its thrombolytic bioactivity. Molecular Biology Reports, 2016, 43(8):775-783.
[16] NISHIHARA K, KOBAYASHI R, SUZUKI Y, SATO K, KATOH K, ROH S. Post-prandial decrease in plasma growth hormone levels is not related to the increase in plasma insulin levels in goats.Asian-Australasian Journal of Animal Sciences, 2017, 30(12): 1696-1701.
[17] LI L, HE M L, LIU Y, ZHANG Y S. Buffering agent-induced lactose content increases via growth hormone-mediated activation of gluconeogenesis in lactating goats. Physiological Research, 2018, 67(2): 317-329.
[18] 宋紹征. 轉基因兔乳腺特異性表達重組人纖溶酶原激活劑(rhPA)及其藥效學研究[D]. 揚州: 揚州大學, 2015.
SONG S Z. The studies on transgenic rabbits mammary gland-specific expression of recombinant human plasminogen activator (rhPA) and pharmacodynamics[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[19] FISCHER U, KAESMACHER J, MOLINA C A, SELIM M H, ALEXANDROV A V, TSIVGOULIS G. Primary thrombectomy in tPA (Tissue-Type Plasminogen Activator) eligible stroke patients with proximal intracranial occlusions. Stroke, 2018, 49(1):265-269.
[20] JAVARAN V J, SHAFEINIA A, JAVARAN M J, GOJANI E G, MIRZAEE M. Transient expression of recombinant tissue plasminogen activator (rt-PA) gene in cucurbit plants using viral vector. Biotechnology Letters, 2017, 39(4):607-612.
[21] WRIGHT G, CARVER A, COTTOM D, REEVES D, SCOTT A, SIMONS P, WILMUT I, GARNER, COLMAN A. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (N Y), 1991, 9(9):830- 834.
[22] HE Z, LU R, ZHANG T, JIANG L, ZHOU M, WU D, CHENG Y. A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One, 2018, 13(8): e0201788.
[23] TORRES V, BARRA L, GARCES F, ORDENES K, LEAL-ORTIZ S, GARNER C C, FERNANDEZ F, ZAMORANO P. A bicistronic lentiviral vector based on the 1D/2A sequence of foot-and-mouth disease virus expresses proteins stoichiometrically. Journal Biotechnology, 2010, 146(3): 138-142.
[24] DUCHEN K, LINDBERG A, KIPLOK K, KRISTROM B. Using a spontaneous profile rather than stimulation test makes the KIGS idiopathic growth hormone deficiency model more accessible for clinicians. Acta Paediatrica, 2017, 106(9):1481-1486.
[25] ZHOU Y, AKERS R M, JIANG H. Growth hormone can induce expression of four major milk protein genes in transfected MAC-T cells. Journal of Dairy Science, 2008, 91(1): 100-108.
[26] 韓操, 王正東, 顏南. 慢病毒介導bFGF和BMP-2雙基因轉染對兔骨髓間充質干細胞增殖的影響. 解剖科學進展, 2019, 25(01):25-31.
HAO C, WANG Z D, YAN N. Effect of transfected BMP-2 and b FGF double gene lentivirus vectors on the proliferation of bone marrow mesenchymal stem cells in rabbit. Progress of Anatomical Sciences, 2019, 25(01):25-31. (in Chinese)
[27] HAMMER R E, PURSEL V G, REXROAD C E, WALL R J, BOLT D J, EBERT K M, PALMITER R D, BRINSTER R L. Production of transgenic rabbits, sheep and pigs by microinjection., 1985, 315(6021):680-683.
[28] 陸睿, 宋紹征, 祁正強, 葛欣, 邵賓, 成勇. 重組人纖溶酶原激活劑轉基因兔的制備及其表達產物的檢測. 生物技術通報, 2015, 31(10):216-221.
LU R, SONG S Z, QI Z Q, GE X, SHAO B, CHENG Y. Preparation of recombinant human plasminogen activator in rabbit mammary gland and detection of expressed products. Biotechnology Bulletin, 2015, 31(10):216-221. (in Chinese)
[29] 馬延, 郭金耀. 顯微注射人基質金屬蛋白酶-9轉基因家兔制備及在動脈粥樣硬化中的作用. 臨床和實驗醫學雜志, 2019, 18(1):24-28.
MA Y, GUO J Y. Modeling of matrix metalloproteinases-9 rabbits by DNA microinjection and its effect against atherosclerosis. Journal of Clinical and Experimental Medicine, 2019, 18(1):24-28. (in Chinese)
[30] PALMITER R D, NORSTEDT G, GELINAS R E, HAMMER R E, BRINSTER R L. Metallothionein-human GH fusion genes stimulate growth of mice. Science, 1983, 222(4625):809-814.
[31] RODRIGUEZ-DE LARA R, FALLAS-LOPEZ M, GARCIA-MUNIZ J G, MARTINEZ-HERNANDEZ P A, RANGEL-SANTOS R, MALDONADO-SIMAN E, CADENA-MENESES J A. Sexual behavior and seminal characteristics of fertile mature New Zealand White male rabbits of different body weights. Animal Reproduction Science, 2015, 152:90-98.
[32] ROCHA-MARTINS M, CAVALHEIRO G R, MATOS-RODRIGUES G E, MARTINS R A. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. Anais Da Academia Brasileira De Ciencias, 2015, 87(2):1323-1348.
Preparation and Expression ofDouble Transgenic Rabbits
SONG ShaoZheng1, YU KangYing1, ZHANG Ting2, LU Rui2, PAN ShengQiang1, CHENG Yong2, ZHOU MingMing
1School of Nursing, Wuxi Taihu University, Wuxi 214000, Jiangsu;2Jiangsu Provincial Research Center for Animal Transgenesis and Biopharming/College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu
【】The integration of the double genes is able to promote the expression level of the target genes in the transgenic organisms. The aim of this study was to obtain thedouble transgenic rabbits, and then the expression level of the target geneand the individual growth and development of these rabbits were compared and analyzed, so as to provide a new new approach for preparation of high expressiontransgenic animals and genetic breeding. 【】double enzyme digestion PCL25/GH plasmid and QIAGEN DNA gel purification kit were used to recover gene fragments for microinjection. The threesingle-transgenic rabbits (K06, K10 and K17) were used as donors. Thedouble-transgenic rabbits were obtained by FSH/hCG superovulation, pronuclear microinjection of fertilized eggs, embryo transfer, phenol / chloroform extraction of newborn rabbit’ ear tip tissue genome and PCR integrated detection. In addition, the expression levels of rhPA in single-transgenic rabbit and double-transgenic rabbit whey were compared by ELISA and Western blotting. The body weight of transgenic rabbits at different months was measured, and the effects ofon growth and development of rabbits were analyzed by body weight at growth stage. 【】The about 16 700 bp of microinjection gene fragments were successfully obtained. A total of 122 eggs were obtained from 3 donor rabbits, 103 of which were fertilized, and the fertilization rate was 84.4% (103/122). After microinjection, 81 fertilized eggs with good morphology were selected and transplanted into 6 recipient rabbits by synchronous estrus. Five rabbits were pregnant and the pregnancy rate was 83.3% (5/6). A total of 32 offspring were born at the end of pregnancy. There were 19transgenic rabbits identified by PCR, and 11 of them were thedouble transgenic rabbits (7, 4), so the double-gene integration rate was 34.4% (11/32). The fourdouble-transgenic female rabbits were derived from K06 donor rabbits (labelled K06-1 and K06-2), K10 donor rabbit (labeled K10-1) and K17 donor rabbit (labeled K17-1), respectively. The rhPA expression in single transgenic rabbit whey of No. K06 was 42.2 μg·mL-1, and the rhPA expression in the double transgenic rabbit whey of No. K06-1 and K06-2 was 432 and 444 μg·mL-1, respectively. The rhPA expression in the single transgenic rabbit whey of No. K10 was 42.8μg·mL-1, and the rhPA expression in the double transgenic rabbit whey of No. K10-1 was 636 μg·mL-1. The rhPA expression in single transgenic rabbit whey of No. K17 was 15.2μg·mL-1, and which in double transgenic rabbit whey of No. K17-1 was 248 μg·mL-1. The expression of rhPA in mammary glands of four femaledouble-transgenic rabbits (K06-1, K06-2, K10-1, and K17-1) were 248-636 μg·mL-1, which was much higher than that ofsingle-transgenic rabbits (K06, K10, K17, expression levels: 15.2-42.8μg·mL-1). That is to say, the expression level significantly increased about 10.2 to 16.3 times, and it showed thatcould synergistically promote the expression level of target genein the mammary glands of transgenic rabbits. Besides, the western blotting results showed a band of about 39.0 kDa, which was the same size as the target protein rhPA, further proving that this protein expressed in the breast of transgenic rabbits was the target product rhPA. By measuring the weight ofdouble-transgenic rabbits from their birth to 6 months continuously, it was found that the weight was no significant difference between thetransgenic rabbits and the normal non-transgenic rabbits. The growth curve was drawn to further indicate that 4 transgenic rabbits with integratedand 2 normal rabbits without integratedhad no significant difference in body weight at different stages of growth and development. The body weight for 6 months was about 4.0-5.0 kg. This proved that the introduction ofdid not have harmful influence on their survival and normal growth and development to adulthood. 【】In this experiment,double-transgenic rabbits were successfully prepared, and it has been proved that the introduction ofcould significantly increase the expression level of. Moreover, it could not affect the growth and development of transgenic rabbits. This laid a foundation for the preparation of high expression transgenic rabbits and other animals in the future, and also provided a new idea and method for the establishment of transgenic animal mammary gland bioreactors and transgenic breeding..
double transgenic rabbits; expression; superovulation; microinjection; growth curve

10.3864/j.issn.0578-1752.2021.02.016
2019-07-14;
2020-11-25
江蘇省高校自然科學基金面上項目(19KJB180030)、國家轉基因生物新品種培育重大專項 (2014ZX08008-004)
宋紹征,E-mail:ssz0610@163.com。通信作者成勇,E-mail:chengyong12@yeah.net。通信作者周鳴鳴,E-mail:zmm19770@126.com
(責任編輯 林鑒非)