胡清靜 崔正國 孟 赫 白 瑩 宋若晗 陸長坤 王宏勝 曲克明①
海洋環境中有機胺的遷移轉化研究進展*
胡清靜1,2崔正國1,2孟 赫3白 瑩1,2宋若晗1,4陸長坤1,4王宏勝1曲克明1,2①
(1. 中國水產科學研究院黃海水產研究所 農業農村部海洋漁業可持續發展重點實驗室 青島 266071; 2. 青島海洋科學與技術試點國家實驗室海洋漁業科學與食物產出過程功能實驗室 青島 266071; 3. 山東省青島生態環境監測中心 青島 266003;4. 天津農學院水產學院 天津 300384)
大氣中的有機胺具有潛在的氣候效應,這是當今國際的研究熱點之一。海洋是大氣中有機胺的重要來源,但由于海水中有機胺檢測難度較大,導致海洋環境中有機胺的產生機制尚不清楚。本文概述了海洋生物體內有機胺前體物的濃度特征及其對環境中有機胺的影響,闡述了沉積物、海水及大氣中有機胺的濃度特征,分析了海洋大氣氣溶膠中有機胺的形成途徑,并指出海水中有機胺檢測的難點及現階段亟待解決的科學問題。為深入認識海洋環境中有機胺的遷移轉化規律及其潛在氣候效應提供科學依據。
有機胺;海洋生物;鹽度;形成途徑;檢測方法
大氣中的有機胺可促進新粒子生成及顆粒物增長,進而增加云凝結核數濃度,通過改變輻射強迫對氣候變化產生潛在重要的影響(Almeida, 2013; Chen, 2016; Sellegri, 2016; Yao, 2018)。大氣中有150余種有機胺,其中,三甲胺(TMA)、二甲胺(DMA)和一甲胺(MMA)是最常見且含量最高的有機胺(Ge, 2011; Yu, 2014)。海洋是這3種有機胺的重要來源,每年向大氣中釋放80 Gg N (Ge, 2011)。有機胺還是海洋生物很重要的氮源和能量源,例如,TMA可被約占海洋水體中總細菌20%的玫瑰桿菌()降解為NH4+,同時釋放三磷酸腺苷(ATP),ATP可為該細菌提供能量,NH4+則可被其他生物利用(Lidbury, 2015);在海洋沉積物中,TMA是溫室氣體甲烷(CH4)的重要前體物之一,在含鹽環境中,35%~90%的CH4是由TMA降解而來的(Oremland, 1982; King, 1983)。但當有機胺濃度過高時,也會對生物造成危害,如在海水養殖環境中,TMA和DMA是魚類和藻類腐爛所釋放氣體(魚腥味)的重要組成部分(Chung, 2009),也是致癌物–亞硝基胺的前體物質。高濃度的TMA和DMA會抑制大分子物質(如DNA、RNA和蛋白質)的合成,對動物晶胚有致畸作用(Guest, 1992)。因此,認識海洋環境中有機胺的形成機制、濃度變化特征等對海洋生物的健康、海洋氮循環乃至全球氣候變化具有重要的意義。
有機胺主要來源于細菌或酶對甜菜堿(GBT)、氧化三甲胺(TMAO)、膽堿(CHO)等季銨化合物的降解(圖1)(Welsh, 2000; Carpenter, 2012; Lidbury, 2014; Lidbury, 2015; Lidbury, 2015a、2015b; Cree, 2015)。在海洋環境中,為了應對高鹽度(NaCl)的壓力,海洋植物、動物和微生物需要合成或吸收GBT、TMAO來調節細胞滲透壓(Carpenter, 2012; Oren, 2015; Cree, 2015; Sun, 2019)。所以,季銨化合物在海洋生物中的含量遠遠大于淡水生物。季銨化合物被玫瑰桿菌等細菌降解后會釋放出有機胺(圖1) (Carpenter, 2012; Lidbury, 2015; Lidbury, 2017)。以上大部分有機胺的形成過程主要發生在碎屑顆粒、浮游動物腸道及沉積物等厭氧環境中(Carpenter, 2012; Cree, 2015)。因此,有機胺在海洋沉積物和水體中廣泛存在。海洋沉積物或水體中有機胺的匯主要有以下3種方式:一部分通過海氣交換從海水釋放到大氣中;一部分被硅藻和鞭毛藻等浮游植物直接吸收(Cree, 2015);剩余部分被降解后最終轉化為NH4+、CH4和CO2。因此,季銨化合物及有機胺是海洋環境中很重要的碳源、氮源、能量源(Chen, 2012; Lidbury, 2015; Lidbury, 2015a; Cree, 2015; Taubert, 2017;Mausz, 2019; Sun, 2019)。

圖1 海洋環境中有機胺的產生與降解過程
國內外很多研究發現,海洋植物生物量的增加會顯著促進水體或大氣中有機胺濃度的增加(Gibb, 1999a; Facchini, 2008; Müller, 2009; Hu, 2015、2018; Yu, 2016; Dall’Osto, 2017),這主要是因為GBT和TMAO等季銨化合物廣泛存在于海洋大型植物和浮游植物等體內,GBT可占藻類干重的2% (Blunden, 1992)。這些GBT通過細胞破裂和攝食等方式釋放到環境中,在含螺旋藻(sp.)的沉積物中,GBT濃度可達100 μmol/gdw (King, 1988)。另外,de Vooys等(2002)研究發現,貝類體內也含有大量的GBT,在地中海貝類體內GBT的濃度高達30.0 g/kg。
20世紀30年代,Beatty(1938)在腐爛的魚中第1次發現了TMA,因為在魚類及軟體動物中廣泛存在有機胺的另一種重要前體物TMAO (Seibel, 2002; Summers, 2017)。TMAO占海洋生物(魚類和甲殼類等)組織干重的7% (de Vooys, 2002)。在海洋魚類體內,TMAO可應對鹽度、溫度和浮力的變化,還可增加蛋白質的穩定性(Summers, 2017)。例如,廣鹽性鯊魚從淡水轉入海水中,體內TMAO濃度顯著增加(Pillans, 2005)。廣鹽性軟骨魚隨著鹽度的減小,TMAO的濃度顯著降低(Sulikowski, 2003)。Chung等(2009)通過對香港89種(共266條)海水魚、海水和淡水兩棲魚類、淡水魚體內的TMAO分析發現,9種淡水魚中只有3種可檢測出TMAO,8種海水和淡水兩棲魚類中有6種可檢測出TMAO,而72種海水魚均可檢測出TMAO,海水魚體內TMAO的濃度范圍為(0.12~3.5) g/kg,平均濃度為(1.4±0.75) g/kg。在山東青島阿根廷魷魚()的TMAO含量為8.8 g/kg,硬骨魚TMAO的含量范圍為(0.35~2.3) g/kg,甲殼類TMAO的含量>1.7 g/kg,貝類的TMAO含量低于0.5 g/kg。因此,在不同種類動物體內TMAO的含量存在差異,例如,頭足類>甲殼類>硬骨魚類>貝類 (姜城子等, 2014)。海洋動物會通過分泌、排泄或被降解向環境中釋放TMAO (Sun, 2019)。通過宏基因組研究發現,海洋環境中含有TMAO還原酶(把TMAO降解為TMA),這說明TMAO降解產生的TMA也可能是海洋環境中TMA等有機胺的一個重要來源(Sun, 2019)。因此,海洋動物越多,海洋環境中有機胺的濃度就會越高(S?rensen, 1987)。雖然,海洋環境中有大量魚類等動物(陸堯等, 2019; 戴芳群等, 2020),但現階段關于海洋動物對海水中有機胺影響的報道較少,特別是關于海洋動物種類、數量與海水或大氣中有機胺濃度的定性或定量關系鮮有報道。

圖2 海洋植物和動物對環境中有機胺的影響示意圖
海洋生物體內的TMAO、GBT和CHO等被降解后會影響環境中有機胺的濃度(圖2)。Mausz等(2019)和Sun等(2019)對海水及沉積物空隙水中有機胺的濃度做了詳細總結,一般情況下,1 L海水中有機胺的濃度為納摩爾級,其濃度較低,所以檢測難度較大,1 L沉積物的孔隙水中有機胺的濃度較1 L海水中高1~3個數量級(微摩爾級)。例如,在英國默爾塞河口沉積物的孔隙水中MMA、DMA和TMA的最高濃度分別是319、9和50 μmol/L (Mausz, 2019)。由于沉積物中的有機質可吸附有機胺,所以,沉積物中有機胺的濃度也較高(Wang, 1990; Wang, 1994)。例如,在泰晤士河口沉積物中3種有機胺的濃度之和可達26 μmol/g (Fitzsimons, 2006)。
一般情況下,海洋大氣中顆粒態有機胺鹽的濃度是皮克至納克級(Cree, 2015; van Pinxteren, 2019)。例如,阿拉伯海大氣PM1.0(空氣動力學直徑≤1.0 μm的顆粒物)中TMA+和DMA+的濃度范圍為(0.02~0.9)和(1.0~17.1) ng/m3(Gibb, 1999b);van Pinxteren等(2019) 2011~2013年在熱帶大西洋的佛得角島進行觀測,發現PM1.0中MMA+和DMA+的濃度范圍為(0~0.6)和(2.2~13.0) ng/m3;地中海東部克里特島大氣PM1.0中DMA+的平均濃度為(9.0±36.1) ng/m3,但是TMA+濃度低于檢測限(Violaki, 2010);北大西洋(愛爾蘭西海岸)大氣PM8.0中DMA+的濃度<(1.0~ 24.0) ng/m3(Facchini, 2008);我國近海大氣PM10(或PM0.056~10)中DMA+和TMA+的平均濃度范圍為(0~49.5)和(6.5~44.9) ng/m3(Yu, 2016; Xie, 2018; Hu, 2018; Zhou, 2019),而PM0.1中DMA+和TMA+的濃度范圍分別是(0.0~5.4)和(2.7~ 19.5) ng/m3(Yu, 2016)。這說明我國近海大氣中有機胺鹽的濃度比世界上大部分其他海域高,特別是2012年5月PM11中有機胺鹽濃度甚至比世界其他海域高1~3個數量級(Hu, 2015),如此高濃度有機胺可能具有很重要的氣候效應,但其形成原因有待近一步確認。
目前,國際上對海洋大氣氣溶膠中有機胺鹽的形成途徑存在爭議。國際主流觀點認為,海水中有機胺通過海氣交換進入大氣中,一部分以氣態形式存在,另一部分氣體再通過大氣化學反應形成二次有機胺鹽(即來自二次源)(Gibb, 1999b; Facchini, 2008; Müller, 2009; Myriokefalitakis, 2010; K?llner, 2017; Willis, 2017)。例如,Müller等(2009)研究發現,海洋大氣氣溶膠中高濃度的有機胺鹽主要分布在(0.14~0.42) μm粒徑段上,Facchini等(2008)研究發現,海洋大氣氣溶膠中高濃度的有機胺鹽主要分布在(0.25~0.50) μm粒徑段上,并且與二次生成的NH4+、SO42–和甲基磺酸鹽(MSA–)的粒徑分布相似,認為該大氣氣溶膠中有機胺鹽是二次生成的。通過對2012~2016年從我國近海到西北太平洋10多個航次分析發現,大氣氣溶膠中的DMA+和TMA+主要分布在(0.20±0.10)、(0.40±0.10)和(0.80±0.20) μm等的粒徑段上,推測這些有機胺鹽也是來自二次源(Hu, 2015; Yu, 2016; Xie, 2018)。
但是,Frossard等(2014)在開闊大洋的一次源有機氣溶膠中檢測出了有機胺官能團;Gorzelska等(1990)推測,在大風浪天氣條件下,富含有機胺的海洋表層物質可能會隨著海鹽氣溶膠被傳輸到大氣中,從而導致大氣氣溶膠中有機胺鹽濃度升高;Hu等(2018)在2014年春季對西北太平洋大氣氣溶膠中有機胺鹽進行分析發現,該區域有機胺鹽的平均濃度比近海高1個數量級,TMA+濃度最高(4.4 nmol/m3)的樣品是在風速最高時(14 m/s)被檢測到,并且絕大部分樣品中TMA+的粒徑分布與最高濃度樣品的相似,即:大氣氣溶膠中TMA+的濃度隨粒徑的減小逐漸升高(Hu, 2018)。Hu等(2017)研究發現,當風速>5.4 m/s時,西北太平洋水體中的有機質和細菌可能會通過海洋飛沫氣溶膠被傳輸到大氣中,并且海洋飛沫氣溶膠中有機質的豐度會隨粒徑的減少而增加(Gantt, 2013; Quinn, 2014、2015)。另外,國際上很多專家通過室內海洋飛沫氣溶膠模擬實驗,也發現海水中有機質主要富集在亞微米大氣氣溶膠上(Quinn, 2015; Hultin, 2010; Rastelli, 2017)。因此,Hu等(2018)推測,在高風速條件下,海水中的TMA+隨海洋飛沫被直接傳輸到大氣中(即來自一次源)。Dall’Osto等(2019)研究顯示,大氣氣溶膠中一次源有機胺鹽占總有機胺鹽的11%~25%。總體來說,現階段關于一次源有機胺鹽對總有機胺鹽占比的報道仍然較少。
現階段,國際上關于海洋生物體內有機胺前體物濃度、大氣中有機胺濃度的報道相對較多,但由于海水中有機胺濃度較低(nmol/L級),且MMA、DMA和TMA具有易溶于水、極性強和易揮發等特點,一直以來海水中有機胺的檢測具有較大的挑戰(Carpenter, 2012; Cree, 2015; Sun, 2019),從而也限制了對海洋環境中有機胺遷移轉化規律的認識。目前,海水中有機胺的檢測主要分為3個關鍵的階段:預濃縮階段、分離階段和檢測階段。預濃縮所用的前處理裝置主要有:固相微萃取(SPME)、頂空固相微萃取(HS-SPME)和吹掃捕集裝置(P&T)等。分離和檢測階段主要是由離子色譜(IC)或氣相色譜儀(GC)等組合不同檢測器完成(Cree, 2015)。
采用IC可檢測大氣中有機胺的濃度(Hu, 2015、2018; Yu, 2016; Xie, 2018),但由于有機胺分析柱承載不了海水中高濃度的Na+,導致海水中有機胺不能直接在IC上測試(Ferreira, 2017)。Ferreira等(2017)通過向P&T裝置中加入NaOH,把含鹽水體中有機胺揮發出來,再進行濃縮,最后進入IC測試。但P&T-IC方法對有機胺檢測的靈敏度較低,且在吹掃捕集的捕集阱內會存在嚴重殘留,且捕集阱內裝填的吸附劑種類不同其吸附性能差異也較大(中華人民共和國國家標準HJ 1042-2019),也不適合對海水中低濃度有機胺的濃縮。Gibb等(1995)采用流動注入氣體擴散(FIGD)裝置與IC結合可很好地測試海水中的有機胺。但由于FIGD比較復雜,近20年來該方法未得到廣泛地應用(Cree, 2015)。
GC對有機胺檢測的靈敏度較高(Huang, 2014)。國內外很多專家采用GC結合不同檢測器來測定大氣、水體、孔隙水和沉積物中的有機胺,如氣相色譜儀?質譜儀(GC-MS)、氣相色譜儀?火焰檢測器(GC-FID)和氣相色譜儀?氮磷檢測器(GC-NPD)(Cree, 2015)。采用該儀器檢測大氣中有機胺的方法與水體的大體相似。基本原理是把大氣采樣膜或沉積物中的有機胺萃取到水體中,然后,通過衍生或把有機胺揮發、再濃縮后進行測試。但GC-MS只能測DMA+或TMA+中的1種(Liu, 2017; Zhuang, 2017、2018),很難實現DMA+和TMA+的同步檢測(Cree,2018)。GC-FID和GC-NPD可同步檢測以上2種有機胺。與GC-FID相比,GC-NPD對海水中有機胺的靈敏度會更高(Cree, 2015)。Cree等(2018)研究顯示,可采用SPME-GC-NPD檢測海水中的TMA+、DMA+和MMA+,檢測限可達(0.4~2.9) nmol/L。雖然,該方法也存在一些不足之處,如該前處理方法耗時較長、分析較低濃度樣品時可能會存在實驗誤差等(Sun, 2019),但相比較而言,目前,該方法是國際上檢測海水中有機胺比較有效的方法之一。
綜上所述,雖然目前國內外對海洋生物體內有機胺前體物的濃度、降解這些前體物的優勢細菌及大氣中有機胺的潛在氣候效應等方面開展了一定的研究,但海洋環境中有機胺的遷移轉化規律還不清楚,還有許多問題需要解決,具體體現在以下幾點:
(1)海洋生物對環境中有機胺的貢獻。系統分析不同種類浮游植物、動物體內有機胺前體物的濃度分布特征;闡明這些前體物在食物鏈上的傳遞規律;鑒定天然海域中把這些前體物降解為有機胺的優勢細菌;通過計算海洋生物量與環境中有機胺濃度的比值,估算海洋生物對環境中有機胺的貢獻。
(2)海水中有機胺向大氣中傳輸的影響機制。通過利用在線離子色譜獲取高時空分辨率的氣態和顆粒態有機胺數據,解析溫度、相對濕度和風速等氣象因子對它們從海水向大氣中傳輸的影響。
(3)我國近海高濃度有機胺的來源解析。我國近海不僅藻華和綠潮等災害頻發,同時,還進行著大規模的海水養殖。通過現場觀測,進一步解析我國近海大量的浮游植物和養殖動物對我國近海大氣中高濃度有機胺的貢獻。
(4)海水中有機胺檢測方法的建立。目前,GC-NPD是一種有效分離3種有機胺的檢測方法,但采用SPME濃縮海水中有機胺的方法還存在一定的不足,未來通過研發更好的海水中有機胺的提取方法,再結合GC-NPD實現海水中有機胺的檢測。從而進一步闡明有機胺在海洋生物、水體和大氣中的遷移轉化規律,以提升對海洋大氣中有機胺潛在氣候效應的認識。
Almeida J, Schobesberger S, Kürten A,. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature, 2013, 502(7471): 359–363
Beatty SA. Studies of fish spoilage:Ⅱ. The origin of trimethylamine produced during the spoilage of cod muscle press juice. Journal of the Fisheries Research Board of Canada, 1938, 4a(2): 63–68
Blunden G, Smith BE, Irons MW,Betaines and tertiary sulphonium compounds from 62 species of marine algae. Biochemical Systematics and Ecology, 1992, 20(4): 373– 388
Carpenter LJ, Archer SD, Beale R. Ocean-atmosphere trace gas exchange. Chemical Society Reviews, 2012, 41(19): 6473–6506
Chen HH, Varner ME, Gerber RB,. Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air. Journal of Physical Chemistry B, 2016, 120(8): 1526–1536
Chen Y. Comparative genomics of methylated amine utilization by marineclade bacteria and development of functional gene markers (). Environmental Microbiology, 2012, 14(9): 2308–2322
Chung SWC, Chan BTP. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Additives and Contaminants Part B Surveillance, 2009, 2(1): 44–51
Cree C. Distributions of glycine betaine and the methylamines in coastal waters: Analytical developments and a seasonal study. Doctoral Dissertation of Plymouth University, 2015
Cree CHL, Airs R, Archer SD,. Measurement of methylamines in seawater using solid phase microextraction and gas chromatography. Limnology and Oceanography: Methods, 2018, 16(7): 411420
Dai FQ, Zhu L, Chen YL. Variations of fishery resource structure in the Yellow Sea and East China Sea. Progress in Fishery Sciences, 2020, 41(1): 1–10 [戴芳群, 朱玲, 陳云龍. 黃、東海漁業資源群落結構變化研究. 漁業科學進展, 2020, 41(1): 1–10]
Dall'Osto M, Airs RL, Beale R,. Simultaneous detection of alkylamines in the surface ocean and atmosphere of the Antarctic sympagic environment. ACSEarth and Space Chemistry, 2019, 3(5): 854–862
Dall'Osto M, Ovadnevaite J, Paglione M,. Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports, 2017, 7(1): 6047
de Vooys CGN, Geenevasen JAJ. Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean musselLMK. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, 132(2): 409–414
de Vooys CGN. Occurrence and role of a Quaternary base, trimethylamine oxide, in two cockle species,and. Journal of Sea Research, 2002, 47(1): 69–73
Facchini MC, Decesari S, Rinaldi M,. Important source of marine secondary organic aerosol from biogenic amines. Environmental Science and Technology, 2008, 42(24): 9116–9121
Ferreira FN, Afonso JC, Pontes FVM,. Ultrasound-assisted purge-and-trap extraction for simultaneous determination of low-molecular weight amines and ammonium in high salinity waters by ion chromatography. Microchemical Journal, 2017, 133: 658662
Fitzsimons MF, Millward GE, Revitt DM,. Desorption kinetics of ammonium and methylamines from estuarine sediments: Consequences for the cycling of nitrogen. Marine Chemistry, 2006, 101(1–2): 12–26
Frossard AA, Russell LM, Burrows SM,. Sources and composition of submicron organic mass in marine aerosol particles. Journal of Geophysical Research Atmospheres, 2014, 119(22): 12977–13003
Gantt B, Meskhidze N. The physical and chemical characteristics of marine primary organic aerosol: A review. Atmospheric Chemistry and Physics, 2013, 13(8): 3979–3996
Ge X, Wexler AS, Clegg SL. Atmospheric amines-Part I. A review. Atmospheric Environment, 2011, 45(3): 524–546
Gibb SW, Mantoura RFC, Liss PS,. Distributions and biogeochemistries of methylamines and ammonium in the Arabian Sea. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 1999a, 46(3–4): 593–615
Gibb SW, Mantoura RFC, Liss PS. Analysis of ammonia and methylamines in natural waters by flow injection gas diffusion coupled to ion chromatography. Analytica Chimica Acta, 1995, 316(3): 291–304
Gibb SW, Mantoura RFC, Liss PS. Ocean-atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea. Global Biogeochemical Cycles, 1999b, 13(1): 161–178
Gorzelska K, Galloway JN. Amine nitrogen in the atmospheric environment over the North Atlantic Ocean. Global Biogeochemical Cycles, 1990, 4(3): 309–333
Guest I, Varma DR. Teratogenic and macromolecular synthesis inhibitory effects of trimethylamine on mouse embryos in culture. Journal of Toxicology and Environmental Health, 1992, 36(1): 27–41
Hu QJ, Qu KM, Gao HW,. Large increases in primary trimethylaminium and secondary dimethylaminium in atmospheric particles associated with cyclonic eddies in the Northwest Pacific Ocean. Journal of Geophysical Research: Atmospheres, 2018, 123(21): 12133–12146
Hu QJ, Yu PR, Zhu YJ,. Concentration, size distribution and formation of trimethylaminium and dimethylaminium ions in atmospheric particles over marginal seas of China. Journal of the Atmospheric Sciences, 2015, 72: 3487–3498
Hu W, Murata K, Fukuyama S,. Concentration and viability of airborne bacteria over the Kuroshio extension region in the northwestern Pacific Ocean: Data from three cruises. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12892–12905
Huang RJ, Li WB, Wang YR,. Determination of alkylamines in atmospheric aerosol particles: A comparison of gas chromatography-mass spectrometry and ion chromatography approaches. Atmospheric Measurement Techniques, 2014, 7(7): 2027–2035.
Hultin KAH, Nilsson ED, Krejci R,. In situ laboratory sea spray production during the marine aerosol production 2006 cruise on the northeastern Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 2010, 115, D06201
Jiang CZ, Cui J, Zhou MM,. Determination of trimethylamine-N-oxide content in common aquatic products in Qingdao. Journal of Food Safety and Quality, 2014(1): 41–46 [姜城子, 崔潔, 周苗苗, 等. 青島地區部分水產品中氧化三甲胺含量的測定. 食品安全質量檢測學報. 2014(1): 41–46]
King GM, Klug MJ, Lovley DR. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Applied and Environmental Microbiology, 1983, 45(6): 1848–1853
King GM. Methanogenesis from methylated amines in a hypersaline algal mat. Applied and Environmental Microbiology, 1988, 54(1): 130–136
K?llner F, Schneider J, Willis MD,. Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere. Atmospheric Chemistry and Physics, 2017, 17(22): 13747–13766
Lidbury I, Kimberley G, Scanlan DJ,Comparative genomics and mutagenesis analyses of choline metabolism in the marine. Environmental Microbiology, 2015a, 17(12): 5048–5062
Lidbury I, Mausz MA, Scanlan DJ,. Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway. ISME Journal, 2017, 11(7): 1592–1601
Lidbury I, Murrell JC, Chen Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(7): 2710–2715
Lidbury I. Microbial methylated amine metabolism in marine surface waters. Doctoral Dissertation of University of Warwick, 2015
Lidbury I, Murrell JC, Chen Y. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: Implications for marine carbon and nitrogen cycling. ISME Journal, 2015b, 9(3): 760–769
Liu FX, Bi XH, Zhang GH,. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. Atmospheric Environment, 2017, 171: 279–288
Lu Y, Chen XJ, Wang JT,. Dynamics of suitable habitat ofin the Northwest Pacific Ocean. Progress in Fishery Sciences, 2019, 40(5): 19–25 [陸堯, 陳新軍, 汪金濤, 等. 西北太平洋柔魚適宜棲息地動態變化研究. 漁業科學進展. 2019, 40(5): 19–25]
Mausz MA, Chen Y. Microbiology and ecology of methylated amine metabolism in marine ecosystems. Current Issues in Molecular Biology, 2019, 33: 133–148
Müller C, Iinuma Y, Karstensen J,. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmospheric Chemistry and Physics, 2009, 9(4): 9587–9597
Myriokefalitakis S, Vignati E, Tsigaridis K,. Global modeling of the oceanic source of organic aerosols. Advances in Meteorology, 2010(4): 1–16
Oremland RS, Marsh LM, Polcin S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature, 1982, 296(5853): 143–145
Oren A. Cyanobacteria in hypersaline environments: Biodiversity and physiological properties. Biodiversity and Conservation, 2015, 24(4): 781–798
Pillans RD, Good JP, Anderson WG,. Freshwater to seawater acclimation of juvenile bull sharks (): Plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine. Journal of Comparative Physiology B, 2005, 175(1): 37–44
van Pinxteren M, Fomba KW, van Pinxteren D,. Aliphatic amines at the Cape Verde Atmospheric Observatory: Abundance, origins and sea-air fluxes. Atmospheric Environment, 2019, 203: 183–195
Quinn PK, Bates TS, Schulz KS. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nature Geoscience, 2014, 7(3): 228–232
Quinn PK, Collins DB, Grassian VH,. Chemistry and related properties of freshly emitted sea spray aerosol. Chemical Reviews, 2015, 115(10): 4383–4399
Rastelli E, Corinaldesi C, Dell’Anno A,. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: An experimental approach. Scientific Reports, 2017, 7(1): 11475
Seibel BA, Walsh PJ. Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. Journal of Experimental Biology, 2002, 205(3): 297–306
Sellegri K, Pey J, Rose C,. Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms. Geophysical Research Letters, 2016, 43(12): 6596–6603
S?rensen J, Glob E. Infuence of benthic fauna on trimethylamine concentrations in coastal marine sediments. Marine Ecology Progress Series, 1987, 39: 15–21
Sulikowski JA, Treberg JR, Howell WH. Fluid regulation and physiological adjustments in the winter skate,, following exposure to reduced environmental salinities. Environmental Biology of Fishes, 2003, 66(4): 339–348
Summers G, Wibisono RD, Hedderley DI,. Trimethylamine oxide content and spoilage potential of New Zealand commercial fish species. New Zealand Journal of Marine and Freshwater Research, 2017, 51(3): 393–405
Sun J, Mausz MA, Chen Y,. Microbial trimethylamine metabolism in marine environments. Environmental Microbiology, 2019, 21(2): 513–520
Taubert M, Grob C, Howat AM,. Methylamine as a nitrogen source for microorganisms from a coastal marine environment. Environmental Microbiology, 2017, 19(6): 2246–2257
Violaki K, Mihalopoulos N. Water-soluble organic nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean. Atmospheric Environment, 2010, 44(35): 4339–4345
Wang XC, Lee C. Sources and distribution of aliphatic amines in salt marsh sediment. Organic Geochemistry, 1994, 22(6): 1005–1021
Wang XC, Lee C. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments. Geochimica et Cosmochimica Acta, 1990, 54(10): 2759– 2774
Welsh DT. Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. FEMS Microbiology Reviews, 2000, 24(3): 263–290
Willis MD, K?llner F, Burkart J,. Evidence for marine biogenic influence on summertime Arctic aerosol. Geophysical Research Letters, 2017, 44(12): 6460–6470
Xie H, Feng LM, Hu QJ,. Concentration and size distribution of water-extracted dimethylaminium and trimethylaminium in atmospheric particles during nine campaigns-Implications for sources, phase states and formation pathways. Science of the Total Environment, 2018, 631–632: 130–141
Yao L, Garmash O, Bianchi F,. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361(6399): 278–281
Yu F, Luo G. Modeling of gaseous methylamines in the global atmosphere: Impacts of oxidation and aerosol uptake. Atmospheric Chemistey and Physics, 2014, 14(22): 12455– 12464
Yu PR, Hu QJ, Kai L,. Characteristics of dimethylaminium and trimethylaminium in atmospheric particles ranging from supermicron to nanometer sizes over eutrophic marginal seas of China and oligotrophic open oceans. Science of the Total Environment, 2016, 572: 813–824
Zhou SQ, Li HW, Yang TJ,. Characteristics and sources of aerosol aminiums over the eastern coast of China: Insights from the integrated observations in a coastal city, adjacent island and surrounding marginal seas. Atmospheric Chemistry and Physics, 2019, 19(16): 10447–10467
Zhuang GC, Heuer VB, Lazar CS,. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochimica et Cosmochimica Acta, 2018, 224: 171–186
Zhuang GC, Lin YS, Bowles MW,. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Marine Chemistry, 2017, 196: 35–46
Advancements in the Transport and Transformation of Amines in the Marine Environment
HU Qingjing1,2, CUI Zhengguo1,2, MENG He3, BAI Ying1,2, SONG Ruohan1,4, LU Changkun1,4, WANG Hongsheng1, QU Keming1,2①
(1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071; 3. Qingdao Eco-Environment Monitoring Center of Shandong Province, Qingdao 266003; 4. Department of Fishery Science, Tianjin Agricultural University, Tianjin 300384)
In the atmosphere, amines play potentially important roles in climatechange, which is a hot spot of the current international research. The ocean is an important source of amines in the atmosphere; however, the mechanism of the formation of amines in the environment has not been elucidated due to the difficulty of detecting amines in seawater. This article outlines the concentration characteristics of amine precursors in marine organisms and their impact on amines in the marine environment; summarizes the concentration characteristics of amines in sediments, seawater, and the atmosphere; analyzes the formation pathway of amines in marine atmospheric particles; and identifies the difficulties in the detection of amines in seawater and the related problems that need urgent attention. This study provides insights into the transport and transformation of amines in the marine environment and the resulting climatic effects on the marine atmosphere.
Amines; Marine organisms; Salinity; Formation pathways; Detection methods
QU Keming, E-mail: qukm@ysfri.ac.cn
P76
A
2095-9869(2021)02-0184-08
10.19663/j.issn2095-9869.20200509002
http://www.yykxjz.cn/
胡清靜, 崔正國, 孟赫, 白瑩, 宋若晗, 陸長坤, 王宏勝, 曲克明. 海洋環境中有機胺的遷移轉化研究進展. 漁業科學進展, 2021, 42(2): 184–191
Hu QJ, Cui ZG, Meng H, Bai Y, Song RH, Lu CK, Wang HS, Qu KM. Advancements in the transport and transformation of amines in the marine environment. Progress in Fishery Sciences, 2021, 42(2): 184–191
* 國家自然科學基金青年基金(41606097)、中國水產科學研究院黃海水產研究所基本科研業務費(20603022020006;2020TD12)和國家重點研發計劃項目(2019YFD0900500; 2019YFD0901401)共同資助 [This work was supported by Youth Program of National Natural Science Foundation of China (41606097), Central Public-Interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022020006; 2020TD12), and National Key Research and Development Program of China (2019YFD0900500; 2019YFD0901400)]. 胡清靜,E-mail: huqj@ysfri.ac.cn
曲克明,研究員,E-mail: qukm@ysfri.ac.cn
2020-05-09,
2020-07-03
(編輯 馬璀艷)