999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

OSCILLATION OF THIRD-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS??

2021-01-19 11:18:18JianliYaoXiaopingZhangJiangboYu
Annals of Applied Mathematics 2020年4期

Jianli Yao,Xiaoping Zhang,Jiangbo Yu

(School of Science,Shandong Jianzhu University,Ji’nan 250101,Shandong,PR China)

Abstract

Keywords nonlinear differential equation;delay;third-order;oscillation

1 Introduction

for any T≥Ty.In the sequel,we assume that(1.1)possesses such a solution.

As is customary,a solution y(t)of(1.1)is called oscillatory if it has arbitrary large zeros on[Ty,∞).Otherwise,it is called nonoscillatory.Equation(1.1)is said to be oscillatory if all its solutions oscillate.

For the sake of brevity,we define the operators

2 Main Results

As usual,all functional inequalities considered in this paper are supposed to hold eventually,that is,they are satisfied for all t large enough.

Without loss of generality,we need only to consider eventually positive solutions of(1.1).

The following lemma on the structure of possible nonoscillatory solutions of(1.1)plays a crucial role in the proofs of the main results.

Remark 2.1 Let α1= α2=1,Theorem 2.1 is reduced to[1,Theorem 1].

Remark 2.2 It is obvious that any nonoscillatory solution in Theorem 2.1 satisfies either case(1)or case(2)in Lemma 2.1.

Next,we formulate some additional information about the monotonicity of solutions that satisfy case(2).

Lemma 2.2 Assume(H1)-(H4).Let y satisfy case(2)in Lemma 2.1 on[t1,∞)for some t1≥t0,and define a function

Setting u=τ(t)in(2.20),we get a contradiction with(2.16).

Finally,by noting that(2.1)is necessary for the validity of(2.15),it follows immediately from Remark 2.2 that cases(3)and(4)are impossible.The proof is complete.

Remark 2.4 Let α1= α2=1,Theorem 2.2 is reduced to[1,Theorem 2].

The following result is a simple consequence of Theorem 2.2 and Corollary 2.1.

Theorem 2.3 Assume(H1)-(H4).If α1α2=1,(2.10)and(2.15)hold,then all positive solutions of(1.1)satisfy(2.14)for any k>0 and t large enough.

Next,we provide a result which can serve as alternatives to Theorem 2.2.

Taking limsup on both sides of the above inequality,we get a contradiction with(2.21).

We repeat the same steps as those of case(2).To show that cases(3)and(4)are impossible,it is sufficient to note that(2.2)is necessary for the validity of(2.21).The rest of proof proceeds in the same manner as that of Theorem 2.1.The proof is complete.

Remark 2.5 Let α1= α2=1,Theorem 2.4 is reduced to[1,Theorem 4].

Example 2.1 Consider the third-order delay differential equation

It is easy to verify that the condition(2.1)is satisfied.Using Theorem 2.1,we obtain that equation(2.23)has property A.

Example 2.2 Consider the third-order delay differential equation

respectively.Using Theorem 2.2,equation(2.24)is oscillatory if both(2.25)and(2.26)hold.

Acknowledgements The authors would like to express their highly appreciation to the reviewers for their valuable suggestions.

主站蜘蛛池模板: 亚洲综合精品第一页| 久久亚洲国产最新网站| 全裸无码专区| 国产精品自拍露脸视频| 一级香蕉人体视频| 中文精品久久久久国产网址 | 亚洲福利片无码最新在线播放| 久久免费看片| 一区二区午夜| 秋霞一区二区三区| 四虎精品国产永久在线观看| 欧美色亚洲| 中文字幕欧美日韩高清| 精品一区二区三区水蜜桃| 久久精品一卡日本电影| 99九九成人免费视频精品| 丁香婷婷久久| 在线观看无码av五月花| 九九九精品成人免费视频7| 亚洲国产综合精品中文第一| 日韩欧美中文| 国产va视频| 成人免费视频一区二区三区 | 欧美曰批视频免费播放免费| 免费a在线观看播放| 夜夜高潮夜夜爽国产伦精品| 日本国产精品| 毛片一区二区在线看| 久久精品无码一区二区国产区| 欧美亚洲第一页| 成人日韩欧美| 午夜影院a级片| 亚洲中文字幕23页在线| 欧美h在线观看| 国产尤物jk自慰制服喷水| 亚洲精品少妇熟女| 中国精品久久| 成人午夜网址| 午夜a级毛片| 在线观看国产小视频| 亚洲天堂.com| 天堂在线www网亚洲| 澳门av无码| 色爽网免费视频| 精品一区国产精品| 精品国产成人国产在线| 欧美激情综合| 国产欧美在线观看一区| 五月天天天色| 呦系列视频一区二区三区| 国产精品毛片在线直播完整版| 国产亚洲视频中文字幕视频| 久热中文字幕在线观看| 手机在线免费不卡一区二| 中文国产成人精品久久一| 2021亚洲精品不卡a| 超碰91免费人妻| 国产欧美中文字幕| 国产精品网址你懂的| 亚洲日本在线免费观看| 伊人久热这里只有精品视频99| 999精品色在线观看| av一区二区三区高清久久| 欧美日韩亚洲国产主播第一区| 在线观看亚洲精品福利片| 国产乱人伦偷精品视频AAA| 国产激爽大片高清在线观看| 亚洲欧洲天堂色AV| 日韩无码黄色| 91免费国产高清观看| 国产小视频a在线观看| 无码专区国产精品一区| 久久男人视频| 91人妻在线视频| 91av国产在线| 久青草免费在线视频| 国产激情无码一区二区免费| 欧美成人怡春院在线激情| 国产精品女熟高潮视频| 国产精品亚欧美一区二区| а∨天堂一区中文字幕| 亚洲性色永久网址|