999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

EXISTENCE OF UNBOUNDED SOLUTIONS FOR A n-TH ORDER BVPS WITH A p-LAPLACIAN??

2021-01-19 11:18:10GaoshengYanHairongLianXinyuFangYueGao
Annals of Applied Mathematics 2020年4期

Gaosheng Yan,Hairong Lian,Xinyu Fang,Yue Gao

(School of Science,China University of Geosciences,Beijing,100083,PR China)

Abstract

Keywords p-Laplacian;upper solutions;lower solutions;infinite interval;degree theory

1 Introduction

This paper discusses the n-th differential equation with a p-Laplacian operator on the infinite interval

with the Sturm-Liouville boundary conditions:

In recent years,the p-Laplacian boundary value problem attracted considerable attention due to their application in mechanics,astrophysics and frequent appearance in the classical electrical.The existence of the solutions,positive or multiple ones have been discussed by using the upper and lower solution method,the fixed point theory,the shooting method,the critical point theory.See[2,4,13-20]for high order boundary value problems.In[2],John R.Graef et al.considered the higher order ?-Laplacian BVP with the generalized Sturm-Liouville boundary condition

[16,17]considered even order differential equations,[14,18]studied multi-point BVPs.For differential equations with Laplace operator,some scholars have explored them on unbounded domains,but just for first or second order(see[3-8]).

Inspired by the above works,we intend to use the upper and lower solution method to solve the higher order differential equation with p-Laplacian operator on the infinite interval.Here,the compactness of the infinite interval is worth attention.We assume problem(1.1)with(1.2)exists a pair of upper and lower solutions and the nonlinear function f satisfies a Nagumo condition.Through using the truncation method and upper and lower solution method,we give a priori boundary of the truncation problem.Then the Sch¨ader fixed point theorems guarantee the existence of the solution of problem(1.1)with(1.2).On this basis,by assuming that there are two pairs of upper and lower solutions,the existence of multiple solutions is discussed.In the last part,two examples are included to illustrate the main results in this paper.This work is done to show how the method of upper and lower solution can be used to establish the existence of unbounded solutions of p-Laplacian model on an infinite interval.

2 Preliminaries

3 The Existence Results

Our existence theory is based on the theory of unbounded upper and lower solution.Here we list some assumptions for convenience.

Hence,T is continuous.

3.T:X→X is compact.

T is compact if it maps bounded subsets of X into relatively compact sets.Let? be any bounded subset of X,then there exist r2,M >0,such that,for any u∈?,‖u‖≤r2and|vu(t)|≤M(1+t),|v′u(t)|≤M,t∈[0,+∞).For any u∈?,we have

If not,we assume that

So,by(3.1),we have u(n?2)(0)= α(n?2)(0),and by(1.2),there is u(n?1)(t) ≥α(n?1)(t).Hence,

which contradicts(2.1).Thus,B+au(n?1)(0)≥ α(n?2)(0).By the same method,we can show that B+au(n?1)(0)≤ β(n?2)(0).The proof is complete.

4 The Multiplicity Results

Assuming two pairs of upper and lower solutions,we can obtain at least three solutions of such infinite interval problems.

Theorem 4.1 Suppose that the following conditions hold:

(H4)The BVP(1.1)with(1.2)has two pairs of upper and lower solutions βj,αj,j=1,2,in X,with α2,β1strict ones,and

for i=0,1,···,n?2,t∈ [0,+∞)and f ∈ C([0,+∞)×Rn,R)satisfies Nagumo condition with respect to α1and β2.

Suppose further that conditions(H2)and(H3)hold,with α and β being replaced by α1and β2.Then problem(1.1)with(1.2)has at least three solutions u1,u2and u3satisfying

Proof Define the truncated function F1the same as Fuin Theorem 3.1 with α and β being replaced by α1and β2respectively.Consider the following modified differential equation

with boundary condition(1.2).

Define a mapping T1:X→X the same as T in(3.4)except changing Futo F1.Similarly,T1is completely continuous.By using degree theorem,T1has at least three fixed points,which are the solutions of problem(4.1)with(1.2).

5 Examples

主站蜘蛛池模板: 色综合天天视频在线观看| 激情爆乳一区二区| 国产JIZzJIzz视频全部免费| jizz国产在线| 91久久偷偷做嫩草影院| 国产99在线观看| 国产欧美精品午夜在线播放| 亚洲性影院| 亚洲天堂免费观看| 日本精品中文字幕在线不卡| 在线观看视频一区二区| 国产在线视频欧美亚综合| 亚洲欧州色色免费AV| 欧美一级黄片一区2区| 国产玖玖玖精品视频| 久久国产精品娇妻素人| 久久无码av一区二区三区| 国产av一码二码三码无码| 久久综合九色综合97网| 小说区 亚洲 自拍 另类| 成人一区在线| 欧美精品一区二区三区中文字幕| 亚洲无码91视频| 她的性爱视频| 国产免费高清无需播放器 | 国产99热| 五月天婷婷网亚洲综合在线| 国产精品欧美在线观看| 狠狠综合久久久久综| 有专无码视频| 91麻豆精品视频| 国产成人无码久久久久毛片| 国产在线观看人成激情视频| 老色鬼久久亚洲AV综合| 毛片免费视频| 波多野结衣无码中文字幕在线观看一区二区| 国产一区成人| 性色一区| jizz国产在线| 伊人国产无码高清视频| 日韩无码黄色网站| 亚洲中文字幕手机在线第一页| 国产成人免费手机在线观看视频| 国产精品久久自在自2021| 97se亚洲综合在线| 99青青青精品视频在线| 欧美中文字幕一区二区三区| 日韩久草视频| 91精品啪在线观看国产91| 99精品国产高清一区二区| 免费jjzz在在线播放国产| 99九九成人免费视频精品 | 天堂成人在线| 亚洲中文字幕久久无码精品A| 国产精品流白浆在线观看| 中文毛片无遮挡播放免费| 中日无码在线观看| 亚洲大尺度在线| 欧美国产另类| 国产免费福利网站| 精品久久久久久成人AV| 成人噜噜噜视频在线观看| 二级特黄绝大片免费视频大片| 国产亚洲精| 亚洲国产精品日韩欧美一区| 伊人久久大香线蕉综合影视| 日韩av电影一区二区三区四区| 国内精品视频在线| 找国产毛片看| 亚洲一级毛片在线观播放| 国产毛片不卡| 国产手机在线ΑⅤ片无码观看| 97av视频在线观看| 999国产精品| 日韩毛片在线播放| 欧美日韩在线国产| 亚洲天堂网视频| 欧美成人日韩| 毛片久久网站小视频| 亚洲不卡影院| 99热这里只有精品2| 成人久久18免费网站|