吳彩清?余敏斌?楊揚帆



【摘要】藥物智能控釋系統又稱刺激-響應型藥物控釋系統,是近年藥物劑型研究的熱點,通過外加磁場、超聲波、光等刺激,以及溫度、酸堿度等控制,結合相應的高分子材料,達到藥物的靶向、實時可控、定量定向給藥。眼部的藥物智能控釋系統研究起步較晚,目前主要仍為基于原位凝膠給藥體系的控釋系統,其他如磁場、超聲、光等外加刺激控釋系統仍在起步階段。精準的靶向治療是醫學發展的必然要求,因此藥物精準控釋也是未來較為理想的給藥方式。本文綜述眼部的藥物智能控釋研究,為眼部給藥研究提供參考。
【關鍵詞】眼部;刺激-響應型;藥物控釋
Research progress on intelligent controlled drug release system for ophthalmic drug Wu Caiqing, Yu Minbin, Yang Yangfan. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510623, China
Corresponding author, Yang Yangfan, E-mail: yangyangfan@ gzzoc. com
【Abstract】The intelligent controlled drug release system, also known as the stimulus-responsive drug release system, has become a hotspot in the research of pharmaceutical dosage form in recent years. Through combining external magnetic field, ultrasound, light and other stimulants, as well as temperature and pH with corresponding polymer materials, targeted, real-time, quantitative and controlled drug release can be achieved. The research on the intelligent drug release system for ocular drugs has been conducted for a short period of time. The controlled release system based on the in-situ gel drug delivery system remains the major system. Other externally stimulated controlled release systems, such as magnetic field, ultrasound, and light, are still in their infancy. Precise targeted therapy is an inevitable requirement for medical development. Consequently, precise controlled release of drugs will become an ideal way of drug administration in the future. In this article, research progress on the intelligent controlled release for ophthalmic drugs was reviewed, aiming to provide reference for the research of ocular drug delivery.
【Key words】Ocular;Stimuli-responsive;Controlled drug release system
智能藥物控釋系統也稱為刺激-響應型藥物控釋系統。智能控釋系統的藥物載體也稱為刺激-響應型載體,能夠對外界刺激(如溫度、磁場、pH等)產生快速和精確的應答,發生物理結構或者化學性質變化。刺激-響應型載體應用于載藥,可實現控制藥物的呈遞和釋放。隨著材料化學與藥物載體設計的進步,智能藥物控釋系統的應用使定點、定量和實時控制藥物的釋放有望成為現實。根據刺激的來源,可將這些智能控釋系統的載體分為外源刺激響應型、內源刺激響應型及復合刺激響應型。外源性刺激是獨立于病變外的環境,具有可操作及重復性,但需要考慮生物相容性及外界人員操控問題。內源性刺激是通過人體內局部反應的改變激活相應藥物載體而釋放藥物,不需要他人額外的操作,無需考慮生物相容性問題,但為了激活相應載藥系統,載體需要與刺激相互作用,不同患者不同疾病內源性刺激類別及強度不同,內源性刺激的應用需要局部病理改變為基礎[1]。近年來,智能藥物控釋系統的眼部應用研究取得一定進展,本文就目前眼部研究相關的智能藥物緩釋系統進行歸納和綜述。
一、外源刺激響應型
1. 溫度響應型
溫度響應型載體含有使其在溫度改變時發生結構變化的組分,引起相變,從而釋放所包載的藥物。眼部目前研究多為溫度響應型原位凝膠控釋系統,其在儲存溫度下是液態,滴入眼內后,由于眼部溫度相對高而使其發生相轉變,形成凝膠。溫度響應型原位凝膠體系中藥物載體可由泊洛沙姆407(Poloxamer 407, 即Pluronic F-127)、殼聚糖(Chitosan, CS)、PNIPAAm等溫度響應型聚合物構成。該體系使用的載體及所載藥物多樣,見表1。溫度響應型原位凝膠載藥系統不僅可用上述凝膠直接載藥,也可用凝膠與其他載藥體(如脂質體) 結合進行復合載藥,見表2。此外,其他溫度響應型載體如溫控的彈性蛋白樣多肽的眼部應用也可以延長藥物的眼部作用時間,提高其生物利用度[2]。溫度響應型載體眼部應用范圍廣,可載多種眼藥,延長藥物眼部作用時間,提高其生物利用度,也可與多種緩釋體系結合成復合體系,但其應用會對患者視覺產生影響,只可在不需要用眼如睡眠時使用。
2. 磁響應型
磁響應型智能載藥系統是利用磁場作為載藥體的刺激,在磁響應的載藥系中,可以通過恒定磁場對藥物進行遠程定向介導,也能通過交變磁場使藥物局部升溫,或者兩者結合協同實現載藥體的磁響應。眼部的磁響應載藥體系還是處于相對初級階段,應用磁場控制眼部藥物的釋放及眼內手術操作的微型機器人是近年研究熱點,磁場介導的載藥體系主要應用于眼后段。
Wu等[14]應用磁場介導納米硅和鎳結合形成的微型螺旋槳樣微車在玻璃體內的定向移動,使其定向到達視盤附近的視網膜,并用光學相干斷層掃描監視其眼內運動及位置,見圖1。Yee等[15]應用磁場驅動無針注射器進行體外玻璃體給藥研究,并應用超聲成像對藥物進行定位。Ullrich等[16]開發了一種磁場控制眼內手術的微型機器人,研究其在玻璃體介質中進行手術操作,顯示該微型機器人可應用于眼底相關疾病的靶向藥物遞送及眼內手術治療。Dogangil等[17]研究出使用微型機器人進行體外視網膜藥物遞送,證實該可使用磁場控制微型機器人進行眼內靶向給藥。
磁控機器人在眼部靶向給藥及眼內手術治療具有良好應用前景。但仍有一些問題需要解決,比如在相對弱的磁場中其作用的實施,特定環境使用時施加的力的大小以及速度,也就是磁場的大小及方向。在不干擾磁驅動情況下人眼內實時定位,以及磁控載體的安全性及其降解。
①將微型螺旋槳注射到眼內玻璃體中; ②磁驅動玻璃體內的微螺旋槳向視網膜的遠距離推進;③利用OCT觀察視網膜表面附近目標區域的微螺旋槳
圖1 光滑的微型螺旋槳目標輸送藥物三步示意圖[14]
3. 超聲響應型
超聲波具有非侵入性、無電離輻射、可穿透到達深部組織等優良特性,并能夠通過超聲頻率、速率、時間進行便捷、靈活地調節。超聲波通過熱效應、機械效應產生的空化現象、能量輻射等效果觸發藥物從載體中釋放出來。超聲響應型載體在眼部藥物控釋的應用主要是經鞏膜促進蛋白質等大分子的眼內可控擴散。
Huang等[18]將透明質酸包被的人血清白蛋白納米粒,以1 MHz的頻率、0.5 W/cm的強度和30 s的持續時間的超聲,通過鞏膜施用于離體牛眼,在預定的時間點分析玻璃體和視網膜中的人血清白蛋白的熒光強度。結果顯示低頻超聲可安全、顯著改善納米粒通過玻璃體的擴散遷移率,以及促進它們穿過神經視網膜進入視網膜色素上皮和脈絡膜的滲透型。Thakur等[19]評估了經鞏膜或角膜超聲應用對玻璃體內注射的羅丹明標記的納米氣泡分布影響,離體牛眼和豬眼實驗證明超聲處理顯著增強了納米氣泡的定向遷移,多個角膜超聲循環促進了染料向玻璃體后部的遷移。Cheung等[20]將兔眼浸入與異硫氰酸熒光素偶聯的牛血清白蛋白溶液中,測量超聲對血清白蛋白的眼內滲透影響,結果顯示超聲增強了鞏膜內蛋白的滲透,使擴散率提高了1.6倍。
4. 光響應型
應用對特定波長光照(紫外區、可見光區或近紅外區)反應的光敏系統可設計光響應型載體,用于控制藥物釋放,實現按需給藥。光刺激響應系統具有非侵入性、患者易接受、靈活性高、精確性高等優勢,能夠進行非侵入性、遠程、實時調控藥物釋放。可通過精確調節激活光的多個參數進行高精度的光敏系統的控制。這些參數包括光的波長、強度和極性以及輻照的時間、頻率和位置。
Chen等[21]應用沸石咪唑的8-聚丙烯酸酸酯骨架(ZIF-8-PAA)載光敏劑甲基苯銨藍(MB),而后用AgNO3/多巴胺將AgNO3原位還原為銀納米顆粒(AgNPs),最后用萬古霉素/NH2-聚乙二醇(Van/NH2-PEG)進行二次修飾,形成復合納米材料ZIF-8-PAA-MB @ AgNPs @ Van-PEG進行眼部抗菌治療。結果表明在光的作用下,上述復合納米顆粒可安全有效地釋放出活性氧治療眼內炎,可有效控制兔眼眼內炎。Mu等[22]應用光交聯的作用使噻嗎洛爾變構與接觸鏡單體結合載于接觸鏡,自然光照作用下,藥量為滴眼液的5.7%時,可持續釋放治療劑量的噻嗎洛爾達10 h,有效降低眼內壓。Basuki等[23]應用帶正電荷的聚(甲基丙烯酰氧基乙基三甲基氯化銨)[P(METAC)]修飾納米金粒子,將其和anti-VEGF藥物載于瓊脂糖凝膠,在可見光的作用下,納米金粒子吸收光產生熱使得凝膠升溫變軟,釋放出藥物,達到藥物的可控釋放。
光刺激響應載藥系統雖然有其獨有的可控及易得優勢,但其仍面臨許多困難:①缺乏生物相容性和可生物降解的光反應材料;②紫外光激活相應緩釋體系對人體具有基因毒性且穿透力弱,近紅外光毒性低而組織穿透性強。因此,開發使用長波長或雙光子響應的新型光敏劑,能夠實現更深的組織穿透和更小的組織傷害,近紅外光觸發藥物的可控載藥體系更具臨床應用前景。
二、內源刺激響應型
1. pH響應型
眼部應用的pH響應型載藥緩釋體系大都是原位凝膠系統。凝膠中的聚合物大分子含有可因pH改變而解離的基團,在眼表的pH改變作用下發生解離,使得聚合物發生相變形成凝膠。pH響應型眼部原位凝膠緩釋系統載體主要是卡波姆、殼聚糖及HPMC構成,見表3。pH響應型原位凝膠載藥系統與溫度響應型原位凝膠載藥系統的優缺點相似。
2. 離子強度響應型
離子強度響應型藥物釋放體系,是應用淚液中含有的陽離子(如Na+、Ca2+等)與聚合物發生絡合反應使得聚合物構象發生改變而導致其相變形成凝膠。眼部離子強度響應型載藥原位凝膠系統的響應聚合物主要包括結冷膠、黃原膠、藻酸鹽等,見表4。離子強度響應型原位凝膠載藥系統與溫度響應型原位凝膠載藥系統的優缺點相似。
3. 其他刺激響應型
Kim等[33]應用PEI包被的納米金剛石(ND)在噻嗎洛爾存在下與殼聚糖交聯形成納米凝膠而后載入接觸鏡,結果顯示沒有溶菌酶作用下無藥物釋放,溶菌酶作用下藥物持續釋放達24 h,見圖2。Pornpattananangkul等[34]報道了通過細菌毒素來誘發磷脂脂質體釋放萬古霉素治療耐甲氧西林金黃色葡萄球菌(MRSA)感染,在MRSA存在情況下,包載的萬古霉素可在24 h內持續作用抑制細菌的增殖,抑菌效用與未包載萬古霉素相當。眼部溶菌酶及細菌毒素響應型藥物控釋系統,可在眼部溫和條件下發揮作用,并有高度選擇性,由于刺激因素的持續存在,可以使得藥物持續釋放,但不同個體及部位的刺激的量及濃度不同,藥物釋放需要刺激響應載體具有相對高的靈敏度。
三、復合刺激響應型
復合刺激響應型載體,是指其對藥物的釋放受兩種或以上刺激的控制。目前研究的眼部復合刺激響應型藥物載體最為多的是溫度及pH雙敏感刺激響應型凝膠。該類凝膠同時含有溫度及pH刺激響應成分,即殼聚糖及泊洛沙姆407而產生雙刺激敏感響應,兩種刺激結合最合適時達藥物最佳釋放。Gupta[35]等應用殼聚糖及結冷膠形成pH及離子強度雙敏感響應型凝膠載噻嗎洛爾,可安全有效延長其眼部作用時間。Rahanyan-K?gi等[36]使用單油精及3種脂質合成新型刺激-反應型納米材料主客體脂質立方相(LCPs),結果表明其通過改變脂質體的種類形成了pH及紫外光控的親水性緩釋體系,該新型LCPs體系具有生物相容性、穩定、透明及非水溶性,可應用于眼部控釋載藥。復合刺激響應型系統可通過協同作用增強或持續遞送藥物,可以更好地控釋藥物。
四、小結與展望
如何有效地遞送藥物至靶組織,并高效釋放藥物治療疾病的同時對其他鄰近組織無毒性作用,這仍然是眼部給藥體系面臨的重要瓶頸,藥物智能控釋系統的載體是根據環境的變化而改變自身的物理行為或化學結構,從而實現定點、定量和定時的藥物釋放,達到藥物高效靶向的治療效果。現有的眼部智能控釋系統包括凝膠、聚合物納米粒、樹枝狀聚合物和無機納米粒子等。盡管其在根據目的及需求控釋藥物方面有許多優勢,但仍有一些問題需要解決,控釋體系的毒性、穩定性、生物相容性及生物降解性,以及將藥物有效遞送至靶目標治療區。合成的聚合物通常因為毒性限制了其應用,而無機納米材料通常由于生物不相容及不可降解(如Au、Ag納米粒, Au納米棒)而限制其應用。構建的智能藥物控釋系統的藥物載體需要具有生物相容和易降解、高載藥量,在遞送過程維持藥物穩定不丟失等特性,并在各種環境刺激下釋放的藥物能夠優先富集于病變部位[37]。此外,集成多種刺激響應為一體的智能控釋系統藥物載體,可以更加靈敏地根據不同的環境做出相適應的應答,精確地按需控制藥物呈遞和釋放,是智能給藥系統研究中的未來方向。
參 考 文 獻
[1] Wehrung D, Chamsaz EA, Andrews JH, Joy A, Oyewumi MO. Engineering alkoxyphenacyl-polycarbonate nanoparticles for potential application in near-infrared light-modulated drug delivery via photon up-conversion process. J Nanosci Nanotechno, 2016,17(7):4867-4881.
[2] Wang W, Lee C, Pastuszka M, Laurie GW, MacKay JA. Thermally-responsive loading and release of elastin-like polypeptides from contact lenses. Pharmaceutics, 2019,11(5):221.
[3] Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif Cells Nanomed Biotechnol,2018,46(6):1282-1287.
[4] Shi H, Wang Y, Bao Z, Lin D, Liu H, Yu A, Lei L, Li X, Xu X. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability. Int J Pharm, 2019,570:118688.
[5] Wei Y, Li C, Zhu Q, Zhang X, Guan J, Mao S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: in vitro drug release and in vivo tissue distribution. Int J Pharm, 2020,578:119184.
[6] Li J, Liu H, Liu LL, Cai CN, Xin HX, Liu W. Design and evaluation of a brinzolamide drug-resin in situ thermosensitive gelling system for sustained ophthalmic drug delivery. Chem Pharm Bull (Tokyo),2014, 62(10):1000-1008.
[7] Luo Z, Jin L, Xu L, Zhang ZL, Yu J, Shi S, Li X, Chen H. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv, 2016,23(1):63-68.
[8] Xi L, Wang T, Zhao F, Zheng Q, Li X, Luo J, Liu J, Quan D, Ge J. Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS One, 2014,9(6):e100632.
[9] Phua JL, Hou A, Lui YS, Bose T, Chandy GK, Tong L, Venkatraman S, Huang Y. Topical delivery of senicapoc nanoliposomal formulation for ocular surface treatments. Int J Mol Sci, 2018,19(10):2977.
[10] He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm,2013,458(2):305-314.
[11] Liu R, Sun L, Fang S, Wang S, Chen J, Xiao X, Liu C. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm Dev Technol, 2016,21(5):576-582.
[12] Tan G, Yu S, Li J, Pan W. Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol, 2017,103:941-947.
[13] Almeida H, Lob?o P, Frigerio C, Fonseca J, Silva R, Sousa Lobo JM, Amaral MH. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm Dev Technol, 2017,22(3):336-349.
[14] Wu Z, Troll J, Jeong HH, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci Adv, 2018,4(11):eaat4388.
[15] Yee MQY, Yeow BS, Ren H. Dispersion characterization of magnetic actuated needleless injections with particle image velocimetry. Med Biol Eng Comput, 2019,57(11):2435-2447.
[16] Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C, Nelson BJ. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci, 2013,54(4):2853-2863.
[17] Dogangil G, Ergeneman O, Abbott JJ, Pan S, Hall H, Mun-twyler S, Nelson BJ. Toward targeted retinal drug delivery with wireless magnetic microrobots // 2008 {IEEE/RSJ} International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 1921-1926.
[18] Huang D, Chen YS, Thakur SS, Rupenthal ID. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur J Pharm Biopharm, 2017, 119:125-136.
[19] Thakur SS, Chen YS, Houston ZH, Fletcher N, Barnett NL, Thurecht KJ, Rupenthal ID, Parekh HS. Ultrasound-responsive nanobubbles for enhanced intravitreal drug migration: an ex vivo evaluation. Eur J Pharm Biopharm,2019,136:102-107.
[20] Cheung AC, Yu Y, Tay D, Wong HS, Ellis-Behnke R, Chau Y. Ultrasound-enhanced intrascleral delivery of protein. Int J Pharm,2010,401(1-2):16-24.
[21] Chen H, Yang J, Sun L, Zhang H, Guo Y, Qu J, Jiang W, Chen W, Ji J, Yang YW, Wang B. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems. Small, 2019, 15(47): e1903880.
[22] Mu C, Shi M, Liu P, Chen L, Marriott G. Daylight-mediated, passive, and sustained release of the glaucoma drug timolol from a contact lens. ACS Cent Sci, 2018,4(12):1677-1687.
[23] Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi AV, Peng YY, Li L, Hao X, Tan T, Hughes TC. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem Int Ed Engl, 2017,56(4):966-971.
[24] Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm,2010,78(4):959-976.
[25] Allam A, El-Mokhtar MA, Elsabahy M. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation. J Pharm Pharmacol,2019,71(8):1209-1221.
[26] Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm, 2014,40(9):1223-1232.
[27] Maulvi FA, Choksi HH, Desai AR, Patel AS, Ranch KM, Vyas BA, Shah DO. pH triggered controlled drug delivery from contact lenses: addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces,2017,157:72-82.
[28] Geethalakshmi A, Karki R, Jha SK, Venkatesh DP, Nikunj B. Sustained ocular delivery of brimonidine tartrate using ion activated in situ gelling system. Curr Drug Deliv,2012,9(2):197-204.
[29] Morsi N, Ibrahim M, Refai H, EI Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci, 2017,104:302-314.
[30] Li P, Wang S, Chen H, Zhang S, Yu S, Li Y, Cui M, Pan W, Yang X. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev Ind Pharm, 2018,44(5):829-836.
[31] Kesavan K, Kant S, Pandit JK. Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul Immunol Inflamm, 2016,24(5):489-492.
[32] Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: Precorneal retention and in vivo pharmacodynamic study. Int J Pharm, 2011,411(1-2):78-85.
[33] Kim HJ, Zhang K, Moore L, Ho D. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano, 2014,8(3):2998-3005.
[34] Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, Huang CM, Zhang L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc,2011,133(11):4132-4139.
[35] Gupta H, Velpandian T, Jain S. Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target,2010,18(7):499-505.
[36] Rahanyan-K?gi N, Aleandri S, Speziale C, Mezzenga R, Landau EM. Stimuli-responsive lipidic cubic phase: triggered release and sequestration of guest molecules. Chemistry, 2015,21(5):1873-1877.
[37] 黃守堅.藥物的控釋制劑.新醫學,1996,27(10):556-557.
(收稿日期:2020-07-25)
(本文編輯:鄭巧蘭)