彭才望,許道軍,賀 喜,唐艷華,孫松林
黑水虻處理的豬糞有機肥離散元仿真模型參數(shù)標定
彭才望1,許道軍2,賀 喜3,唐艷華4,孫松林1※
(1. 湖南農(nóng)業(yè)大學(xué)機電工程學(xué)院,長沙 410128;2. 湖南農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)院,長沙 410128;3. 湖南農(nóng)業(yè)大學(xué)動物科學(xué)技術(shù)學(xué)院,長沙 410128;4. 湖南大湘農(nóng)環(huán)境科技股份有限公司,長沙 410128)
為準確快速獲取黑水虻處理的豬糞有機肥顆粒的離散元仿真模型參數(shù),該研究采用圓筒提升堆積物理試驗與EDEM仿真結(jié)合的方法,選取“Hertz-Mindlin with JKR”作為接觸模型,以堆積角為響應(yīng)值,基于響應(yīng)面法優(yōu)化標定了黑水虻處理的含水率為43.6%的豬糞有機肥仿真參數(shù)。采用Design-Expert8.0.6設(shè)計Plackett-Burman試驗,篩選出對堆積角有顯著影響的參數(shù),即有機肥泊松比、有機肥顆粒密度、有機肥-有機肥滾動摩擦系數(shù)。通過最陡爬坡試驗確定了顯著參數(shù)的最優(yōu)值區(qū)間,進一步以有機肥堆積角為響應(yīng)值,基于Box-Behnken試驗獲得堆積角與顯著性參數(shù)的二階回歸模型,以物理試驗測得的堆積角為響應(yīng)目標,針對顯著性參數(shù)進行尋優(yōu),得到最佳組合:有機肥泊松比0.11、有機肥顆粒密度1 703 kg/m3、有機肥-有機肥滾動摩擦系數(shù)0.13。運用最佳參數(shù)組合進行仿真分析,得到堆積角均值為38.61o,與物理試驗測得的堆積角相對誤差為1.88%,且堆積形狀具有較高相似性,無明顯差異,表明標定的參數(shù)準確,研究結(jié)果可為黑水虻處理豬糞后的有機肥相關(guān)收集與篩分機械的設(shè)計提供理論參考。
離散元;機械化;有機肥;EDEM;堆積角
黑水虻在畜禽糞便“肥料化利用”過程中作用明顯,促進資源循環(huán)利用[1-3]。近幾年中國加快推進畜禽養(yǎng)殖廢棄物資源化利用,因此,黑水虻處理畜禽糞便已經(jīng)成為研究熱點。但是現(xiàn)有研究主要集中在黑水虻對畜禽糞便的轉(zhuǎn)化率、黑水虻幼蟲營養(yǎng)成分及自身生長參數(shù)變化等方面[4-6],對黑水虻處理后的豬糞相關(guān)特性研究極少,尤其是針對黑水虻處理豬糞后形成的有機肥在收集、轉(zhuǎn)運輸送、篩分等機械化作業(yè)方面的接觸特性參數(shù)的研究。黑水虻處理后的豬糞的主要成分為黑水虻取食畜禽糞便中營養(yǎng)成分經(jīng)過腹處理消化后形成的含濕、蓬松沙土狀的黏性顆粒,是一種有機肥[7-8],物料特性復(fù)雜,因此通過常規(guī)方法較難準確、快速獲得相關(guān)接觸參數(shù)。
近幾年國內(nèi)外學(xué)者應(yīng)用離散元法在農(nóng)業(yè)散體物料顆粒參數(shù)標定方面做了大量的研究工作,也對豬糞、蚯蚓糞等有機肥做了一定的研究。張銳等提出一種關(guān)于沙土顆粒仿真參數(shù)標定的方法,分析了顆粒形狀對顆粒間靜摩擦系數(shù)影響[9];石林榕等對西北旱區(qū)農(nóng)田土壤顆粒關(guān)鍵參數(shù)與接觸模型進行了離散元標定[10];邢潔潔等利用EDEM仿真軟件中的Hertz-Mindlin with JKR 接觸模型對海南地區(qū)磚紅壤進行了相關(guān)模型參數(shù)標定[11]。馬帥等基于土壤堆積試驗,以堆積角為指標,利用EDEM進行通用旋轉(zhuǎn)中心組合試驗,獲得了土壤顆粒間的最佳接觸參數(shù)組合[12];武濤等基于堆積角仿真試驗,確定了適合黏性土壤的離散元接觸模型并確定了相應(yīng)的接觸參數(shù)[13];王黎明等通過堆積試驗對豬糞接觸參數(shù)進行了標定[14];林嘉聰?shù)萚15-16]通過離散元仿真與堆積試驗相結(jié)合的方法,確定了不同含水率變化對蚯蚓糞顆粒流動性參數(shù)的影響;袁全春等通過仿真試驗與物料試驗相結(jié)合的方法,對有機肥離散元模型參數(shù)進行了標定[17]。上述研究表明應(yīng)用離散元法獲得散體物料相關(guān)參數(shù)具有針對性與可行性,但針對黑水虻蟲糞顆粒離散元模型參數(shù)標定的研究鮮有報道。
綜上所述,本研究以湖南大湘農(nóng)環(huán)境科技股份有限公司養(yǎng)殖黑水虻處理的含水率為43.6%的豬糞有機肥為樣品,選取“Hertz-Mindlin with JKR”作為接觸模型,應(yīng)用EDEM軟件開展該有機肥顆粒仿真模擬。通過運用Plackett-Burman設(shè)計試驗、最陡爬坡試驗和Box-Behnken試驗對有機肥顆粒堆積角進行仿真,并結(jié)合圓筒提升物理堆積角試驗進行驗證對比,完成有機肥顆粒離散元模型參數(shù)的準確標定過程。以期獲得較為準確的有機肥顆粒離散元模型參數(shù),為黑水虻處理豬糞后的有機肥在收集、轉(zhuǎn)運輸送、篩分等不同階段的機械化作業(yè)研究提供有效的物料特性參數(shù)。
本研究所用有機肥由湖南大湘農(nóng)環(huán)境科技股份有限公司提供,由含水率為70%~80%新鮮豬糞經(jīng)黑水虻過腹處理8~10 d后形成。參考土壤或一般有機肥基本測試方法得到有機肥的含水率為43.60%。經(jīng)篩分測量,該有機肥顆粒極大部分呈近似的球體,粒徑分布范圍為1.6~2.6 mm,平均粒徑2 mm,極小部分呈疏松團狀。
運用物理堆積角試驗與EDEM離散元仿真模擬相結(jié)合的方法,對有機肥在接觸過程中的各相關(guān)仿真模型參數(shù)進行標定。首先,通過圓筒提升的物理試驗方法獲得有機肥顆粒堆,測量獲得有機肥的實際堆積角均值。然后,基于EDEM軟件進行離散元仿真,選取系統(tǒng)中“Hertz-Mindlin with JKR”作為接觸模型,以實際堆積角為目標值對回歸方程進行求解尋優(yōu),獲得有機肥離散元仿真的最優(yōu)參數(shù)組合。仿真試驗包括運用 Plackett-Burman 設(shè)計試驗篩選對有機肥有顯著影響的參數(shù)項;通過最陡爬坡試驗確定出顯著性參數(shù)的最優(yōu)值區(qū)間。進一步以有機肥的堆積角作為響應(yīng)值,通過Box-Behnken響應(yīng)曲面法對堆積角與顯著性參數(shù)的回歸模型二次多項式進行方差分析并進行尋優(yōu),找到最優(yōu)參數(shù)組合。最后,在標定好的最優(yōu)組合參數(shù)下進行仿真試驗驗證,對比分析有機肥仿真堆積角與實際堆積角間的差異,驗證標定的有機肥離散元模型物理參數(shù)的準確性。
采用圓筒提升的方法進行物理堆積角試驗[18-19],如圖1所示。

1.鋼圓筒 2.肥堆 3.鋼板 4.萬能試驗機 5.攝像機 6.計算機
試驗時,鋼質(zhì)圓筒內(nèi)徑與高度比為1:3(內(nèi)徑為40 mm、高120 mm)[20],圓筒底部與鋼板(長200 mm、寬200 mm)接觸,圓筒內(nèi)填充滿有機肥。利用CMT5105型萬能試驗機夾住鋼質(zhì)圓筒并以0.03 m/s的速度向上提升[21-22],顆粒將從圓筒底部緩慢流出,待有機肥顆粒堆坡面穩(wěn)定后,攝像機垂直拍照,照片導(dǎo)入計算機的CAD軟件中標注堆積角[10],重復(fù)試驗5次,求其堆積角均值為39.35°,變異系數(shù)為0.75%。
黑水虻處理豬糞過程中要求較高的相對濕度,以提高生物轉(zhuǎn)化率[5]。因此,針對顆粒間受濕度影響存在一定粘附現(xiàn)象的有機肥,離散元中普通的接觸模型難以準確對其顆粒間存在的力學(xué)行為進行模擬。文獻中提到的“Hertz-Mindlin with Bonding”接觸模型可以用來模擬粘結(jié)顆粒,但一般適用于混凝土和巖石等較堅硬介質(zhì)的模擬[23]。本研究選取一種建立在Hertz理論上的適用于有機肥、黏性泥土、濕顆粒等粘結(jié)性顆粒的“Hertz-Mindlin with JKR”接觸模型,該接觸模型能夠?qū)⒈砻婺芤腩w粒間相互作用,較好地表現(xiàn)出顆粒間的粘彈性特征[24-25],即“Hertz-Mindlin with JKR”接觸模型的法向彈性力基于法向重疊量、表面能和相互作用。


式中JKR為法向彈性力,N;為兩接觸顆粒之間法向重疊量,m;為兩接觸顆粒之間接觸面半徑,m;為表面能,N/m;*為等效彈性模量,Pa;*為等效接觸半徑,m;等效彈性模量*與等效接觸半徑*定義為:


式中1、2分別為兩接觸顆粒的彈性模量,Pa;1、2分別為兩接觸顆粒的泊松比;1、2分別為兩接觸顆粒的接觸半徑,m。
當(dāng)為0時,Johnson-Kendall-Roberts(JKR)的法向彈性力等同于Hertz-Mindlin法向力,即

當(dāng)顆粒非直接接觸時,Hertz-Mindlin with JKR接觸模型也能夠提供吸引凝聚力[24],顆粒間的非零凝聚力的最大間隙為:


式中c為顆粒間具有非零凝聚力時的法向最大間隙,m;c為顆粒間具有非零凝聚力時的法向最大間隙,m。
當(dāng)>c時,顆粒間凝聚力變?yōu)?。
當(dāng)顆粒并非實際接觸且間隔等于c時,凝聚力達到最大值[13]。

式中cohesion為2個顆粒間的凝聚力,N。
通過對有機肥樣品篩分與觀察,以基本球體作為有機肥的仿真顆粒模型,建立半徑為1mm的離散元模型。根據(jù)有機肥顆粒的粒徑分布范圍,設(shè)置顆粒工廠,顆粒尺寸按正態(tài)分布方式生產(chǎn),將參數(shù)Mean設(shè)置為1,即正態(tài)分布的有機肥顆粒的平均粒徑2 mm,標準差Std Dev設(shè)置為0.1 mm,Capped設(shè)置生成顆粒的尺寸極限,最小為平均值的0.8倍,最大為平均值的1.3倍,確保仿真顆粒尺寸極限與篩分確定的有機肥顆粒尺寸分布一致。在Solidworks中建立鋼質(zhì)圓筒和鋼板的三維模型,導(dǎo)入EDEM中作為結(jié)構(gòu)模型。鋼的泊松比為0.30,剪切模量7.90×1010Pa,密度為7.86×103kg/m3,重力加速度為9.81 m/s2[24]。
在仿真試驗初始狀態(tài)時,無底圓筒內(nèi)徑40 mm、高120 mm,與無底圓筒底部接觸的底座面板為長、寬均為200 mm。按照有機肥顆粒粒徑分布范圍,設(shè)置顆粒工廠,顆粒生成方式為Dynamic,總數(shù)量18 000個,生成速率9 000個/s。時間步長設(shè)定為Rayleigh 時間步長的22%,數(shù)據(jù)保存時間間隔為0.01 s[26-27]。為保證仿真試驗結(jié)果的準確性,網(wǎng)格尺寸設(shè)置為最小顆粒半徑值的2倍,根據(jù)無底圓筒上升速度并考慮有機肥顆粒達到穩(wěn)定狀態(tài)的需要,顆粒生成時間2.0 s,待有機肥顆粒在重力作用下沉降后,系統(tǒng)達到穩(wěn)定平衡,無底圓筒在第2.2 s開始以0.03 m/s的速度垂直于底座向上提升,逐步與底座面板分離,無底圓筒內(nèi)的有機肥顆粒在失去圓筒內(nèi)壁的支撐后逐漸滑落到底座面板上,最后在底座面板上形成一個穩(wěn)定的顆粒堆。
基于Design-Expert8.0.6軟件進行Plackett-Burman(PB)篩選試驗確定顯著影響有機肥顆粒堆積角的參數(shù),對泊松比、剪切模量、密度、有機肥顆粒間(恢復(fù)系數(shù)、靜摩擦系數(shù)、滾動摩擦系數(shù))、有機肥-鋼板間(恢復(fù)系數(shù)、靜摩擦系數(shù)、滾動摩擦系數(shù))以及JKR表面能進行篩選,確定對有機肥堆積角有顯著影響的參數(shù)。
目前關(guān)于黑水虻處理豬糞后形成的有機肥的研究尚不完善,其顆粒離散元仿真模型的所需要的物理參數(shù)尤為缺乏。參考文獻中關(guān)于機施有機肥、黏濕土壤、豬糞、蚯蚓糞等離散元仿真參數(shù)以及EDEM軟件GEMM材料庫含濕顆粒離散元參數(shù)值確定該有機肥顆粒相關(guān)接觸參數(shù)范圍[9-17]。其中,有機肥顆粒泊松比范圍為0.1~0.6,剪切模量范圍為(1~10)MPa,顆粒密度范圍為(1 000~2 000)kg/m3,有機肥顆粒間恢復(fù)系數(shù)范圍為0.1~0.8、靜摩擦系數(shù)范圍為0.1~1、滾動摩擦系數(shù)范圍為0.05~0.6,有機肥顆粒與鋼板間的恢復(fù)系數(shù)范圍為0.1~0.7、靜摩擦系數(shù)范圍為0.2~0.9、滾動摩擦系數(shù)范圍為0.05~0.65,JKR表面能范圍為0.05~0.65。通過綜合對比參考文獻中土壤顆粒、一般有機肥顆粒以及蚯蚓糞顆粒與本文有機肥顆粒的差異,確定了本研究中的有機肥各待標定的參數(shù)與水平如表1所示。

表1 Plackett-Burman Design參數(shù)水平表
基于Design-Expert軟件進行PB試驗,得到Plackett-Burman Design試驗設(shè)計及結(jié)果如表2所示。各因素對有機肥堆積角影響效果如表3所示;剔除影響很小的參數(shù)后,對試驗結(jié)果進行方差分析,結(jié)果如表4所示。

表2 Plackett-Burman Design試驗設(shè)計及結(jié)果
注:11為空白列。1~10為1~10的水平值。
Note:11indicates blank column.1-10represents level values of1-10.

表3 Plackett-Burman Design 試驗結(jié)果分析

表4 Plackett-Burman Design試驗參數(shù)顯著性分析
由表3可以看出,1、2、4、6、7、8、10對有機肥顆粒的堆積角有正效應(yīng),即堆積角隨著該 7 個因素增大而增大;3、5、9則有負效應(yīng),即堆積角隨著該3個因素增大而減小。根據(jù)表3的各個因素貢獻率分析10個因素對堆積角影響,其中4、5、7、9對結(jié)果的影響很小,貢獻率小于5%;2、8、10對結(jié)果的影響較大,貢獻率小于15%大于5%;1、3、6對結(jié)果的影響最大,貢獻率大于15%。由表4可知,模型的0.05,說明回歸模型顯著,預(yù)測值2=0.909 4,模型能很好的預(yù)測各因素的變化情況。由表4中因素值大小得到各因素顯著性影響的主次順序為:有機肥顆粒密度3、有機肥-有機肥滾動摩擦系數(shù)6、有機肥泊松比1、有機肥-鋼板靜摩擦系數(shù)8、JKR表面能10、有機肥剪切模量2、有機肥-有機肥碰撞恢復(fù)系4。因此,根據(jù)表3和表4分析結(jié)果,選取對有機肥堆積角影響率較大與影響顯著性較高的3個因素:有機肥顆粒密度3、有機肥-有機肥滾動摩擦系數(shù)6、有機肥泊松比1作為后續(xù)最陡爬坡試驗與以及Box-Behnken Design試驗考慮的參素。
根據(jù)Plackett-Burman 設(shè)計及試驗結(jié)果,將影響有機肥顆粒堆積角的3個較顯著的試驗參數(shù)1(有機肥泊松比)、3(有機肥顆粒密度)、6(有機肥-有機肥滾動摩擦系數(shù))按照一定步長逐步增加或降低(參數(shù)影響效應(yīng)呈正負效應(yīng))[28-29],其余參數(shù)選擇中間水平值2(有機肥剪切模量5.5 MPa)、4(有機肥-有機肥碰撞恢復(fù)系數(shù)0.4)、5(有機肥-有機肥靜摩擦系數(shù)0.55)、7(有機肥-鋼板碰撞恢復(fù)系數(shù)0.35)、8(有機肥-鋼板靜摩擦系數(shù)0.40)、9(有機肥-鋼板滾動摩擦系數(shù)0.35)、10(JKR表面能0.30 J/m2)進行最陡爬坡試驗,計算有機肥仿真堆積角與實際堆積角的相對誤差,試驗方案及結(jié)果如表5所示。

表5 最陡爬坡試驗方案及結(jié)果
表5給出了最陡爬坡試驗設(shè)計及其結(jié)果。該結(jié)果表明隨著1(有機肥顆粒泊松比)和6(有機肥-有機肥滾動摩擦系數(shù))的增加、3(有機肥顆粒密度)的減小,堆積角逐漸增大,真實試驗測得堆積角與仿真得到的堆積角相對誤差先減小后增大。2號試驗中相對誤差最小。因此,以2號試驗中的各參數(shù)數(shù)值作為后續(xù)試驗的中心點,1號和3號試驗參數(shù)值分別作為低水平和高水平進行后續(xù)的響應(yīng)面設(shè)計。
根據(jù)最陡爬坡試驗結(jié)果,應(yīng)用Box-Behnken設(shè)計試驗進行響應(yīng)面分析并尋找最優(yōu)解。試驗中以1(有機肥顆粒泊松比)、3(有機肥顆粒密度)、6(有機肥-有機肥滾動摩擦系數(shù))為試驗因素,堆積角為試驗指標,其他非顯著影響因素延用表1中各因素試驗水平,共進行15次試驗,中心點試驗3次,用于誤差分析。試驗方案及結(jié)果如表6所示。

表6 Box-Behnken Design試驗設(shè)計方案與結(jié)果
注:1、3、6為1、3、6的水平值。
Note:1,3,6represents1,3,6level value, respectively.
應(yīng)用Design-expert軟件對有機肥試驗結(jié)果進行多元回歸擬合分析,以(堆積角)為響應(yīng)值,1(有機肥泊松比)、3(有機肥顆粒密度)、6(有機肥間滾動摩擦系數(shù))為自變量,得到堆積角回歸方程:
=190.761 16?214.911 461?0.158 283+191.258 106+
0.092 18713?38.802 0816?0.037 70836+
151.497 4012+3.830 21×10-532?253.501 1662(9)
由該模型方差分析結(jié)果表7可知,該擬合模型的值為0.000 3(<0.01),極顯著;失擬項=0.1 798>0.05,對結(jié)果不顯著。試驗中CV(變異系數(shù))為1.78%,表明試驗具有較好的可靠性;決定系數(shù)2=0.988 1;2adj=0.966 7,二者均接近1,表明與實際數(shù)據(jù)擬合程度高,相關(guān)性較好;精密度(Adeq precision)為21.510,表明該模型的精確度非常好,可以用來預(yù)測有機肥顆粒的堆積角。1(有機肥泊松比)對有機肥堆積角影響不顯著(>0.05),可能是通過最陡爬坡試驗將泊松比的取值范圍縮小在一個較合適的區(qū)間范圍內(nèi),該區(qū)間范圍內(nèi)泊松比的取值范圍對有機肥堆積角的影響不顯著。3(有機肥顆粒密度)、6(有機肥間滾動摩擦系數(shù))對堆積角影響極顯著;13對堆積角影響極顯著,36對堆積角影響顯著,12對堆積角影響顯著,32、62對堆積角影響極顯著。

表7 Box-Behnken 二次回歸模型方差分析
注:*表示顯著(<0.05),**表示極顯著(<0.01)。
Note: * and * *indicated significance at 0.05 and 0.01levels, respectively.
基于Design-Expert軟件的優(yōu)化模塊,以圓筒提升的物理方法測得的有機肥堆積角39.35°為目標對堆積角回歸模型進行尋優(yōu),所得優(yōu)化解具備若干組。以這些優(yōu)化解作參數(shù)進行堆積角仿真試驗,并與物理試驗堆積角進行對比驗證,選取二者堆積角形狀近似的一組數(shù)據(jù)作為優(yōu)化解。在EDEM軟件中將3個顯著性參數(shù)設(shè)置為尋優(yōu)得到的最優(yōu)解:即1(有機肥泊松比)0.11、3(有機肥顆粒密度)為1 703 kg/m3、6(有機肥-有機肥滾動摩擦系數(shù))0.13,其余非顯著性參數(shù)設(shè)置為中間水平,即2(有機肥剪切模量5.5 MPa)、4(有機肥-有機肥碰撞恢復(fù)系數(shù)0.4)、5(有機肥-有機肥靜摩擦系數(shù)0.55)、7(有機肥-鋼板碰撞恢復(fù)系數(shù)0.35)、8(有機肥-鋼板靜摩擦系數(shù)0.40)、9(有機肥-鋼板滾動摩擦系數(shù)0.35)、10(JKR表面能0.30 J/m2),在該組合優(yōu)化參數(shù)下進行3次重復(fù)仿真試驗得到堆積角平均值為38.61°,與實際物理試驗測得堆積角均值39.35°的相對誤差為1.88%,仿真試驗與物理試驗的對比如圖2所示。結(jié)果表明,在優(yōu)化參數(shù)下獲得的堆積角仿真試驗結(jié)果與物理試驗獲得的堆積角在形狀和角度上具有較高的近似性,表明該參數(shù)可用作黑水虻處理豬糞后形成的有機肥顆粒物料特性的參考依據(jù)。

圖2 仿真試驗與物理試驗對比
1)針對黑水虻處理豬糞后形成的有機肥,基于EDEM離散元仿真軟件,選用“Hertz-Mindlin with JKR”接觸模型對含水率為43.6%的有機肥樣品進行離散元仿真,標定了有機肥顆粒相關(guān)參數(shù)。
2)應(yīng)用Plackett-Burman Design試驗篩選出對有機肥堆積角有關(guān)鍵影響因素包括:有機肥泊松比、有機肥顆粒密度、有機肥間滾動摩擦系數(shù)。通過最陡爬坡試驗確定了3個顯著性參數(shù)的最優(yōu)值區(qū)間,通過Box-Behnken Design試驗建立了顯著性參數(shù)與堆積角間的回歸模型。堆積角回歸模型的方差分析表明:有機肥顆粒的密度、有機肥顆粒間的滾動摩擦系數(shù)、有機肥顆粒泊松比與密度的交互項、有機肥顆粒密度的二次項、有機肥顆粒間滾動摩擦系數(shù)二次項對堆積角影響極顯著;有機肥顆粒密度與有機肥顆粒間滾動摩擦系數(shù)的交互項、有機肥泊松比的二次項對堆積角影響顯著。
3)以有機肥顆粒的實際堆積角為目標值,對回歸方程進行尋優(yōu)并求解,得到3個顯著性參數(shù)的最優(yōu)值,有機肥泊松比0.11、有機肥顆粒密度1 703 kg/m3、有機肥顆粒間滾動摩擦系數(shù)0.13。對比驗證試驗結(jié)果表明,有機肥仿真堆積角與實際堆積角的相對誤差為1.88%,較為吻合,所標定的有機肥顆粒仿真模型參數(shù)準確可靠。
本文研究結(jié)果對機械收集、轉(zhuǎn)運、篩分該有機肥提供了基礎(chǔ)數(shù)據(jù);但需指出的是,由于黑水虻養(yǎng)殖環(huán)境的差異,有機肥含水率處于40%~50%間,不同含水率以及圓筒提升速度會導(dǎo)致堆積試驗存在一定的差異性,后期將開展更深入的研究。
[1]張杰,溫逸婷,高正輝,等. 黑水虻的資源化利用研究現(xiàn)狀[J]. 應(yīng)用昆蟲學(xué)報,2019,56(5):997-1006.
Zhang Jie, Wen Yiting, Gao Zhenghui, et al. Progress in research on, and the utilization of, hermetia illucens[J]. Chinese Journal of Applied Entomology 2019, 56(5): 997-1006. (in Chinese with English abstract)
[2]柴志強,王付彬,郭明昉,等. 水虻科昆蟲及其資源化利用研究[J]. 廣東農(nóng)業(yè)科學(xué),2012,39(10):182-185.
Chai Zhiqiang, Wang Fubin, Guo Mingfang, et al. Research of Stratiomyidae and its utilization[J]. Guangdong Agricultural Sciences, 2012, 39(10): 182-185. (in Chinese with English abstract)
[3]陳杰,鄺哲師,肖明,等. 畜禽糞便處理的優(yōu)質(zhì)昆蟲黑水虻[J]. 安徽農(nóng)業(yè)科學(xué),2014(24):8180-8182.
Chen Jie, Kuang Zheshi, Xiao Ming, et al. High quality insect for animal manure treatment-hermetia illucens[J]. Journal of Anhui Agricultural Sciences, 2014, 42(24): 8180-8182. (in Chinese with English abstract)
[4]徐齊云,龍鏡池,葉明強,等. 黑水虻幼蟲的發(fā)育速率及食物轉(zhuǎn)化率研究[J]. 環(huán)境昆蟲學(xué)報,2014,36(4):561-564.
Xu Qiyun, Long Jingchi, Ye Mingqiang, et al. Development rate and food conversion efficiency of black soldier fly, hermetia illucens[J]. Journal of Environmental Entomology, 2014, 36(4): 561-564. (in Chinese with English abstract)
[5]袁橙,魏冬霞,解慧梅,等. 黑水虻幼蟲處理規(guī)模化豬場糞污的試驗研究[J]. 畜牧與獸醫(yī),2019,51(11):49-53.
Yuan Cheng, Wei Dongxia, Xie Huimei, et al. Research on treatment of fecal pollution on large scale pig farms with black soldier fly larva[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(11): 49-53. (in Chinese with English abstract)
[6]滕星,張永鋒,溫嘉偉,等. 黑水虻生物特性及其人工養(yǎng)殖的影響因素研究進展[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報,2019,41(2):134-141.
Teng Xing, Zhang Yongfeng, Wen Jiawei, et al. Research progress in the biological characteristics and influencing factors of rearing black soldier fly[J]. Journal of Jilin Agricultural University, 2019, 41(2): 134-141. (in Chinese with English abstract)
[7]王小波,李景龍,尚東維,等. Cu2+、Zn2+、Cd2+對黑水虻幼蟲生長的影響及在蟲體和蟲糞的積累[J]. 環(huán)境昆蟲學(xué)報,2019,41(2):387-393.
Wang Xiaobo, Li Jinglong, Shang Dongwei, et al. Effect of Cu2+, Zn2+, Cd2+on the growth of hermetia illucens larvae and accumulation in larvae and feces[J]. Journal of Environmental Entomology, 2019, 41(2): 387-393. (in Chinese with English abstract)
[8]漆招. 蟲糞返飼和益生菌對黑水虻處理豬糞尿效果的研究[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2019.
Qi Zhao. Effect of Refeeding of Insect Feces and Probiotics on Swine Feces Treated by Black Soldier Fly[D]. Changsha: Hunan Agricultural University, 2019. (in Chinese with English abstract)
[9]張銳,韓佃雷,吉巧麗,等. 離散元模擬中沙土參數(shù)標定方法研究[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(3):49-56.
Zhang Rui, Han Dianlei, Ji Qiaoli, et al. Calibration methods of sandy soil parameters in simulation of discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 49-56. (in Chinese with English abstract)
[10]石林榕,趙武云,孫偉. 基于離散元的西北旱區(qū)農(nóng)田土壤顆粒接觸模型和參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):181-187.
Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)
[11]邢潔潔,張銳,吳鵬,等. 海南熱區(qū)磚紅壤顆粒離散元仿真模型參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(5):158-166.
Xing Jiejie, Zhang Rui, Wu Peng, et al. Parameter calibration of discrete element simulation model for lateritic soil particles in hot areas of Hainan Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 158-166. (in Chinese with English abstract)
[12]馬帥,徐麗明,袁全春,等. 葡萄藤防寒土與清土部件相互作用的離散元仿真參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(1):40-49.
Ma Shuai, Xu Liming, Yuan Quanchun, et al. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 40-49. (in Chinese with English abstract)
[13]武濤,黃偉鳳,陳學(xué)深,等. 考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標定[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報,2017,38(3):93-98.
Wu Tao, Huang Weifeng, Chen Xueshen, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles[J]. Journal of South China Agricultural University, 2017, 38(3): 93-98. (in Chinese with English abstract)
[14]王黎明,范盛遠,程紅勝,等. 基EDEM 的豬糞接觸參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(15):95-102.
Wang Liming, Fan Shengyuan, Cheng Hongsheng, et al. Calibration of contact parameters for pig manure based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 95-102. (in Chinese with English abstract)
[15]林嘉聰,羅帥,袁巧霞,等. 不同含水率蚯蚓糞顆粒物料流動性研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(9):221-227.
Lin Jiacong, Luo Shuai, Yuan Qiaoxia, et al. Flow properties of vermicompost particle with different moisture contents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 221-227. (in Chinese with English abstract)
[16]羅帥,袁巧霞,Shaban G,等. 基于JKR粘結(jié)模型的蚯蚓糞基質(zhì)離散元法參數(shù)標定[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(4):343-350.
Luo Shuai, Yuan Qiaoxia, Shaban G, et al. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 343-350. (in Chinese with English abstract)
[17]袁全春,徐麗明,邢潔潔,等. 機施有機肥散體顆粒離散元模型參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(18):21-27.
Yuan Quanchun, Xu Liming, Xing Jiejie, et al. Parameter calibration of discrete element model of organic fertilizer particles for mechanical fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 21-27. (in Chinese with English abstract)
[18]馮俊小,林佳,李十中,等. 秸稈固態(tài)發(fā)酵回轉(zhuǎn)筒內(nèi)顆粒混合狀態(tài)離散元參數(shù)標定[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(3):208-213.
Feng Junxiao, Lin Jia, Li Shizhong, et al. Calibration of discrete element parameters of particle in rotary solid state fermenters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 208-213. (in Chinese with English abstract)
[19]賈旭光,陳曦,李鑫. 不同粒度和堆載形態(tài)下散體瞬時自然安息角的實驗研究[J]. 現(xiàn)代礦業(yè),2015,549(1):25-27.
Jia Xuguang, Chen Xi, Li Xin. Experiment research on instantaneous natural repose angle of granular slope under different granularity and stack form[J]. Modern Mining, 2015, 549(1): 25-27. (in Chinese with English abstract)
[20]吳愛祥,孫業(yè)志,劉湘平. 散體動力學(xué)理論及其應(yīng)用[M].北京:冶金工業(yè)出版社,2002.
[21]賈富國,韓燕龍,劉揚,等. 稻谷顆粒物料堆積角仿真預(yù)測方法[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(11):254-260.
Jia Fuguo, Han Yanlong, Liu Yang, et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 254-260. (in Chinese with English abstract)
[22]曹波,李文輝,王娜,等. 基JKR模型的濕式滾拋磨塊離散元參數(shù)標定[J]. 表面技術(shù),2019,48(3):249-256.
Cao Bo, Li Wenhui, Wang Na, et al. Calibration of discrete element parameters of the wet barrel finishing abrasive based on JKR model[J]. Surface Technology, 2019, 48(03): 249-256. (in Chinese with English abstract)
[23]李俊偉,佟金,胡斌,等. 不同含水率黏重黑土與觸土部件互作的離散元仿真參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(6):130-140.
Li Junwei, Tong Jin, Hu Bin, et al. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 130-140. (in Chinese with English abstract)
[24]EDEM 2.5 theory reference guide[R/OL]. 2014-12-05 [2015-06-07]. http://www.docin.com/p-980174717.html
[25]Johnson K L, Kendall K, Robert A D. Surface energy and contact of elastic solids[J]. Proceedings of the Royal Society A, 1971, 324: 301-313.
[26]王國強. 離散單元法及其在 EDEM上的實踐[M]. 西安:西北工業(yè)大學(xué)出版社,2010.
[27]葛宜元. 試驗設(shè)計方法與Design-Expert軟件應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2015.
[28]任露泉. 試驗設(shè)計與優(yōu)化[M]. 北京:科學(xué)出版社,2015.
[29]趙偉,陳晨,劉倩,等. 利用Minitab優(yōu)化耐高溫淀粉酶發(fā)酵培養(yǎng)條件[J]. 中南大學(xué)學(xué)報:自然科學(xué)版,2010,41(5):1652-1657.
Zhao Wei, Chen Chen, Liu Qian, et al. Optimization of medium for thermostable-amylase fermentation using minitab[J]. Journal of Central South University: Science and Technology, 2010, 41(5): 1652-1657. (in Chinese with English abstract)
Parameter calibration of discrete element simulation model for pig manure organic fertilizer treated with Hermetia illucen
Peng Caiwang1, Xu Daojun2, He Xi3, Tang Yanhua4, Sun Songlin1※
(1.,,410128,; 2.,,410128,; 3.,,410128,; 4.,410128,)
Pig manure treated by the Hermetia illucen was an organic fertilizer, to obtain the contact parameters of organic fertilizer accurately and quickly,, this work combine the method of a cylindrical lifting physical test with discrete element method, and simulation parameters of organic fertilizer oftreated with pig manure with moisture content of 43.6% was calibrated. Firstly, a physical test was carried out. The diameters of organic fertilizer of Hermetia illucen treated with pig manure particles were between 1.6 and 2.6 mm, and an steel cylinder with an inner diameter of 40 mm and a height of 120 mm was used. The organic fertilizertreated with pig manure particles were filled into the cylinder, and then lifted with a speed of 0.03 m/s. The angle of repose of the organic fertilizertreated with pig manure was measured and the test was repeated for five times, as the mean angle of repose was 39.35°, and the variable coefficient was 0.75%. Secondly, the simulation test was carried out. Hertz-Mindlin with JKR contact model was selected from the system, and the discrete element simulation of the physical stacking test was performed by EDEM. Since the organic fertilizertreated with pig manure particles were near-spherical, the basic model of the software default was adopted to simulate organic fertilizertreated with pig manure granules. Therefore, a basic sphere model with a radius of 1 mm was used and the three-dimension geometry model built by Solid Works was imported into the simulation software, with the cylinder lifting speed was 0.03 m/s, the fixed time step was 22% of Rayleigh time step, and the target save interval was 0.01 s. Repose angle of organic fertilizertreated with pig manure was taken as response value based on the Design Expert software8.0.6, and P-BD (Plackett-Burman Design) test was used to screen 10 initial parameters. It was found that not all discrete element model parameters of organic fertilizertreated with pig manure had significant impact on the angle of repose, so a screening process was made through Plackett-Burman Design. The results showed that organic fertilizer oftreated with pig manure poisson ratio, organic fertilizertreated with pig manure particle density, and organic fertilizertreated with pig manure organic fertilizer oftreated with pig manure rolling friction coefficient had significant impact on angle of repose. The best range of three significant influencing factors was determined by the steepest climbing test, the other seven factors in this test were the intermediate values of the initial range, and the three significant parameters gradually were increased and decreased until the relative error between the simulated value and the physical test value reached the minimum. Thirdly, the accumulation angle of organic fertilizertreated with pig manure was taken as the response value, Box-Behnken Design test was used to fit the test results using regression analysis, and the accumulation angle regression model was obtained. The determination coefficient2(0.988 1) and the correction determination coefficient2adj (0.966 7) were both close to 1, indicating the model fitted better. The precision was 21.510, the variable coefficient was 1.78% and the lack-of-fit was non-significant, which showed that the regression model was very significant, and the accumulation angle could be predicted according to the model. the regression model was optimized, and the optimal values of three significant factors were obtained: organic fertilizertreated with pig manure poisson ratio was 0.11, organic fertilizer oftreated with pig manure particle density was 1 703 kg/m3, and the coefficient of rolling friction of organic fertilizertreated with pig manure particleorganic fertilizer oftreated with pig manures was 0.13. The simulation analysis was performed by the optimal parameter combination. The average repose angle was 38.61o, and the relative error between the repose angle and the experiment was 1.88%. which meant that the calibration parameters were accurate. The result can provide theoretical basis for the design of organic fertilizer oftreated with pigrelated collecting and sieving machinery.
discrete element; mechanization; calibration; organic fertilizer; EDEM; accumulation angle
彭才望,許道軍,賀喜,等. 黑水虻處理的豬糞有機肥離散元仿真模型參數(shù)標定[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(17):212-218.doi:10.11975/j.issn.1002-6819.2020.17.025 http://www.tcsae.org
Peng Caiwang, Xu Daojun, He Xi, et al. Parameter calibration of discrete element simulation model for pig manure organic fertilizer treated with Hermetia illucen[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 212-218. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.025 http://www.tcsae.org
2020-05-04
2020-07-31
國家重點研發(fā)計劃項目(2016YFD0501209);農(nóng)用動力平臺智能化關(guān)鍵技術(shù)與裝備研發(fā)(2018NK2061);湖南農(nóng)業(yè)大學(xué)“雙一流”建設(shè)項目(SYL201802015)
彭才望,博士生,講師,主要從事農(nóng)業(yè)與畜牧業(yè)機械化設(shè)備研究與設(shè)計。Email:hnndpcw@163.com
孫松林,教授,博導(dǎo),主要從事現(xiàn)代農(nóng)業(yè)機械化設(shè)備研究。Email:hnndssl@163.com
10.11975/j.issn.1002-6819.2020.17.025
S216; S3; X713
A
1002-6819(2020)-17-0212-07