郝建軍,聶慶亮,馬璐萍,李建昌,宋亞輝,龍思放,張賀斌
錐盤式花生種子脫殼裝置研制
郝建軍1,聶慶亮1,馬璐萍1,李建昌1,宋亞輝2,龍思放1,張賀斌1
(1. 河北農業大學機電工程學院,保定 071001;2. 河北省農林科學院糧油作物研究所,石家莊 050035)
針對現有花生脫殼機脫凈率低、種仁損傷率高及其對花生品種適應性差等問題,該研究設計了一種錐盤式花生種子脫殼機構。以花育23花生為試驗對象,利用EDEM軟件對花生莢果進行脫殼模擬試驗,通過仿真分析與脫殼裝置樣機試驗獲得了脫殼機構最優結構參數。為進一步提高脫殼質量,在上下錐盤表面粘貼橡膠刺皮,以錐盤式花生脫殼機構的下錐盤轉速、橡膠凸起數目、最小脫殼間隙為試驗因素,脫凈率、損傷率為響應值,進行單因素試驗和Box-Behnken試驗。利用Design-Expert軟件對試驗結果進行方差分析,以建立脫凈率、損傷率與下錐盤轉速、橡膠凸起數目及最小脫殼間隙的回歸模型。通過提高脫凈率、降低損傷率的雙目標優化得到關鍵參數的最優組合為:下錐盤轉速270 r/min,橡膠凸起數目5 500個/m2,最小脫殼間隙11 mm。樣機試驗表明,粘貼橡膠刺皮的錐盤式脫殼裝置樣機的脫凈率和損傷率均值分別為 97.84%和3.27%;與滾筒式花生種子專用剝殼機相比,有橡膠刺皮的錐盤式脫殼裝置的脫凈率提高了2.03個百分點,損傷率降低了0.67個百分點。橡膠刺皮疲勞損傷試驗表明,累計脫殼作業90 h后橡膠刺皮嚴重磨損,脫殼質量降低,應及時更換。研究結果可為花生種子脫殼機的研發及改進提供參考。
農業機械;設計;試驗;花生種子;錐盤式;脫殼機;EDEM
中國是世界花生生產大國,花生種植面積多達500萬hm2,產量多達1 700萬t,約占世界花生總產量的40%左右[1]。種子脫殼是花生播前備種的重要環節,脫殼后的花生種子質量直接影響出苗、生長和產量等[2]。
目前,花生種子脫殼多依據花生莢果的外形特點,采用揉搓、擠壓、撞擊等原理,利用脫殼部件(滾筒式、平面式等)與脫殼篩(沖孔篩、柵條篩等)間的相互作用使花生莢果開裂、破碎完成脫殼,如Rostami等[3]設計的滾筒式花生脫殼機,高連興等[4]研制的三輥式小區育種花生脫殼機,陸榮等[5-8]研發的錐滾筒式花生脫殼機,Helmy等[9]研制的往復式花生脫殼機,Oluwole等[10]研制的離心式花生脫殼機,王軍峰等[11]研制的刮板式花生脫殼機,高學梅[12]設計的打擊揉搓式花生脫殼關鍵部件。上述花生脫殼機均在一定程度上存在脫凈率低、花生種仁損傷率高、對花生品種適應性差等問題。針對上述問題,本文設計了一種錐盤式花生種子脫殼機構,以期實現不同品種花生種子的高效低損脫殼。
錐盤式花生種子脫殼機(2 100×1 050×1 750,mm)主要由脫殼裝置、風選裝置和機架3部分組成,具體結構如圖1所示。

1.進料斗 2.支撐板 3.螺紋柱 4.上錐盤 5.下錐盤 6.脫殼支撐板 7.紗網 8.紗網連接擋板 9.脫殼調速電機 10.風選風機 11.三角帶與帶輪 12.出料板 13.振動篩 14.動力電機 15.篩選風機 16.機架 17.連桿 18.止動螺母 19.碎殼導向板
脫殼裝置由進料斗、上錐盤、紗網、紗網連接擋板、下錐盤、脫殼調速電機、支撐板、脫殼支撐板和螺紋柱等組成;風選裝置主要由風選風機、三角帶與帶輪、出料板、振動篩、風選電機、篩選風機、連桿和碎殼導向板等組成。
脫殼機構結構如圖2所示。上錐盤固定在支撐板底部,通過調節止動螺母實現上錐盤軸向可調,下錐盤通過聯軸器與安裝在脫殼支撐板底部的脫殼調速電機連接。

1.上錐盤 2.支撐板 3.下錐盤 4.聯軸器 5.脫殼支撐板 6.脫殼調速電機7.螺紋柱 8.止動螺母 9.進料斗
脫殼錐盤(如圖3)是脫殼機構的關鍵部件,上下錐盤間形成的環錐形空腔構成脫殼室,通過移動上錐盤軸向位置調節脫殼間隙,以適應不同品種花生的脫殼作業需求。脫殼作業時,下錐盤由脫殼調速電機帶動轉動,花生莢果由進料斗落入脫殼室,在離心力、摩擦力、重力等作用下沿下錐盤斜面向下移動,外形尺寸較大的花生莢果在上下錐盤的擠搓和剪切作用下外殼開裂、破碎后,花生種仁從上下錐盤間隙流出并進入風選裝置,與此同時外形尺寸較小的花生莢果依次沿下錐盤斜面向下運動至脫殼室下方的狹窄空間,并在上下錐盤的擠搓和剪切作用下完成脫殼。

注:α為下錐盤傾角,(°);β為上錐盤傾角,(°);h1最大脫殼間距,mm;h2為最小脫殼間距,mm;d1為花生莢果直徑,mm;d2為花生種仁直徑,mm;D1為進料口直徑,mm;D為錐盤最大直徑,mm;H為下錐盤高度,mm;下同。
花生莢果脫殼受力狀況如圖4所示。

注:G為花生莢果的重力,N;F為花生莢果所受的離心力,N;ω為下錐盤角速度,rad·s-1;f、f1、f2為花生莢果所受的摩擦力,N;F1、F2分別為上、下錐盤對花生莢果的支持力,N。
根據圖4可知:


由花生莢果脫殼受力分析可知,花生莢果的受力與錐盤轉速,上下錐盤傾角、,花生莢果所處位置的回轉半徑及對應的脫殼間隙有關。以脫殼室中花生莢果在克服離心力、摩擦力后能自動下滑為極限條件可知[13],∑F≤0、∑F≤0。由式(1)、(2)分析可知,錐盤轉速越大,花生莢果所受摩擦力和離心力越大,越有利于脫殼,但過大的離心力不僅會阻礙花生莢果向下移動,降低脫殼效率,而且還會增大花生種仁的受損概率,故錐盤轉速不宜過大,結合前期脫殼試驗確定下錐盤轉速為100~500 r/min。
離散元法(Distinct Element Method,DEM)是一種處理非連續介質問題的數值模擬方法,廣泛應用于散體物料處理領域。EDEM 軟件是基于離散單元法的通用 CAE 分析軟件,常用于工業、農業生產中的顆粒處理和操作系統進行模擬和分析[14-16]。為分析錐盤傾角對花生脫殼的影響,脫殼作業中將每個花生莢果視為獨立運動顆粒,利用EDEM[17-18]對不同錐盤傾角組合進行仿真分析,并結合樣機脫殼試驗確定脫殼機構最優結構參數。
以種植范圍廣的花育23花生為研究對象進行脫殼仿真分析,其三維尺寸在方向上分別為34~40 mm、12~14 mm、11~13 mm[19]。在EDEM中,利用顆粒填充方法根據花生莢果(如圖5a)三維尺寸分布均值建立花生莢果模型(如圖5b),采用Hertz-Mindlin模型[20]作為花生莢果與花生莢果及上下錐盤(鋼)間的接觸模型,參照文獻[21-25]設置脫殼仿真參數,如表1所示。
由圖3可知,為使花生莢果能夠順利進入脫殼室,應滿足最大脫殼間距1大于花生莢果直徑1;為保證花生莢果在上下錐盤作用下完成脫殼,應滿足花生莢果直徑1大于最小脫殼間距2;為保證花生種仁能從環錐形脫殼空腔中順暢進入風選裝置,應滿足最小脫殼間距2大于花生種仁直徑2。結合前期脫殼試驗,初選1≥70 mm,2≥6 mm,上下錐盤最大直徑=400 mm,上錐盤進料口直徑1=160 mm,下錐盤臺體高度=80 mm。為保證上下錐盤構成圖3所示的脫殼室,錐盤傾角組合如表2所示。利用Inventor軟件按照上述參數創建錐盤三維模型,并將其導入EDEM軟件中進行仿真。結合花生種子三維尺寸及預仿真試驗結果,仿真參數設置為最小脫殼間隙11 mm、下錐盤轉速300 r/min,花生莢果離散元模型(生成速率20個/s,生成時長10 s)由進料口處所設置的顆粒工廠生成并自由落入脫殼室,喂料速率由公式(3)計算可得為3.6 kg/min,仿真模型如圖5c所示。

式中V為喂料速率,kg/min;m為單個花生質量(每粒質量約3 g)[19],g;n為花生莢果生成速率,個/s。

表1 仿真參數
仿真結束后,每錐盤傾角組合分別分3次隨機選取5粒花生莢果模型,導出每時刻合力值并計算最大合力均值(如表2所示)。由表2可知,=20°、=15°,=30°、=20°,=30°、=25°,=40°、25° 4種錐盤傾角組合時,所得的合力均值均介于60~70 N,此時可獲得較高的脫凈率和較低的損傷率[22]。按照上述4種錐盤組合所得合力均值繪制曲線如圖6所示。由圖6可見,當上錐盤傾角=30°、下錐盤傾角=25°時,花生莢果模型所受合力均值最大(≈68 N),且受最大合力均值時間最長(≈0.55 s),有利于充分脫殼。

表2 錐盤傾角組合及花生莢果模型所受最大合力均值

圖6 花生莢果模型所受合力均值曲線
分別按上述4組錐盤傾角組合試制脫殼裝置樣機(如圖7)。按照脫殼仿真參數(最小脫殼間隙11 mm、下錐盤轉速300 r/min、喂料速率3.6 kg/min)對含水率為15%~18%的花育23花生莢果進行5次脫殼試驗,每次試驗選取花生莢果5 kg,按照公式(4)~(5)計算脫凈率和損傷率,結果如表3。由表3可知,當=25°、=30°時所得脫凈率和損傷率分別為95.8%、3.8%,綜合脫殼效果更好,且滿足花生脫殼質量要求(脫凈率≥95%,損傷率≤4%)[26]。


式中1為花生脫凈率;2為花生損傷率;為脫殼所得完整花生種仁質量(花生種仁無損傷),g;1為脫殼所得損傷花生種仁質量,g;2為未脫殼花生莢果的花生種仁質量(將未脫殼的花生莢果人工去殼后稱重所得),g。

圖7 花生種子脫殼裝置樣機

表3 脫凈率與損傷率
為進一步提高脫凈率,降低損傷率,采用BD801開姆洛克粘合劑將丁腈橡膠[27]刺皮(結構參數如表4所示)粘貼在表面拉毛處理后的錐盤表面。粘貼橡膠刺皮不僅能夠緩減剛性錐盤對花生的沖擊,以減少花生種仁損傷,還能減緩花生莢果群的流動,增大錐盤對花生莢果的磨搓作用力和磨搓作用時間,有利于花生莢果的破損、開裂。

表4 橡膠刺皮結構參數
選取含水率為15%~18%的花育23花生為研究對象,利用錐盤粘貼橡膠刺皮的脫殼裝置樣機(如圖7所示,=30°、=25°)進行脫殼試驗,分析下錐盤轉速、橡膠凸起數目、最小脫殼間隙3個主要參數對花生脫凈率和損傷率的影響。試驗參數設置為:下錐盤轉速100~500 r/min、橡膠凸起數目1 000~9 000個/m2、上下錐盤最小脫殼間隙7~15 mm。每組試驗選取花生莢果5 kg,喂料速率3.6 kg/min。
由圖8a(下錐盤轉速對花生脫凈率和損傷率的影響)可見,隨著下錐盤轉速的增加,脫凈率迅速增加并在趨于穩定后隨下錐盤轉速的增加而降低,但下錐盤轉速過大時花生種仁損傷率較大,這是由于下錐盤轉速較高時,增大了花生種仁與錐盤的碰撞概率,從而增大了花生種仁的損傷率。為達到花生脫殼質量要求(脫凈率≥95%,損傷率≤4%)[26],下錐盤轉速取值為200~400 r/min。
由圖8b(橡膠凸起數目對花生脫凈率和損傷率的影響)可見,橡膠凸起數目對花生種仁損傷率影響較大,這是由于橡膠刺皮為柔性材料,可緩沖花生種仁與錐盤間的沖擊,從而在一定程度上降低了花生種仁的損傷。但橡膠刺皮的凸起密度過大,會增加花生種仁從脫殼室中的流出阻力,延長花生種仁滯留在脫殼室內的時間,從而在一定程度上增加了花生種仁的損傷概率。為達到花生脫殼質量要求,橡膠凸起數目取值3 000~7 000個/m2。
由圖8c(最小脫殼間隙對花生脫凈率和損傷率的影響)可見,隨著最小脫殼間隙的增加,脫凈率和損傷率呈遞減的趨勢,但最小脫殼間隙過大時,花生莢果受上下錐盤的作用不充分,導致花生莢果脫殼不徹底,脫凈率較低。當最小脫殼間隙較小時,花生莢果受上下錐盤的脫殼作用大,雖然花生莢果的脫凈率較高,但在一定程度上增加了花生種仁的受損概率。為達到花生脫殼質量要求,取最小脫殼間隙9~13 mm。

圖8 單因素試驗結果分析
3.2.1 Box-Behnken試驗方案設計
在Design Expert 8.0.6軟件中,利用Box-Behnken Design試驗進行試驗設計與分析[28],各因素取值范圍根據單因素試驗結果確定,試驗因素水平編碼值如表5所示,試驗方案與結果如表6所示,脫凈率、損傷率回歸方程方差分析結果分別如表7、表8所示。

表5 試驗因素水平編碼表

表6 脫殼試驗方案與結果
注:、、分別為下錐盤轉速、橡膠凸起數目和最小脫殼間隙的水平值,下同。
Note:,,is the level values of the rotation speed of lower cone, number of rubber bumps and the minimum shelling clearance, respectively, the same below.
3.2.2 脫凈率及損傷率的影響因素分析
由表7可知,模型顯著性檢驗值0.0004,失擬項值0.072 6,說明回歸模型極顯著,失擬項不顯著,擬合程度高;對脫凈率的影響,、、2極顯著,顯著,影響顯著順序為2,下錐盤轉速與最小脫殼間隙交互項影響極顯著、橡膠凸起數目與最小脫殼間隙交互項影響顯著,下錐盤轉速與最小脫殼間隙交互項影響不顯著。脫凈率1回歸模型為


表7 脫凈率回歸方程方差分析
注:**極顯著(<0.01)*顯著(0.01≤<0.05),下同。
Note: ** is highly significant (<0.01), * is significant (0.01≤<0.05), the same below.

表8 損傷率回歸方程方差分析
由表8可知,模型顯著性檢驗<0.000 1,失擬項值0.054 4,說明回歸模型極顯著,失擬不顯著,擬合程度高;對花生種仁損傷率的影響,、、2、2極顯著,、顯著,影響顯著順序為、22、、,橡膠凸起數目與最小脫殼間隙交互項影響極顯著,下錐盤轉速與橡膠凸起數目、下錐盤轉速與最小脫殼間隙交互項影響不顯著。種仁損傷率2的回歸模型為

試驗因素交互作用顯著項對脫凈率、損傷率的響應面如圖9所示。由圖9a、圖9b可知,在橡膠凸起數目不變時,脫凈率隨著最小脫殼間隙的增加及下錐盤轉速的提高而減小;在下錐盤轉速不變時,脫凈率隨著最小脫殼間隙的減小及橡膠凸起數目的增大而提高;由圖9c可知,在下錐盤轉速不變時,花生種仁損傷率隨著橡膠凸起數目的減小及最小脫殼間隙的增加而降低。
3.2.3 最優作業參數確定及驗證
根據以上試驗結果,在Design-Expert軟件中以提高脫凈率、降低損傷率為優化目標,對脫殼作業參數進行優化,得到脫殼機構的最優參數組合為:下錐盤轉速269.96 r/min,橡膠凸起數目5 738.99個/m2,最小脫殼間隙11.15 mm,此時脫凈率預測值最高為97.95%,損傷率預測值最低為3.19%,將優化后參數圓整為下錐盤轉速270 r/min、橡膠凸起數目5 500個/m2、最小脫殼間隙11 mm。
采用錐盤有無粘貼橡膠刺皮的錐盤式脫殼裝置樣機和108k-30型滾筒式花生種子專用剝殼機對含水率15%~18%的花育23花生進行5次脫殼對比試驗,每組脫殼試驗的試驗條件為:下錐盤轉速270 r/min、橡膠凸起數目5 500個/m2、最小脫殼間隙11 mm、花生莢果5 kg、喂料速率3.6 kg/min,試驗結果如表9。由表9可知,與滾筒式花生種子專用剝殼機相比,無橡膠刺皮的錐盤式脫殼裝置的脫凈率略高,損傷率較略低,粘貼橡膠刺皮的錐盤式脫殼裝置樣機的脫凈率則提高了2.03個百分點損傷率降低了0.67個百分點。由此可見,錐盤式脫殼裝置樣機脫殼質量較優,且錐盤粘貼橡膠刺皮時的脫殼效果更優,脫殼質量均滿足行業標準要求(脫凈率≥95%,損傷率≤4%)[26]。

表9 花生種子脫殼對比試驗
選用上述粘貼橡膠刺皮的錐盤式脫殼裝置,在灤縣百信合作社對花育23花生進行間歇脫殼作業(每天累計脫殼4 h),測試橡膠刺皮的疲勞損傷及其對脫殼質量的影響,脫殼試驗條件為:下錐盤轉速270 r/min、橡膠凸起數目5 500個/m2、最小脫殼間隙11 mm、喂料速率約3.6 kg/min。試驗結果如圖10所示。

注:下錐盤轉速270 r·min-1;橡膠凸起數目5 500個·m-2;最小脫殼間隙11 mm;喂料速率約3.6 kg·min-1。
由圖10可知,隨著累計脫殼作業時長的增加,脫凈率遞減、損傷率遞增;累計脫殼作業75 h后脫凈率顯著降低,花生種仁損傷率顯著增大;累計脫殼作業90 h后的橡膠刺皮磨損嚴重(橡膠凸起被磨掉),橡膠刺皮表面褶皺撕裂,刺皮邊緣存在翹起的現象(如圖11所示),為保證脫殼質量,此時應及時更換橡膠刺皮。計算可知,粘貼一次橡膠刺皮可完成超過18 000 kg的花生種脫殼。

圖11 累計脫殼作業90 h后橡膠刺皮的磨損狀況
1)為實現花生種子的高效低損脫殼,設計了一種錐盤式花生種子脫殼機構,使用EDEM軟件對花生種子脫殼過程進行仿真分析,利用顆粒填充法,采用Hertz-Mindlin接觸模型,建立花生莢果脫殼仿真模型并進行仿真分析,獲得脫殼機構上下錐盤傾角最佳參數組合為下錐盤傾角25°,上錐盤傾角30°。
2)制備錐盤式脫殼裝置樣機,以花育23花生為試驗對象,使用Design-Expert軟件中的Box-Behnken Design(BBD)中心組合試驗設計方法,建立脫凈率、損傷率與下錐盤轉速、橡膠凸起數目及最小脫殼間隙3個關鍵參數回歸模型。提高脫凈率、降低損傷率目標優化得到3個關鍵參數的最優組合為下錐盤轉速270 r/min,橡膠凸起數目5 500個/m2,最小脫殼間隙11 mm。樣機試驗表明,錐盤式脫殼裝置脫殼質量較優,符合花生脫殼行業標準要求:與滾筒式花生種子專用剝殼機相比,有橡膠刺皮的錐盤式脫殼裝置的脫凈率提了2.03個百分點,損傷率降低了0.67個百分點。
3)橡膠刺皮疲勞損傷對脫殼質量的影響試驗表明,累計脫殼作業90 h后橡膠刺皮磨損嚴重,橡膠刺皮表面褶皺撕裂,且橡膠刺皮邊緣有翹邊的現象,此時的橡膠刺皮不利于花生種的脫殼,應及時更換橡膠刺皮。粘貼一次橡膠刺皮可完成超過18 000 kg的花生種脫殼。
[1]孫宗鶴. 我國科學家成功破譯花生基因組密碼[N]. 光明日報,2019-05-16 .
[2]National Agricultural Statistics Service. Crop production[R]. United States Department of Agriculture, 2018.
[3]Rostami M A, Azadshahraki F, Najafinezhad H. Development and evaluation of a peanut sheller[J]. AMA-Agricultural Mechanization in Asia Africa and Latin America, 2009, 40(2): 47-49.
[4]高連興,回子健,董華山. 三滾式小區育種花生脫殼機設計與試驗[J]. 農業機械學報,2016,47(7):159-165.
Gao Lianxing, Hui Zijian, Dong Huashan. Design and experiment of peanut sheller with three drums for plot breeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 159-165. (in Chinese with English abstract)
[5]陸榮,楊德旭,高連興,等. 直立錐滾筒式小區花生脫殼機設計與試驗[J]. 農業機械學報,2019,50(5):114-123.
Lu Rong, Yang Dexu, Gao Lianxing, et al. Design and test on plot peanut sheller with vertical tapered drum[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 114-123. (in Chinese with English abstract)
[6]劉明國. 立錐式花生脫殼裝置結構與參數設計[J]. 農業科技與裝備,2012(9):24-26,30.
Liu Mingguo. Analysis on the performance of various common precision seed sowing devices[J]. Agricultural Science & Technology and Equipment, 2012(9): 24-26, 30. (in Chinese with English abstract)
[7]劉明國,杜鑫,馬冰. 立錐式花生脫殼裝置性能試驗與參數優選[J]. 農業科技與裝備,2012(11):23-25.
Liu Mingguo, Du Xin, Ma Bing. Performance experiment and parameter optimization of vertical cone-type peanut sheller[J]. Agricultural Science & Technology and Equipment, 2012(11): 23-25. (in Chinese with English abstract)
[8]關紹春. 立式錐滾筒花生脫殼裝置結構與參數設計[J].農業科技與裝備,2014(7):36-38.
Guan Shaochun. Structure and parameter designs of vertical awl-shaped roller peanut shelling device[J]. Agricultural Science & Technology and Equipment, 2014(7): 36-38. (in Chinese with English abstract)
[9]Helmy M A, Abdallah S E, Mitrroi A. Modification and performance evaluation of a reciprocating machine for shelling peanut[J]. Ama-Agricultural Mechanization in Asia Africa and Latin America, 2013, 44(3): 18-24.
[10]Oluwole F A, Abdulrahim A T, Oumarou M B. Development and preliminary testing of a bambara groundnut sheller[J] International Agrophysics, 2007, 21(3): 269-270.
[11]王軍鋒,孫康,陳峰. 刮板式花生脫殼機設計[J].農機化研究,2012,34(12):96-99.
Wang Junfeng, Sun Kang, Chen Feng. The design of scraper peanut sheller[J]. Journal of Agricultural Mechanization Research, 2012, 34(12): 96-99. (in Chinese with English abstract)
[12]高學梅. 打擊揉搓式花生脫殼試驗研究與關鍵部件優化設計[D]. 北京:中國農業科學院,2012.
Gao Xuemei. Experimental Research and Optimization Design of Key Components on Peanut Sheller of Blowing and Rubbing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract)
[13]劉明國. 花生脫殼裝置力學分析[J]. 農業科技與裝備,2013(9):23-25.
Liu Mingguo. Mechanics analysis of peanut shelling device[J]. Agricultural Science&Technology and Equipment. 2013(9): 23-25. (in Chinese with English abstract)
[14]?;萍? 基于離散元技術的EDEM軟件詳解[J]. 智能制造,2012,19(5):36-40.
[15]張強,張旭,孫紹安. 基于EDEM的家用榨油機壓榨腔工作性能仿真研究[J]. 農業工程學報,2018,34(24):283-291.
Zhang Qiang, Zhang Xu, Sun Shaoan. Simulation study on working performance of pressing cavity of household oil press based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(24):283-291. (in Chinese with English abstract)
[16]劉文政,何進,李洪文,等. 基于離散元的微型馬鈴薯仿真參數標定[J]. 農業機械學報,2018,49(5):132-142,149.
Liu Wenzheng, He Jin, Li Hongwen, et al. Calibration of simulation parameters for potato minituber based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 132-142, 149. (in Chinese with English abstract)
[17]郝建軍,龍思放,李浩,等. 機收麻山藥離散元模型構建及其仿真參數標定[J]. 農業工程學報,2019,35(20):34-42.
Hao Jianjun, Long Sifang, Li Hao, et al. Development of discrete element model and calibration of simulation parameters for mechanically-harvested yam[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 34-42. (in Chinese with English abstract)
[18]González-Montellano C, Fuentes J M, Ayuga-Téllez E, et al. Determination of the mechanical propertiesof maize grains and olives required for use in DEM simulations[J]. Journal of Food Engineering, 2012, 111(4): 553-562.
[19]劉明國. 花生脫殼與損傷機理及立錐式脫殼機研究[D]. 沈陽:沈陽農業大學,2011.
Liu Mingguo. Study on Peanut Shelling Damage Mechanism and Development of the Vertical cone type shelling machine[D]. Shenyang: Shenyang Agricultural University, 2011. (in Chinese with English abstract)
[20]張濤,劉飛,趙滿全,等. 大豆種子與排種器接觸物理參數的測定與離散元仿真標定[J]. 中國農業大學學報,2017,22(9):86-92.
Zhang Tao, Liu Fei, Zhao Manquan, et al. Measurement of physical parameters of contact between soybean seed and seed metering device and discrete element simulation calibration[J]. Journal of China Agricultural University, 2017, 22(9): 86-92. (in Chinese with English abstract)
[21]顧炳龍,楊亞洲,張玉虎,等. 密度碰撞恢復系數測量[J]. 農業與技術,2017,37(5):50-52.
[22]劉明國,杜鑫,張文. 花生疲勞脫殼試驗研究[J]. 沈陽農業大學學報,2010,41(3):317-320.
Liu Mingguo, Du Xin, Zhang Wen. Experimental study on fatigue shelling of peanuts[J]. Journal of Shenyang Agricultural University, 2010, 41(3): 317-320. (in Chinese with English abstract)
[23]安家新. 螺旋式花生脫殼機關鍵部件設計與仿真分析[D].沈陽:沈陽農業大學,2017.
An Jiaxin. Design and Simulation Analysis on Spirat Peanut Sheller[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese with English abstract)
[24]張賀斌. 磨盤式花生脫殼機的設計及優化[D]. 保定:河北農業大學,2019.
Zhang Hebin. Design and Optimization of Grinding Disc Groundnut Sheller[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese with English abstract)
[25]薛然. 花生莢果圓筒篩篩分特性研究與參數優化[D]. 北京:中國農業科學院,2015.
Xue Ran. Experimental Study and Parameter Optimization of Cylinder Screen for Peanut Pod[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2015. (in Chinese with English abstract)
[26]中華人民共和國農業部.花生剝殼機作業質量:NY/T 994-2006[S]. 北京:中國農村雜志社,2006.
[27]王忠超. 丁腈橡膠性能影響因素研究[D]. 蘭州:西北師范大學,2012.
Wang Zhongchao. Research on Factors Influencing the Performance of Nitrile Rubber[D]. Lanzhou: Northwest Normal University, 2012. (in Chinese with English abstract)
[28]楊亞洲,顧炳龍,蘭孝峰,等. 基于Design-Expert的花生脫凈率及破損率試驗測試及分析[J]. 中國農機化學報,2017,38(5):32-35.
Yang Yazhou, Gu Binglong, Lan Xiaofeng, et al. Test and analysis of penut threshing rate and damage rate based on Desing-Expert[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(5): 32-35. (in Chinese with English abstract)
Development of cone disc type shelling mechanism for peanut seeds
Hao Jianjun1, Nie Qingliang1, Ma Luping1, Li Jianchang1, Song Yahui2, Long Sifang1, Zhang Hebin1
(1.071001;2.050035,)
In China, the planting area of peanut is 5 million hm2and the yield is 17 million kg. Seed shelling is an important part of peanut seed preparation before sowing, the quality of peanut seed after shelling affects the emergence, growth and yield of peanut. At present, peanut seed shelling is mainly based on the shape characteristics of peanut pods, mechanical actions such as kneading, extrusion and impact are used to crack and break the peanut pods to complete the shelling. However, the existing peanut shellers have some problems, such as low rate of shell removal, high rate of seed damage and poor adaptability to peanut varieties. In order to solve the above problems, a cone disc shelling mechanism for peanut seeds was designed. Taking Huayu 23 peanut as the experimental object, the EDEM software was used to simulate the shelling process of peanut pods, and the optimal structure parameters of the cone type shelling mechanism were obtained by simulation analysis and prototype testing. The best structural parameters of the shelling mechanism were obtained through simulation analysis and prototype test, that is, the inclination angle of the lower conewas 25°, and the inclination angle of the upper cone was30°. In order to further reduce the damage rate of peanut seeds, the rubber spines were pasted on the shell surface of the upper and lower cones of the machine. The rotation speed of lower cone, the minimum shelling clearance and number of rubber bumps were taken as experimental factors, threshing rate and damage rate of peanut were taken as response values, single-factor test and Box-Behnken test were conducted. ANOVA was performed on the test results by Design-Expert 8.0.6 software, and the regression models of the threshing rate and the damage rate between the rotation speed of lower cone, the minimum shelling clearance, the number of rubber bumps were established. The optimal combination of the three factors were obtained by the dual objective optimization method, that was the rotation speed of lower cone 270 r/min, the number of rubber bumps within one squire meter 5 500 and the minimum shelling clearance was 11 mm,respectively, at this time, the highest predicted value of the threshing rate was 97.95%, and the lowest predicted value of the damage rate was 3.19%. The comparative experiment results showed that compared with the drum type sheller for peanut seeds, the threshing rate of the cone disc sheller without rubber spines was slightly higher and the damage rate was slightly lower. The threshing rate of the cone disc sheller with rubber spines was increased by 2.03 percentage points, and the damage rate was reduced by 0.67 percentage points..According to the fatigue damage analysis of rubber spines, after 90 hours of shelling operation, the rubber skin was seriously worn and the shelling quality was reduced, it should be replaced in time. The research results can provide reference for the development and improvement of peanut seeds sheller.
agricultural machinery; design; experiments; peanut seeds; cone disc; sheller; EDEM
郝建軍,聶慶亮,馬璐萍,等. 錐盤式花生種子脫殼裝置研制[J]. 農業工程學報,2020,36(17):27-34.doi:10.11975/j.issn.1002-6819.2020.17.004 http://www.tcsae.org
Hao Jianjun, Nie Qingliang, Ma Luping, et al. Development of cone disc type shelling mechanism for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 27-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.004 http://www.tcsae.org
2020-02-28
2020-08-19
河北省現代農業產業技術體系創新團隊項目(HBCT2018090206);河北省重點研發計劃項目(1922418D)
郝建軍,教授,博士生導師,主要從事農機裝備設計與制造研究。Email:hjjpaper@163.com
10.11975/j.issn.1002-6819.2020.17.004
S147.2
A
1002-6819(2020)-17-0027-08