付衛(wèi)國(guó)

摘 要 在素質(zhì)教育的模式下,從關(guān)注課堂到關(guān)注學(xué)生,以人為本是素質(zhì)教育的宗旨;同時(shí),教育在綜合國(guó)力形成中處于基礎(chǔ)地位,承擔(dān)著培養(yǎng)高素質(zhì)人才的重任,江澤民也曾說(shuō)過(guò):“國(guó)運(yùn)興衰,系于教育。”在這一大背景之下,教與學(xué)至關(guān)重要,本文主要就二次根式的概念教學(xué)設(shè)計(jì)進(jìn)行詳細(xì)解說(shuō)。
關(guān)鍵詞 二次根式 教育 教學(xué) 教材
中圖分類號(hào):G633.6文獻(xiàn)標(biāo)識(shí)碼:A
【教材分析】
本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過(guò)平方根、立方根、實(shí)數(shù)等概念及求法,對(duì)實(shí)數(shù)運(yùn)算與性質(zhì)有初步感受的基礎(chǔ)上,對(duì)知識(shí)的進(jìn)一步發(fā)展,同時(shí)也是后面內(nèi)容學(xué)習(xí)的直接基礎(chǔ),起到了承上啟下的作用。
【教學(xué)目標(biāo)】
知識(shí)與技能目標(biāo):使學(xué)生了解二次根式的概念,掌握二次根式的性質(zhì)。理解根號(hào)內(nèi)字母的取值范圍,能根據(jù)二次根式的性質(zhì)化簡(jiǎn)二次根式。
過(guò)程與方法目標(biāo):經(jīng)歷本節(jié)課的學(xué)習(xí)培養(yǎng)學(xué)生由特殊到一般的思維能力,掌握公式的一般推導(dǎo)方法。
情感、態(tài)度與價(jià)值觀目標(biāo):通過(guò)合作學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,體驗(yàn)成功,樹(shù)立學(xué)習(xí)數(shù)學(xué)的信心。
【教學(xué)重難點(diǎn)】
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
【教學(xué)方法】啟發(fā)式、講練結(jié)合。
【教學(xué)過(guò)程】
1復(fù)習(xí)引入
(1)求下列各數(shù)的平方根和算術(shù)平方根,并用數(shù)學(xué)符號(hào)表示
9? ? ?0.64? ? ?0? ? ?5
(2)正數(shù)有幾個(gè)平方根,0有幾個(gè)平方根,負(fù)數(shù)有沒(méi)有平方根?
(3)非負(fù)數(shù)a的平方根是什么?算術(shù)平方根是什么?
教法說(shuō)明:注重將新知識(shí)與舊知識(shí)進(jìn)行聯(lián)系與對(duì)比,引導(dǎo)學(xué)生自己思考、發(fā)現(xiàn)其中的關(guān)聯(lián)。
2自主學(xué)習(xí)、合作探究
二次根式的概念:
(1)形如(a≥0)的式子叫做二次根式。分析形如的含義(含有根號(hào)且被開(kāi)方數(shù)是非負(fù)數(shù))
(2)二次根式有意義,必須滿足什么條件?(被開(kāi)方數(shù)不小于0)
教法說(shuō)明:由學(xué)生熟悉的實(shí)際問(wèn)題出發(fā),用已有的知識(shí)寫出這幾個(gè)問(wèn)題的答案,并分析所得結(jié)果在表達(dá)式上的特點(diǎn),由此引入二次根式的概念。
3精講點(diǎn)撥
二次根式必須具備以下特征:
(1)從形式上看,帶有二次根號(hào);(外觀)
(2)從被開(kāi)方數(shù)看,被開(kāi)方數(shù)不小于0。(內(nèi)里)
教法說(shuō)明:學(xué)生用充足的時(shí)間討論,并思考二次根式應(yīng)滿足的兩個(gè)條件。根據(jù)總結(jié)出的限制條件,對(duì)一個(gè)式子是否是二次根式進(jìn)行正確的判斷。
例1:當(dāng)x 為何實(shí)數(shù)時(shí),二次根式有意義?
引導(dǎo):①外觀:帶二次根號(hào);②內(nèi)里:2x1不小于0
(指名2位同學(xué)上臺(tái)完成,其余學(xué)生獨(dú)立在作業(yè)本上完成,師生共同訂正。做的正確的及時(shí)提出鼓勵(lì),表?yè)P(yáng),存在問(wèn)題的地方要引導(dǎo)學(xué)生自己發(fā)現(xiàn),然后及時(shí)講解,加深理解,避免下次出錯(cuò)。)
4鞏固練習(xí)
學(xué)生小組討論二次根式的概念和特征,并完成練習(xí)。
當(dāng)x為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
(1) ; (2) ;(3)
(4);(5) ;(6)
教法說(shuō)明:對(duì)于二次根式的一些結(jié)論,讓學(xué)生參與思考、探索、學(xué)會(huì)分類討論的方法。
5課堂小結(jié)
(1)二次根式的概念: 一般地,我們把形如(a≥0)的式子叫做二次根式.
(2)二次根式具備的特征:①?gòu)男问缴峡矗瑤в卸胃?hào);②從被開(kāi)方數(shù)看,被開(kāi)方數(shù)不小于0。
教法說(shuō)明:讓學(xué)生感受到研究二次根式的概念和性質(zhì)是實(shí)際生活的需要,二次根式與實(shí)際生活聯(lián)系緊密。以調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
6拓展提升
(1)若,求4xy的平方根。
(2)若,求4x+y的平方根。
7達(dá)標(biāo)檢測(cè)
(1)判斷下列各式是否是二次根式。
,? ,? ,? ,? ,
(2)實(shí)數(shù)x在什么范圍內(nèi)取值時(shí),下列各式有意義?
(1) ,? ? ?(2)
【作業(yè)布置】
(1)a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
① ;? ? ?②
(2)教材練習(xí)題1。
【教學(xué)反思】
通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生對(duì)二次根式的概念和性質(zhì)有了一個(gè)初步的認(rèn)識(shí),再加上課堂上的二次根式概念和性質(zhì)的習(xí)題演練和講解,學(xué)生自己發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,對(duì)知識(shí)的掌握更加牢固一些。在這個(gè)過(guò)程中,學(xué)生自己解決問(wèn)題,有一種成功的體驗(yàn),會(huì)讓學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)更加有興趣,信心大增。
但在這節(jié)課的教學(xué)過(guò)程中,我也發(fā)現(xiàn)了一些問(wèn)題,大部分同學(xué)能理解并運(yùn)用二次根式外形上的性質(zhì),即帶有二次根號(hào),但是對(duì)于被開(kāi)方數(shù)不能小于0運(yùn)用得并不靈活,通常會(huì)忽略掉被開(kāi)方數(shù)可以等于0 的這種情況,導(dǎo)致最后計(jì)算結(jié)果的錯(cuò)誤。所以在后續(xù)的教學(xué)中,應(yīng)對(duì)這方面的練習(xí)加強(qiáng)訓(xùn)練,提高學(xué)生的掌握程度。