999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

同時最優化時間表長與總完工時間的雙代理單機序列分批排序問題

2020-09-05 06:58:06韓鑫鑫
工程數學學報 2020年4期
關鍵詞:排序大學

何 程, 韓鑫鑫

(河南工業大學理學院,鄭州 450001)

1 Introduction

The multi-agent scheduling problem was introduced by Agnetis et al[1]and Baker and Smith[2]. There are several agents, each agent has a job set. The agents have to schedule their jobs on a common processing resource, i.e., a single machine, and each agent wishes to minimize an objective function that depends on the completion times of his own set of jobs. The problem is to find a schedule that satisfies each agent’s requirements for his own objective function.

Scheduling problems involving multiple agents arise naturally in many applications in which negotiation procedures are needed. For example, in industrial management,the multi-agent scheduling problem is formulated as a sequencing game, where the objective is to devise some mechanisms to encourage the agents to cooperate with a view to minimize the overall cost (Curiel et al[3]and Hamers et al[4]).

By now, the multi-agent scheduling problem has been extensively investigated.Agnetis et al[5]studied single-machine scheduling problems with multiple agents, and the considered objective functions are the maximum of regular functions, the number of tardy jobs, and the total weighted completion time. Cheng et al[6,7]and Yuan[8]also the studied the multi-agent scheduling on a single machine.

2 Preliminaries

1) pXjis the processing time of job JXj(X ∈{A,B}, j =1,2,··· ,nX).

2) CXj(σ) is the completion time of job JXjin σ(X ∈{A,B}, j =1,2,··· ,nX).

3 Pareto optimal algorithm

Without loss of generality, we may regard the batches of agent A as a single big batch BAwith the processing time

Lemma 2For each Pareto optimal point of problem,there exists a corresponding effective Pareto optimal schedule.

and at least one of the inequalities is strict, which contradicts to the Pareto optimality of σ. So (i) follows.

This contradicts to the Pareto optimality of σ. So (ii) follows.

Let Fl(j) be the minimum total completion time of jobs {JB1,JB2,··· ,JBj} with l batches and the starting time be zero. The recursion equation for l ≤j ≤lb is:

with initial conditions

F0(0)=0 and F0(j)=+∞, for j >0,

Fl(j)=+∞, for j lb,

where αlj=max{l ?1,j ?b}, βlj=min{j ?1,(l ?1)b}.

Then we define

Finally, we define

Thus, we have the following conclusion by Lemma 3.

Algorithm POP Step 0Calculate

4 Unbounded model

Similar to Lemma 1, we may get the following lemma.

with the initial conditions

F0(0)=0 and F0(j)=+∞, for j >0,

Fl(j)=+∞, for j

猜你喜歡
排序大學
排排序
“留白”是個大學問
排序不等式
《大學》征稿簡則
大學(2021年2期)2021-06-11 01:13:48
《大學》
大學(2021年2期)2021-06-11 01:13:12
48歲的她,跨越千里再讀大學
海峽姐妹(2020年12期)2021-01-18 05:53:08
大學求學的遺憾
恐怖排序
節日排序
刻舟求劍
兒童繪本(2018年5期)2018-04-12 16:45:32
主站蜘蛛池模板: 亚洲美女久久| 五月丁香在线视频| 五月婷婷精品| 国产精品福利尤物youwu | 亚洲成网777777国产精品| 欧美日本在线一区二区三区 | 久久成人免费| 国产97色在线| 好吊色国产欧美日韩免费观看| 经典三级久久| 亚洲第一精品福利| 日韩欧美国产综合| 婷婷丁香色| 性做久久久久久久免费看| 97影院午夜在线观看视频| 香蕉久久永久视频| 91精品在线视频观看| 国产不卡国语在线| 日本道综合一本久久久88| 中文字幕人妻av一区二区| 亚洲综合久久成人AV| 99久久亚洲综合精品TS| 亚洲无码91视频| 日本午夜视频在线观看| 久久久黄色片| 欧美精品不卡| 伊人久久福利中文字幕| 亚洲欧美激情小说另类| 美女内射视频WWW网站午夜| 亚洲国产成人久久精品软件| 国内丰满少妇猛烈精品播| 日韩一区二区三免费高清| 国产日韩精品欧美一区灰| 久久这里只有精品免费| 国产精品任我爽爆在线播放6080| 亚洲高清资源| 狠狠综合久久久久综| 成人福利一区二区视频在线| 国产波多野结衣中文在线播放| 久久久久人妻精品一区三寸蜜桃| 国产AV无码专区亚洲精品网站| a级毛片网| 国产成人精品一区二区三在线观看| 国产成人艳妇AA视频在线| 日韩精品无码一级毛片免费| 无码中文字幕乱码免费2| 久久人午夜亚洲精品无码区| 97超级碰碰碰碰精品| 九色免费视频| 亚洲男人的天堂在线| 亚洲品质国产精品无码| 午夜三级在线| 亚洲第一黄片大全| 国产一二三区视频| 亚洲丝袜中文字幕| 国产成人综合日韩精品无码首页| 网久久综合| 91香蕉视频下载网站| 亚洲婷婷在线视频| 最新国产麻豆aⅴ精品无| 亚洲一级色| 欧洲精品视频在线观看| 丝袜亚洲综合| 亚洲VA中文字幕| 极品尤物av美乳在线观看| 在线播放国产99re| 国产精品嫩草影院av| 免费三A级毛片视频| 最新亚洲av女人的天堂| 欧美成人午夜视频免看| 亚洲日韩第九十九页| 欧美日一级片| 老司机久久99久久精品播放| 色综合激情网| 日韩欧美国产中文| 国产美女91视频| 国产精品久久久久鬼色| 欧美国产综合色视频| 色综合久久综合网| 欧美成人一区午夜福利在线| 在线看片中文字幕| 中国成人在线视频|