999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

海草植株擴繁理論及其定植效應的研究進展*

2020-07-26 10:20:00張沛東張彥浩張宏瑜張秀梅
漁業科學進展 2020年4期
關鍵詞:植物生長

張沛東 張彥浩 張宏瑜 張秀梅

海草植株擴繁理論及其定植效應的研究進展*

張沛東①張彥浩 張宏瑜 張秀梅

(中國海洋大學 海水養殖教育部重點實驗室 青島 266003)

海草(Seagrasses)是地球上一類經陸生植物演化,發展到可以完全在海洋環境中生活的高等被子植物,具有重要的生態功能和經濟價值。本文綜述了近年來國內外對海草植株擴繁理論及其定植效應的研究進展,總結了影響海草植株生長擴繁的環境因素,探討了定植間距、定植階段、施肥處理等定植理論和技術對海草植株定植效應的影響,并對目前存在的科學問題進行歸納總結,就未來我國沿岸受損海草床生態系統的規模化修復研究提出了展望。

克隆生長;生態因子;植株定植;海草

海草(Seagrasses)是地球上一類經陸生植物演化,發展到完全適應海洋環境的高等被子植物,其一般分布于沿岸的潮間帶或潮下帶淺水區(Short, 2007; Lopez, 2011)。構筑的海草床是淺海三大典型生態系統之一,具有極其重要的生態功能和經濟價值,被稱為海洋環境的“生態工程師”,具有強大的水質改善作用和高效的固碳能力(Mcleod, 2011; 高亞平等, 2013),同時,也為眾多海洋生物提供重要的食物來源、棲息地、產卵場、育幼場,甚至病原細菌的生物屏障(Lamb, 2017; 吳亞林等, 2018)。然而,受人類活動和自然環境變遷的影響,全球絕大多數海草床均處于嚴重的日益衰退趨勢,僅1993~2003年全球海草床已有2.6×106hm2退化(Martins, 2005),自1879年首次記錄海草床面積以來,據估計已有超過5.1×106hm2的海草床完全消失(Waycotta, 2009)。

隨著海草床退化的日趨嚴峻,有關海草床生態恢復理論與技術的研究逐漸受到國內外學者的重視。截至目前,海草床的恢復手段主要包括生境恢復法、種子法及植株移植法,其中,植株移植法又可細分為草塊法、草皮法和根狀莖法(Goodman, 1995; Li, 2010)。植株移植法是目前應用最廣泛的修復方法,然而,目前海草苗種人工培育理論和技術尚不成熟,供體植株均采自天然海草床,不僅對供體草床可能會造成較大的負面影響,而且還限制植株移植的規模化發展。因此,研究海草植株人工擴繁理論和技術,實現供體植株的高效人工培育,對建立生態友好型的海草植株移植理論和技術至關重要。

本文綜述了近年來國內外對海草植株擴繁理論及其定植效應的研究進展,概述了影響海草植株擴繁生長的環境因素,探討了植株定植理論和定植技術對海草植株定植效應的影響,并對目前存在的科學問題進行歸納總結,以期為我國沿岸受損海草床生態系統的規模化修復提供理論參考。

1 海草植株擴繁理論研究進展

1.1 海草植株擴繁的理論基礎

植物的生殖方式分為有性生殖與無性生殖。有性生殖為植物的種子生殖,無性生殖包括分株、克隆等,是植株擴繁技術的理論基礎。

Busch等(2010)研究發現,利用種子生殖對水生植物進行擴繁的效果并不理想,種子成活率約為10%,這也成為利用種子實現植株擴繁的限制因素。對于水生植物的組織培養研究相對較少,且利用組織培養方式對海洋植物的擴繁困難較大,僅在菹草()和鳳眼蓮()等種類實現了組織擴繁(高建等, 2006; 李學寶等, 1997),而采取碘化鉀對鰻草()葉片組織進行消毒,污染率達46%,難以達到完全無污染(劉延嶺等, 2013)。通過酶解獲得的鰻草原生質體成活率可達85%,但在后期培養過程中,分裂率極低,只有極少數原生質體出現凹陷并分裂出少量細胞團(崔翠菊等, 2014; Balestri, 1992)。于函(2008)研究發現,海草組織培養使用的消毒液易通過氣道進入組織內部,損害外植體,導致愈傷組織誘導率降低且質量差,外植體移入培養基后,易出現褐化現象,影響培養材料的生長和分化,嚴重抑制愈傷組織的誘導效果。這些因素均嚴重限制了海草的種子擴繁或組織擴繁。

通過無性生殖達到海草種群的持續性維持、更新及擴張是海草床自我維護和自我發育的主要機制,主要有2個方式(圖1):(1)分枝型克隆,在母株最靠近地面處的莖節外形成側枝,母株與側枝、分株之間可進行營養轉移;(2)根狀莖型克隆,母株的根狀莖伸出橫走莖,橫走莖的每一個莖節均可長出若干根,進而生成完整的新植株,且理論上橫走莖能夠無限生長(原永黨等, 2010)。海草植株側枝、分株、分枝的產生可有效促進植株產量的提高,根狀莖的頻繁分枝克隆,將更多的資源投入到水平擴展中,從而獲得較高的植株密度(Watanabe, 2005)。

圖1 海草植株分枝型克隆(A)與根狀莖型克隆(B)

在資源分配策略上,海草將近90%的種群總生物量分配于地下組織和營養枝,進一步表明克隆生長在其種群繁殖中占有重要地位(李樂樂等, 2015)。澳洲波喜蕩草()的分株重量可達 183 mg DW/shoot,卵葉喜鹽草()的分株頻率達到0.5分株/株(Duarte, 1991);南極根枝草()的垂直莖分枝率可達3.8%,龜裂泰來草()的根狀莖分枝率達5.8%(Marbà, 2003)。由此可見,海草通過植株的無性生殖實現其種群的維持、更新以及擴張是至關重要的。

因此,通過促進海草植株的無性生殖,實現植株高效率的分株與分枝,從而增加植株產量與植株密度,是實現植株高效擴繁的首要任務。環境因子對植物擴繁具有極其重要的作用,因此,充分了解環境因子對海草生長發育的影響,查明其生理響應過程,是建立高效的海草植株擴繁理論的關鍵。

1.2 海草植株擴繁的環境適宜性

海水環境因子,如溫度、光照、鹽度、營養鹽、CO2、底質、水流流速等對海草的存活與生長起關鍵性作用。

1.2.1 溫度 溫度影響生物的生理生化過程,是控制海草存活與生長的關鍵因素(Lee, 2007)。溫度在水生生態系統中具有較高的可預測性,對于季節性海草的生長發揮著重要作用。Biebl等(1971)研究發現,溫度首先通過影響植株的光合作用,進而影響植株的生長;其次,溫度可以調節植株葉片的氣孔閉合及光合色素含量,進而調節植株的呼吸作用及光合作用,最終影響植物生長(Robertson, 1984)。不同海草種類對環境溫度的變化表現出不同的適應能力,其適宜生長溫度見表1。

1.2.2 鹽度 鹽度是影響海草存活與生長的關鍵因素。海草一般具有較強的鹽度耐受能力,特別是對低鹽度具有較強的耐受能力,可在鹽度為 5~35 的范圍內正常存活和生長(Nejrup, 2008),但多數種類的鹽度偏好存在較大差異(表2)。從表2可以看出,海草對鹽度的耐受性主要包括形態、生理及分子3個層面(鄧文浩等, 2018)。形態方面主要包括與海水直接接觸且具有一層顯著增厚的細胞壁葉片以及根部表皮細胞具有的細胞壁增厚結構(葉春江等, 2002)。生理方面包括滲透調節以及酶的耐受性。研究發現,鰻草通過無機離子與有機溶質的共同作用完成其滲透調節,即鹽度的耐受性是多種物質共同作用的結果。從海草植株體內提取的 PEP 羧化酶對鹽度具有很高的抗性(葉春江等, 2002),說明海草對鹽度的耐受性在一定程度上是因為其體內的酶具有耐鹽性。此外,海草植株體內不同類型的細胞之間出現離子區域化,即由光合細胞向薄壁細胞轉運,對海草的鹽度耐受性也起到重要作用(葉春江等, 2002)。分子方面的研究發現,鰻草葉片質膜表面存在Na+/H+逆向轉運蛋白,可維持細胞內部較高的電化學梯度,對海草鹽度耐受性至關重要(Fernández, 1999)。Kong等(2013)研究發現,鰻草葉片組織在不同鹽度脅迫下的全長cDNA文庫中存在與耐鹽相關的功能基因,這為海草的耐鹽機制提供了理論基礎。然而,過低的鹽度誘導海草植株光合速率和與之相伴的無機碳含量顯著下降,進而導致植株生長變緩,甚至死亡(Mazzella, 1986)。

表1 不同種類海草的適宜生長溫度

Tab.1 Optimum temperature for growth of different seagrass species

表2 不同種類海草適宜生長的鹽度偏好

Tab.2 Salinity preferences for suitable growth of different seagrass species

1.2.3 光照 光照對海草的生長與分布等具有至關重要的作用。光照主要影響海草的光合作用,植物體內的葉綠素、葉綠素通過對光的吸收,進行C3、C5等一系列生化反應,制造有機物,進而影響到海草的生長。其中,光照周期、光質及光照強度是影響海草生長的關鍵因素。

1.2.3.1 光質 光質與海草光合色素含量密切相關。光敏素(Phytochrome)、向光素(向光蛋白, Phototropin)和隱花素(Cryptochrome)等光受體在植物體內接受光信號,并通過信號轉導,調節植物的生長發育(許大全等, 2015)。植物進行光合作用最有效的光質是藍光和紅光,在水環境生態系統中,光線透過海水時,大部分紅光被吸收,僅有少部分藍光被吸收,因此,與紅光相比,藍光更具有穿透能力。也有研究表明,海草在藍光條件的生長狀況優于自然光條件,因為藍光更能引起植物葉片氣孔的開放,且藍光的效能幾乎是紅光的10倍,處于藍光下的植物細胞色素濃度高,以每分子葉綠素計的光合速率高(Sharkey, 1981; Wilhelm, 2010)。

1.2.3.2 光照強度 光照強度對植物光合作用的影響至關重要。海草植株光合效應模式與陸生植物沒有本質區別。適宜光強范圍內增加光強,激發植株體內的中心色素(P)對光能的捕獲,成為激發態(P*),激發態的中心色素通過連續不斷的氧化還原,完成光能到電能的轉化。

Ochieng等(2010)研發發現,在100%表面輻射照度下,鰻草的莖節長、莖節數等顯著高于34%表面輻射照度。南極根枝草和狹葉波喜蕩草() 2種海草的最低表面輻照度均為24.7% (Dennison, 1993);鰻草生產力呈季節性動態變化,達到最大光合速率所需的飽和光照強度為100~ 200 μmol photons/m·s(Lee, 2005)。因此,在人工環境下開展海草擴繁,營造海草生長所需的飽和光照強度條件,對于提高海草凈光合作用效率,增加海草植株密度具有重要作用。

1.2.3.3 光周期 光周期通過影響植株體的生長,調節物質含量影響植株的生長發育。劉磊等(2005)研究發現,光照16 h時,可顯著提高植物體POD活性;光照24 h時,則顯著增加赤霉素(GA3)含量和降低脫落酸(ABA)含量(Woolley, 1972)。因此,適宜的光照周期可提升植物的生理適應能力,促進植物生長。光周期還影響植物根系對營養元素的吸收,誘導與生長有關基因的表達(Torrey, 1976; 任永哲等, 2006)。

有關光周期對海草生理學特征影響的報道較少。Dennison等(1985)在光飽和強度條件下于淺水區域進行實驗,結果表明,光照時長減少2.9~4.7 h,鰻草植株最大凈光合速率和葉片葉綠素含量提高至對照區植株(光照時間未發生變化)的2倍,而當增加光照時間3.4~4.6 h,其最大凈光合速率比對照區植株減少33%。

1.2.3.5 營養鹽 營養鹽是限制海草生長及生物量的關鍵因素。海草對營養鹽的吸收主要是通過逆電化學需能的化學過程(Fernandez, 1999)。其中,對于NO3–的吸收主要是通過Na+相偶聯的機制完成(Garcia-Sanchez, 2000)。對NH4+的吸收則依托氨轉運蛋白完成,同時,從土壤吸收NH4+與根部對NH4+排放形成氨氮(NH4+-N)轉運體系的動態過程(Ludewig, 2006)。植物體可直接從外界吸收無機磷,經轉運蛋白作用運輸至木質部,一部分在木質部得到積累,另一部分運輸至葉片供植株生長(Loughman, 1957)。Ferdie等(2004)研究表明,充足的氮源和磷源能夠促進海草生長,增加海草側枝數量。此外,營養鹽增加還可促進海草根與葉片的N含量、地上與地下組織生物量的提高(Han, 2017)。不同海草種類,其適宜的營養鹽含量也不同。當水體中NO3–+NO2–含量達0.27~0.64 μmol/L 時,大洋波喜蕩草() 生產力可達3.8~9.4g DW/m·d(Ruiz, 2003);水體NH4+濃度為0.1~6.0 μmol/L時,日本鰻草生產力達到(1.7 ± 0.2) g DW/m·d(Lee, 2006);水體NH4+-N含量超過1.5 μmol/L時,鰻草組織的谷氨酰合成酶活力提高2倍(Touchette, 2007);隨環境N濃度增加,萊氏二藥草()葉片組織的葉綠素含量隨之增加(Jr Heck, 2006)。

1.2.3.6 其他因子 底質是海草根部吸收營養物質的來源,因此,底質的性質影響海草的生物量及分布。有研究表明,當底質的泥沙重量比達到3∶1時,鰻草表現出最佳的生長效果(Zhang, 2015)。從分布角度來看,鰻草較多生長于泥與泥沙底質,而叢生鰻草()大多生長在沙與礫石底質中(江鑫等, 2012)。

重金屬對植物的影響主要是通過破壞葉綠體膜和類囊體膜的超微結構,使植物的光合效率降低。當海水Cd濃度>8.9×10–6mol/L,海草在其中存留超過5 h,其葉綠素、葉綠素含量均明顯下降(Ralph, 1998a,b)。

綜上所述,海草適宜性生長因子是海草植株擴繁的理論基礎。對植株的科學定植則是提升海草植株擴繁效果的關鍵。

2 海草定植效應提升理論與技術的研究進展

將人工培育的實生苗或幼苗移栽至有限的自然環境進行植株自然擴繁的過程,即為定植。通過選定適宜的定植間距和定植時間以及人工施肥等措施,促進定植苗種的生長和擴繁,實現擴繁效率高、生長速度快且節約成本的培育目標,即為定植效應。待定植苗生長至適宜移植的植株規格,即可開展后續的植株移植工作。

2.1 定植間距

定植間距是影響植株生長與分株擴繁的關鍵因素,適宜的定植間距有助于植株對光照的充分利用,提升植株光合效率及擴繁效力。截至目前,對于沉水植物株距、行距與植株分株、生長等關系未見報道。有研究發現,海草植株的移植單元越大,植株成活率越高,但移植密度增高,植株間競爭力增大,則不利于植株擴繁(van Keulen, 2003; van Katwijk, 2009)。

2.2 定植時間

定植時間與植株的生長發育進程息息相關。適宜的定植時間可有效促進植株的高效擴繁。多數研究針對物候變化進行定植,如邱廣龍等(2014)研究表明,干季定植日本鰻草,其成活率高于雨季,在非生長季節(11月~翌年1月)定植日本鰻草,其成活率(86.3%)遠高于生長季節(4~10月);劉燕山等(2015)在4~9月分批次定植鰻草,結果發現,7~9月定植的鰻草植株成活率最高(100%)。

2.3 施肥

底質施肥可有效改善植株生存所需的營養物質,保持土壤肥力,有助于提高植株生物量和植株存活率。Balestri等(2014)對小絲粉草()進行海區底質施肥發現(肥料N∶P=13∶6,平均每株1 g),施肥區植株的生物量和密度均顯著高于自然區域植株;Sheridan等(1998)對萊氏二藥草進行海區施肥處理(肥料N∶P= 14∶14,平均每個草塊5.25 g)、Peralta等(2003)對鰻草進行海區施肥處理(肥料N∶P = 1∶4,30、50 mg N g /DW)發現,2種海草的植株密度與未施肥處理組相比均顯著增加;La Nafie等(2013)對卵葉喜鹽草和單脈二藥草()進行海區施肥處理(肥料N∶P∶K=18∶9∶3,2 kg)發現,2種海草的植株高度均顯著高于未施肥海區的植株高度。由此可見,合適的肥料種類與正確的施肥方式可明顯促進海草植株的擴繁生長。

3 問題與展望

海草植株移植修復法是目前應用最廣泛的一種海草床退化生境修復技術,但移植的供體植株均來自天然草床,對供體草床破壞性較大。因此,海草植株移植修復策略的關鍵是用盡量少的供體植株,實現其高效人工擴繁,達到修復與保護雙贏的修復效果。當前,亟待解決的科學問題是如何利用海草植株克隆繁殖這一特性,建立植株高效擴繁理論和技術,并通過適宜的陸海接力方式,達到最佳的海草供體植株擴繁效果。盡管目前有關海草水溫、鹽度、光照強度和營養鹽的適宜性研究已有較多報道,但針對光照周期、HCO3–濃度、光質等環境要素對海草生長擴繁影響的研究還很少,系統的海草植株擴繁理論尚未建立。此外,有關定植間距、定植時間、施肥等海草植株定植理論和技術亦非常薄弱。

針對目前存在的主要問題,急需開展的重點工作主要包括:1) 研究光照周期、HCO3–濃度等關鍵環境因子對海草植株擴繁的促進作用,完善并建立海草植株擴繁理論;2) 借鑒陸生經濟植物高效擴繁技術,研發低成本的海草植株人工擴繁平臺和設施;3) 研究定植時間、密植、深耕、施肥等措施對植株擴繁的影響,形成植株定植效應提升理論和技術,實現植株擴繁的陸海接力和生態培育。最終形成海草植株擴繁與定植技術體系,為我國沿岸受損海草床生態系統的規模化修復提供技術支撐。

Abe M, Yokota K, Kurashima A,. Temperature characteristics in seed germination and growth ofAscherson and Graebner from Ago Bay, Mie Prefecture, central Japan. Fisheries Science, 2009, 75(4): 921–927

Adams JB, Bate GC. The ecological implications of tolerance to salinity by(Petagna) Grande andSetchell. Botanica Marina, 1994, 37(5): 449–456

Balestri E, Cinelli F. Isolation of protoplasts from the seagrass(L.) Delile. Aquatic Botany, 1992, 43(3): 301–304

Balestri E, Lardicci C. Effects of sediment fertilization and burial ontransplants: implications for seagrass restoration under a changing climate. Restoration Ecology, 2014, 22(2): 240–247

Beer S, Eshel A, Waisel Y. Carbon metabolism in seagrasses. Journal of Experimental Botany, 1980, 31(123): 1027–1033

Berns DM. Physiological responses ofandto experimental salinity levels. Master′s Thesis of University of South Florida, 2003, 72

Biebl R, Mcroy CP. Plasmatic resistance and rate of respiration and photosynthesis ofat different salinities and temperatures. Marine Biology, 1971, 8(1): 48–56

Busch KE, Golden RR, Parham TA,. Large-scale(Eelgrass) restoration in Chesapeake Bay, Maryland, USA. Part I: A comparison of techniques and associated costs. Restoration Ecology, 2010, 18(4): 490–500

Cui CJ, Liu YL, Wang N,. Isolation and culture of protoplasts in eelgrass. Fishery Science, 2014, 33(8): 508–511 [崔翠菊, 劉延嶺, 王娜, 等. 大葉藻原生質體的分離和培養. 水產科學, 2014, 33(8): 508–511]

Dawes C, Chan M, Chinn R,. Proximate composition, photosynthetic and respiratory responses of the seagrassfrom Florida. Aquatic Botany, 1987, 27(2): 195–201

Deng WH, Lü XF. Advances in studies on salt-tolerance mechanism of. Plant Physiology Journal, 2018, 54(5): 718–724 [鄧文浩, 呂新芳. 大葉藻耐鹽機理的研究進展. 植物生理學報, 2018, 54(5): 718–724]

Dennison WC, Alberte RS. Role of daily light period in the depth distribution of(Eelgrass). Marine Ecology Progress Series, 1985, 25(1): 51–61

Dennison WC, Orth RJ, Moore KA,. Assessing water quality with submersed aquatic vegetation. Bioscience, 1993, 43(2): 86–94

Drysdale FR, Barbour MG. Response of the marine angiospermto certain environmental variables: A preliminary study. Aquatic Botany, 1975, 1(2): 97–106

Duarte CM. Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series, 1991,77(2–3): 289–300

Ferdie M, Fourqurean JW. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnology and Oceanography, 2004, 49(6): 2082–2094

Fernández JA, García-Sánchez MJ, Felle HH. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiospermL. Journal of Experimental Botany, 1999, 50(341): 1763–1768

Gao J, Yang S. Tissue culture and rapid propagation of submerged morcorphyteL. Plant Physiology Communications, 2006, 42(2): 251–252 [高建, 楊劭. 沉水植物菹草的組織培養和快速繁殖. 植物生理學通訊, 2006, 42(2): 251–252]

Gao YP, Fang JG, Tang W,. Seagrass meadow carbon sink and amplification of the carbon sink for eelgrass bed in Sanggou Bay. Progress in Fishery Sciences, 2013, 34(1): 17–21 [高亞平, 方建光, 唐望, 等. 桑溝灣大葉藻海草床生態系統碳匯擴增力的估算. 漁業科學進展, 2013, 34(1): 17–21]

Garcia-Sanchez MJ, Jaime MP, Ramos A,. Sodium- dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plantL. Plant Physiology, 2000, 122(3): 879–885

Goodman JL, Moore KA, Dennison WC. Photosynthetic responses of eelgrass (L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany, 1995, 50(1): 37–47

Han Q, Soissons LM, Liu D,. Individual and population indicators ofrespond quickly to experimental addition of sediment-nutrient and organic matter. Marine Pollution Bulletin, 2017,114(1): 201–209

Ibarra-Obando SE, Huerta-Tamayo R. Blade production ofL. during the summer-autumn period on the Pacific coast of Mexico. Aquatic Botany, 1987, 28(3): 301–315

Jiang X, Pan JH, Han HW,. Effects of substrate and water depth on distribution of sea weedsand. Journal of Dalian Ocean University. 2012, 27(2): 101–104 [江鑫, 潘金華, 韓厚偉, 等. 底質與水深對大葉藻和叢生大葉藻分布的影響. 大連海洋大學學報, 2012, 27(2): 101–104]

Jr Heck KL, Valentine JF, Pennock JR,. Effects of nutrient enrichment and grazing on shoalgrassand its epiphytes: Results of a field experiment. Marine Ecology Progress Series, 2006, 326(1): 145–156

Kahn AE, Durako MJ.seedling responses to changes in salinity and nitrogen levels. Journal of Experimental Marine Biology and Ecology, 2006, 335(1): 1–12

Kaldy JE. Production ecology of the non-indigenous seagrass, dwarf eelgrass (Ascher. and Graeb.), in a Pacific Northwest Estuary, USA. Hydrobiologia, 2006, 553(1): 201–217

Kerr EA, Strother S. Effects of irrdiance, temperature and salinity on photosynthesis of. Aquatic Botany, 1985, 23(2): 177–183

Kong FN, Zhou Y, Sun PP,. Generation and analysis of expressed sequence tags from the salt-tolerant eelgrass species,. Acta Oceanologica Sinica, 2013, 32(8): 68–78

Lamb JB, Water JAJM, Bourne DG,. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science, 2017, 355(6326): 731–733

La Nafie YA, de Los Santos CB, Brun FG,. Biomechanical response of two fast- growing tropical seagrass species subjected to in situ shading and sediment fertilization. Journal of Experimental Marine Biology and Ecology, 2013, 446: 186–193

Larkum AWD, Davey PA, Kuo J,. Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany, 2017, 68(14): 3773–3784

Lee K, Park SR, Kim J. Production dynamics of the eelgrass,in two bay systems on the south coast of the Korean peninsula. Marine Biology, 2005, 147(5): 1091–1108

Lee K, Park SR, Kim YK. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 144–175

Lee SY, Kim JB, Lee SM. Temporal dynamics of subtidaland intertidalon the southern coast of Korea. Marine Ecology, 2006, 27(2): 133–144

Li LL, Zheng FY, Liu XQ,. Sexual reproductive characteristics ofL. in Shuangdao Bay. Chinese Journal of Ecology, 2015, 34(10): 2866–2872 [李樂樂, 鄭鳳英, 劉雪芹, 等. 雙島灣大葉藻的有性生殖特征. 生態學雜志, 2015, 34(10): 2866–2872]

Li XB, Liu YD. Studies on the conditions of water hyacinth tissue culture in vitro. Journal of Central China Normal University, 1997, 31(3): 332–335 [李學寶, 劉永定. 鳳眼蓮組織培養的研究. 華中師范大學學報, 1997, 31(3): 332–335]

Li WT, Kim JH, Park JI,. Assessing establishment success oftransplants through measurements of shoot morphology and growth. Estuarine Coastal and Shelf Science, 2010, 88(3): 377–384

Liu L, Liu SQ, Xu L,. Study on the change of nitrogen metabolism and peroxidase activity in onions during different photoperiod and vernalization. Acta Agriculture Boreali- occidentalis Sinica, 2005, 14(6): 90–95 [劉磊, 劉世琦, 許莉, 等. 光周期及春化處理對洋蔥蛋白質合成代謝與POD活性的影響. 西北農業學報, 2005, 14(6): 90–95]

Liu YL, Li XJ, Cui CJ,. Study on the disinfection method for tissue culture of. Journal of Agriculture, 2013, 3(3): 54–56 [劉延嶺, 李曉捷, 崔翠菊, 等. 大葉藻組織培養中外植體消毒方法的研究. 農學學報, 2013, 3(3): 54–56]

Liu YS, Guo D, Zhang PD,. Assessing establishment success and suitability analysis oftransplants using staple method in northern lagoons. Chinese Journal of Plant Ecology, 2015, 39(2): 176–183 [劉燕山, 郭棟, 張沛東, 等. 北方澙湖大葉藻植株枚訂移植法的效果評估與適宜性分析. 植物生態學報, 2015, 39(2): 176–183]

Lopez Y, Royo C, Pergent G,. The seagrassas indicator of coastal water quality: Experimental intercalibration of classification systems. Ecological Indicators, 2011, 11(2): 557–563

Loughman BC, Russell RS. The absorption and utilization of phosphate by young barley plants. Journal of Experimental Botany, 1957, 8(2): 280–293

Ludewig U. Ion transport versus gas conduction: Function of AMT/Rh-type proteins. Transfusion Clinique et Biologique Journal De La Socie?te? Franc?aise De Transfusion Sanguine, 2006, 13(1): 111–116

Marbà N, Duarte CM. Scaling of ramet size and spacing in seagrasses: Implications for stand development. Aquatic Botany, 2003, 77(2): 87–98

Martins I, Neto JM, Fontes MG,. Seasonal variation in short-term survival oftransplants in a declining meadow in Portugal. Aquatic Botany, 2005, 82(2): 132–142

Masini RJ, Manning CR. The photosynthetic responses to irradianceand temperature of four meadow-forming seagrasses. Aquatic Botany, 1997, 58(1): 21–36

Mazzella L, Alberte RS. Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass,L. Journal of Experimental Marine Biology and Ecology, 1986, 100(1–3): 165–180

Mcleod E, Chmura GL, Bouillon S,. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, 9(10): 552–560

Nejrup LB, Pedersen MF. Effects of salinity and water temperature on the ecological performance of. Aquatic Botany, 2008, 88(3): 239–246

Ochieng CA, Short FT, Walker DI. Photosynthetic and morphological responses of eelgrass (L.) to a gradient of light conditions. Journal of Experimental Marine Biology and Ecology, 2010, 382(2): 117–124

Olsen JL, Rouzé P, Verhelst B,. The genome of the seagrassreveals angiosperm adaptation to the sea. Nature, 2016, 530(7590): 331–335

Palacios S, Zimmerman R. Response of eelgrassto CO2enrichment: Possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series, 2007, 344: 1–13

Peralta G, Bouma TJ, van Soelen J,. On the use of sediment fertilization for seagrass restoration: A mesocosm study onL. Aquatic Botany, 2003, 75(2): 95–110

Qiu GL. Restorations of the intertidal seagrass beds.Beijing: China Forestry Publishing House, 2014 [邱廣龍. 潮間帶海草床的生態恢復. 北京: 中國林業出版社, 2014]

Ralph PJ. Photosynthetic responses of(R. Br.) Hook. f. to osmotic stress. Journal of Experimental Marine Biology and Ecology, 1998a, 227(2): 203–220

Ralph PJ, Burchett MD. Photosynthetic response ofto heavy metal stress. Environmental Pollution, 1998b, 103(1): 91–101

Ren YZ, Chen YH, Ku LX,. Response to photoperiodical variation and the clone of a photoperiod-related gene in Maize.Scientia Agricultura Sinica, 2006, 39(7): 1487–1494 [任永哲, 陳彥惠, 庫麗霞, 等. 玉米光周期反應及一個相關基因的克隆. 中國農業科學, 2006, 39(7): 1487–1494]

Robertson AI, Mann KH. Disturbance by ice and life-history adaptations of the seagrass. Marine Biology, 1984, 80(2): 131–141

Rubio L, García D, García-Sánchez MJ,. Direct uptake of HCO3?in the marine angiosperm(L.) Delile driven by a plasma membrane H+economy. Plant, Cell and Environment, 2017, 40(11): 2820–2830

Ruiz JM, Romero J. Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass. Marine Pollution Bulletin, 2003, 46(12): 1523–1533

Sharkey TD, Raschke K. Effect of light quality on stomatal opening in leaves ofL. Plant Physiology, 1981, 68(5): 1170–1174

Sheridan P, McMahan G, Hammerstorm K,. Factors affecting restoration ofto Galveston Bay, Texas. Restoration Ecology, 1998, 6(2): 144–158

Short F, Carruthers T, Dennison W,. Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 2007, 350(1–2): 3–20

Torquemada YF, Durako MJ, Lizaso JLS. Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis ofEiseman. Marine Biology, 2005, 148(2): 251–260

Torrey JG. Root hormones and pant growth. Annual Review of Plant Physiology, 1976, 27(1): 435–459

Touchette BW, Burkholder JAM. Carbon and nitrogen metabolism in the seagrass,L.: Environmental control of enzymes involved in carbon allocation and nitrogen assimilation. Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 216–233

van Katwijk MM, Bos AR, de Jonge VN,. Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin, 2009, 58(2): 179–188

van Keulen M, Paling EI, Walker CJ. Effect of planting unit size and sediment stabilization on seagrass transplants in western Australia. Restoration Ecology, 2003, 11(1): 50–55

Walker DI. Correlations between salinity and growth of the seagrass(Labill.) Sonder & Aschers. In Shark Bay, Western Australia, using a new method for measuring production rate. Aquatic Botany, 1985, 23(1): 13–26

Walker DI, McComb AJ. Seasonal variation in the production, biomass and nutrient status of(Labill.) Sonder ex Aschers. andHook.f. in Shark Bay, Western Australia. Aquatic Botany, 1988, 31(3): 259–275

Watanabe M, Nakaoka M, Mukai H. Seasonal variation in vegetative growth and production of the endemic Japanese seagrass: A comparison with sympatric. Botanica Marina, 2005, 48(4): 266–273

Waycotta M, Duarteb CM, Carruthersc TJB,. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(30): 12377–12381

Wilhelm C, Krámer P, Wild A. Effect of different light qualities on the ultrastructure, thylakoid membrane composition and assimilation metabolism of. Physiologia Plantarum, 2010, 64(3): 359–364

Woolley DJ, Wareing PF. The interaction between growth promoters in apical dominance. New Phytologist, 1972, 71(5): 781–793

Wu YL, Gao YP, Lü XN,Ecological contribution ofin the seagrass meadow of Sanggou Bay. Progress in Fishery Sciences, 2018, 39(6): 126–133 [吳亞林, 高亞平, 呂旭寧, 等. 桑溝灣楮島大葉藻床區域菲律賓蛤仔的生態貢獻. 漁業科學進展, 2018, 39(6): 126–133]

Xu DQ, Gao W, Ruan J. Effects of light quality on plant growth and development. Plant Physiology Journal. 2015, 51(8): 1217–1234 [許大全, 高偉, 阮軍. 光質對植物生長發育的影響. 植物生理學報, 2015, 51(8): 1217–1234]

Ye CJ, Zhao KF. Advances in the study on the marine higher plant eelgrass (L.) and its adaptation. Chinese Bulletin of Botany, 2002, 19(2): 184–193 [葉春江, 趙可夫. 高等植物大葉藻研究進展及其對海洋沉水生活的適應. 植物學通報, 2002, 19(2): 184–193]

Yu H. Studies on morphological characters and tissue culture of eelgrass (L.). Master’s Thesis of Liaoning Normal University, 2008 [于函. 大葉藻形態學及組織培養的研究. 遼寧師范大學碩士研究生學位論文, 2008]

Yuan YD, Song ZC, Guo CL,. Morphological characters and microstructure of. Transactions of Oceanology and Limnology, 2010(3): 73–78 [原永黨, 宋宗誠, 郭長祿, 等. 大葉藻形態特征與顯微結構. 海洋湖沼通報, 2010 (3): 73–78]

Zhang Q, Liu J, Zhang P,. Effect of silt and clay percentage in sediment on the survival and growth of eelgrass: transplantation experiment in Swan Lake on the eastern coast of Shandong Peninsula, China. Aquatic Botany, 2015, 122: 15–19

Zieman JC. Seasonal variation of turtle grass,K?nig, with reference to temperature and salinity effects. Aquatic Botany, 1975, 1: 107–123

Zimmerman RC, Hill VJ, Jinuntuya M. Experimental impacts of climate warming and ocean carbonation on eelgrass. Marine Ecology Progress Series, 2017, 566(27): 1–15

Research Advances in Shoot Propagation Theory and Planting Technique of Seagrasses

ZHANG Peidong①, ZHANG Yanhao, ZHANG Hongyu, ZHANG Xiumei

(Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003)

Seagrass is a kind of higher angiosperm that originated as a terrestrial plant and over time became adapted to a marine environment. Seagrass beds have important ecological and economical value in that they provide habitats and feeding areas for diverse marine fauna, playing a key role in establishing a flourishing marine ecosystem. From 1993 to 2003, the seagrass acreage lost reached 2.6 × 106hm2. The first estimated acreages of seagrass beds were recorded in 1879, and based on historical records, it is estimated that more than 5.1 × 106hm2of seagrass beds have completely disappeared. With the severe decline of seagrass beds and the public’s recent awareness of their ecological functions, seagrass bed ecological restoration has become one of the more important coastal, environmental engineering projects. Habitat enhancement is the main method utilized in seagrass bed restoration. Currently, seagrass bed restoration is in urgent need of well-organized planning, and large-scale artificial propagations have become vital to current habitat restoration. In order to significantly increase the quantity and efficiency with which seagrass is propagated, this study was to understand the characteristics of seagrass shoot clonal propagation, and determine what techniques would allow efficient plant propagation. In order to achieve highly efficient seagrass shoot propagation, it is necessary to: 1) Promote growth and propagation of key factors; 2) Construct and implement an artificial propagation platform; and 3) Disseminate the growth and propagation planting technique. In this study, the current state of research and knowledge of shoot propagation and planting of seagrasses was reviewed, the environmental factors affecting the growth and development of seagrass shoots was summarized, and the effect of planting space, planting time, and fertilization on the seagrass shoot growth and production was discussed. In addition, the key problems existing at present were summarized. Given the advances in research and public desire to restore damaged ecosystems, there is strong potential for large-scale restoration of damaged seagrass beds along the coast of China in the future, and the summaries provided here will hopefully be a useful reference to these projects.

Clonal growth; Ecological factor; Shoot planting; Seagrass

ZHANG Peidong, E-mail: zhangpdsg@ouc.edu.cn

Q948.8

A

2095-9869(2020)04-0181-09

10.19663/j.issn2095-9869.20190506001

http://www.yykxjz.cn/

張沛東, 張彥浩, 張宏瑜, 張秀梅. 海草植株擴繁理論及其定植效應的研究進展. 漁業科學進展, 2020, 41(4): 181–189

Zhang PD, Zhang YH, Zhang HY, Zhang XM. Research advances in shoot propagation theory and planting technique of seagrasses. Progress in Fishery Sciences, 2020, 41(4): 181–189

* 國家自然科學基金項目(41576112)、中央高校基本科研業務費專項(201822021)和科技基礎性工作專項(2015FY110600)共同資助 [This work was supported by the National Natural Science Foundation of China (41576112), Fundamental Research Funds for the Central Universities (201822021), and National Science and Technology Basic Work Program (2015FY110600)].

張沛東,教 授,E-mail: zhangpdsg@ouc.edu.cn

2019-05-06,

2019-08-20

(編輯 陳 嚴)

猜你喜歡
植物生長
碗蓮生長記
小讀者(2021年2期)2021-03-29 05:03:48
共享出行不再“野蠻生長”
生長在哪里的啟示
華人時刊(2019年13期)2019-11-17 14:59:54
野蠻生長
NBA特刊(2018年21期)2018-11-24 02:48:04
生長
文苑(2018年22期)2018-11-19 02:54:14
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
《生長在春天》
主站蜘蛛池模板: 大陆精大陆国产国语精品1024| 亚洲最大看欧美片网站地址| 波多野结衣一区二区三区四区| 自拍偷拍欧美日韩| 亚洲无码A视频在线| 精品视频福利| 在线观看国产小视频| 天天操天天噜| 欧美成人区| 国产噜噜噜视频在线观看| 在线免费亚洲无码视频| 992tv国产人成在线观看| 日韩美毛片| 久久久久亚洲精品成人网| 国内精自视频品线一二区| 波多野结衣爽到高潮漏水大喷| 成年看免费观看视频拍拍| 国产亚洲视频在线观看| 国产农村精品一级毛片视频| 亚洲制服丝袜第一页| 美女高潮全身流白浆福利区| 青青草原国产精品啪啪视频| 国产幂在线无码精品| 精品欧美视频| 国产精品福利尤物youwu| 国产三级韩国三级理| 国产色伊人| 免费观看男人免费桶女人视频| 国产精品人莉莉成在线播放| 一级做a爰片久久毛片毛片| 午夜丁香婷婷| 91亚洲视频下载| 国产精品成人免费综合| 天堂av高清一区二区三区| 欧美狠狠干| 亚洲永久色| 中文字幕2区| 国产精品亚洲日韩AⅤ在线观看| 2021最新国产精品网站| 国产精品无码一二三视频| 成人精品亚洲| 日韩专区第一页| 久无码久无码av无码| 凹凸国产分类在线观看| 国产a在视频线精品视频下载| 朝桐光一区二区| 2021天堂在线亚洲精品专区| 国产亚洲美日韩AV中文字幕无码成人 | 在线精品自拍| 香蕉eeww99国产精选播放| 在线观看无码av免费不卡网站 | 亚洲中文字幕在线一区播放| 91po国产在线精品免费观看| 国产三级a| 天天躁夜夜躁狠狠躁躁88| 欧美亚洲国产日韩电影在线| 狠狠色噜噜狠狠狠狠色综合久| 久久99国产精品成人欧美| 国产乱子伦一区二区=| 毛片久久网站小视频| 亚洲aaa视频| 欧美性精品| 91欧美在线| 一本二本三本不卡无码| 国产精品久久久久久久久| 福利在线不卡一区| 国产精品久久久久久搜索 | 亚洲一欧洲中文字幕在线| 国产精品美乳| 国产网友愉拍精品| 精品国产免费观看一区| 亚洲制服丝袜第一页| 深爱婷婷激情网| 国产女同自拍视频| 国产美女丝袜高潮| 国产精品尤物铁牛tv | 久久青青草原亚洲av无码| 亚洲欧美人成电影在线观看| 久久综合干| 91色爱欧美精品www| 国产毛片一区| 国产女人18水真多毛片18精品|