999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

束流漂移對硅條探測器陣列測量的影響

2020-07-14 13:44:16孫浩瀚林承鍵馬南茹王東璽賈會明鐘福鵬溫培威姚永進
原子能科學技術 2020年7期
關鍵詞:方向影響

孫浩瀚,林承鍵,3,*,馬南茹,王東璽,賈會明,楊 磊,楊 峰,鐘福鵬,3,溫培威,姚永進,4

(1.中國原子能科學研究院,北京 102413;2.國防科技工業抗輻照應用技術創新中心,北京 102413;3.廣西師范大學,廣西 桂林 541004;4.北京航空航天大學,北京 100083)

隨著對重離子核反應機制研究的不斷深入,需對多種出射產物進行運動學完全的符合測量。如在研究庫侖勢壘能區弱束縛核體系的6Li+209Bi破裂反應中,出射產物包括p、d、t、α、6Li等多種不同質量和不同角分布的帶電粒子[1]。這不僅要求探測器陣列具備強的ΔE-E粒子鑒別能力,也要求探測器陣列覆蓋較大的立體角,才能有較大的幾何探測效率,以得到反應Q值譜、破裂產物的相對能量、動量和角關聯譜等,從而重構破裂過程中靶核和破裂母核所處的激發態,得到各核態的破裂分支比等關鍵的物理信息。另一方面,在有效的測量時間和束流強度一定的情況下,實驗探測到的各角度粒子數必須達到足夠進行后續物理分析的統計量,這同樣要求探測器陣列具有足夠大的立體角和足夠高的探測效率。近年來,隨著半導體探測器技術的不斷發展,多個平面硅工藝的難題得到了解決。氧化鈍化、離子注入、光刻等技術的使用使得半導體探測器的性能大幅提高。借用這些新的設計和工藝研制出了大面積雙面硅條探測器(DSSD)[2]。

DSSD是一種PIN型半導體探測器,其正、背面均由多條電極構成,電極相互垂直,可同時給出兩個方向的位置信號,具有位置和能量分辨率高、線性范圍寬、響應時間快、體積小等諸多優點[3]。將DSSD與單面四分硅探測器(QSD)組合成探測器望遠鏡,可測量ΔE-E從而鑒別帶電粒子,進一步可將多組探測器望遠鏡組裝成大立體角覆蓋的硅條探測器陣列。國際上著名的陣列有MUST2[4]、HiRA[5]、TIARA[6]、DRAGON[7]、GLORIA[8]等。

硅條探測器陣列普遍具有結構緊湊、覆蓋面積大、探測器與靶距離近等特點,因此整個陣列上的計數易受安裝條件和束流情況等因素的影響。如放射性核束的束斑普遍較大(直徑約10 mm左右),反應點的不同會引起立體角很大的變化,因此通常在靶前放置位置靈敏探測器,如平行板雪崩計數器(PPAC)等,以重構入射束流的方向及束流在靶上的實際反應點;對串列加速器產生的束流而言,雖然束斑小(直徑約1 mm),但可能存在束流漂移而導致反應點的變化。本文擬在蒙特卡羅模擬的基礎上,結合具體的串列實驗,討論束流漂移對探測器測量的影響,給出避免這種影響的措施,并給出修正后的彈性散射角分布作為示例。

1 實驗設置

1.1 硅條探測器陣列

實驗中所用的硅條探測器陣列由8組三重ΔE1-ΔE2-ER望遠鏡單元組成。每組望遠鏡單元的第1層為厚度40 μm(或60 μm)、正背面各16條(條寬為3.0 mm,條間距為0.1 mm)的DSSD,第2層為厚度300 μm的QSD,第3層為厚度1 000 μm(或1 500 μm)的QSD。每層探測器的有效面積均為50 mm×50 mm,能量分辨率好于1%[9]。這種三重望遠鏡能有效實現輕離子和重離子、低能和高能帶電粒子的同時鑒別。

8組望遠鏡單元安裝在由3D打印制成的支架上,幾何誤差可控制在0.1 mm左右,整體結構如圖1所示。圖1a中箭頭為束流入射方向,靶位于陣列中心,編號1~8為8組望遠鏡單元,其中望遠鏡單元1、2、3、4放置在后角,望遠鏡單元5、6與束流方向垂直,望遠鏡單元7、8放置在前角。8組望遠鏡單元均正對靶,8組望遠鏡單元的中心均距靶心70 mm,相對束流具有嚴格的對稱結構。圖1b顯示了以束流方向為z軸,束流水平方向為x軸,豎直方向為y軸建立的直角坐標系。

圖1 硅條探測器陣列(a)和陣列上所建立的xyz坐標系(b)

每塊DSSD包含3 mm×3 mm的256個方格,由它們的(x,y,z)坐標可計算出球坐標下的(r,θ,φ)。圖2示出了每個方格4個頂點對應的(θ,φ),這樣每個方格所覆蓋的立體角dΩ=sinθdθdφ。可看出望遠鏡單元1~4覆蓋θ為107.6°~155.7°,望遠鏡單元5和6為74.2°~105.9°,望遠鏡單元7和8為24.3°~72.4°。

圖2 探測器陣列所覆蓋的角度

1.2 實驗

實驗在中國原子能科學研究院北京HI-13串列加速器核物理國家實驗室R60管道終端的散射靶室上進行。束流為25 MeV和40 MeV的6Li,轟擊質量厚度約100 μg/cm2的自支撐209Bi靶。靶內框近似為橢圓形,長邊±6 mm,短邊±4.5 mm。調束時在靶位放置1個直徑3 mm的光闌,通過傳輸效率判斷束流是否打在靶中心。通常串列束流的束斑直徑約1 mm,要求傳輸效率達80%以上。實驗的主要目的是關聯測量6Li破裂的α和d,也做了單舉測量以獲得彈性散射的數據。

硅條探測器陣列安裝在靶室中心,由靶室底座與陣列中心支架的密接觸保證幾何安裝的正確性,并用激光水平儀校驗。靶室前角安裝4個金硅面壘探測器作為束流監測器,金硅面壘探測器均距離靶250 mm,與束流的夾角分別為上下25°和左右12.5°,可保證探測到的基本為盧瑟福彈性散射事件。其中上、下監測器的光闌直徑為1.0 mm,左、右監測器的光闌直徑為0.5 mm。

2 束流漂移的蒙特卡羅模擬

束流漂移對出射粒子角分布的影響主要有兩個方面——立體角的變化和散射角的變化。對于停阻在靶上的熔合蒸發殘余核的α衰變,可當作α源進行刻度,其角分布是各向同性的,故束流漂移的影響全部體現在立體角的變化上;而彈性散射截面受散射角的影響很大,因此除立體角變化外,束流漂移的影響也體現在由散射角變化導致的截面變化上。

蒙特卡羅方法是一種隨機抽樣的數學計算方法,基本思想是頻率替代概率,均值替代數學期望[10]。本文利用蒙特卡羅模擬探測器本征幾何效率及束流漂移在兩種情形下對出射粒子角分布的影響,每次模擬的事件數均為106。

2.1 本征幾何效率

首先確定理想狀況下探測器陣列的幾何探測效率,即中心點源對應的探測器陣列的立體角分布。假定發射源為點源,其發射的粒子數和探測器收集的粒子數以及兩者的比值如圖3所示。根據兩者的比值可得到探測器陣列的本征幾何效率為26.8%,即覆蓋26.8%的4π立體角。

2.2 束流漂移對熔合蒸發殘余核α衰變測量的影響

實驗束斑直徑約1 mm,模擬時假定熔合蒸發殘余核在直徑1 mm的圓內均勻分布。若靶平面與束流垂直,則z方向無漂移;若靶平面傾斜,即靶平面的法線與束流方向形成夾角β,則束流在z方向也會發生漂移,漂移距離為Δxtanβ(Δx為x方向漂移距離)。

分別考慮束流x、y、z3個方向上的漂移對角分布造成的影響。假設漂移距離為6.0 mm時,實驗室系8個DSSD上計數的角度分布以及它們分別與無漂移時計數的比值如圖4所示。可看出,3條曲線之間的計數變化不超過3%,彼此幾乎重合。比值的漲落很大程度上是統計誤差造成的。這表明即使束流漂移至最大距離,由于α衰變各向同性的特性,在3%的誤差范圍內,探測器陣列上的衰變計數受束流漂移的影響亦可忽略。

圖3 計數和探測效率隨角度的變化

圖4 x、y、z方向的束流漂移對測量的α衰變角分布的影響

2.3 束流漂移對盧瑟福散射測量的影響

模擬時入射粒子6Li的實驗室系能量為40 MeV,靶為209Bi。球坐標系下,φ在[0,2π]均勻分布,θlab的抽樣滿足盧瑟福散射公式:

σRu(θlab)=1.296(Z1Z2/Elab)2·

[csc4(θlab/2)-2(A1/A2)2]

(1)

式中:σRu為盧瑟福散射截面;Z1、Z2為彈核和靶核的核電荷數;A1、A2為彈核和靶核的質量數;Elab為彈核實驗室系能量。

計數與截面之間的關系滿足:

σRu(θ)=dN/INSdΩ

(2)

式中:I為束流強度;NS為靶單位面積的核子數;dΩ為單位立體角。模擬束斑直徑為1 mm,圓內均勻抽樣。束流在x、y、z方向漂移±1.5、±3.0、±4.5、±6.0 mm時,望遠鏡單元7 DSSD上計數的角分布以及它們分別與無漂移時計數的比值如圖5所示。圖中x、y、z方向上束流漂移引起的計數變化均隨散射角的增加而逐漸減小。這是由于盧瑟福散射截面在前角區對散射角最敏感,至90°和后角區時,對角度的變化已不再敏感。因此更后角處望遠鏡單元1~6 DSSD的計數變化相對很小,不再細述。由于望遠鏡單元7和8 DSSD的對稱性,它們的角分布是相同的。

由于圖5中的角分布實際為計數在θ方向上的投影分布,因此直角坐標系(x,y,z)轉換為球坐標系(r,θ,φ)后,束流在x、y、z方向上的漂移對θ所產生的影響并不相同,因此角分布受到的影響也不相同。其中,x方向漂移引起的影響最大,z方向次之,y方向的影響最小。將最明顯的x方向漂移對望遠鏡單元7 DSSD有漂移與無漂移時計數比的影響列于表1。可看到,束流漂移將給單個DSSD,尤其是位于前角的DSSD上的計數角分布造成很大影響。

實際上,抽取角分布用到的是望遠鏡單元7和8 DSSD計數之和。若束流向右側漂移導致望遠鏡單元7 DSSD上的計數增加,位于對稱位置的望遠鏡單元8 DSSD上的計數將會減少,因此會起到一定的互補作用,其有漂移與無漂移時計數比平均值的偏差將極大減小。作為對比,表1也列出了望遠鏡單元7和8有漂移與無漂移時計數比的平均值隨漂移距離的變化。可看出,望遠鏡單元的對稱放置極大減弱了束流漂移帶來的影響。當漂移距離小于3.0 mm時,由于對稱性的抵消作用,整個陣列計數受到的影響在10%以下;漂移距離小于1.5 mm時,陣列計數受到的影響不超過5%。

圖5 x、y、z方向束流漂移對測量的盧瑟福散射角分布的影響

表1 束流x方向漂移對望遠鏡單元7計數比以及對望遠鏡單元7和8平均計數比的影響

3 實驗數據分析

通過安裝在前角的4個束流監測器收集的盧瑟福散射事件計數得到束流在整個實驗過程中的實際漂移距離。結合陣列計數在不同漂移距離下受到的影響的蒙特卡羅模擬結果,就可得到實驗中束流漂移對硅條探測器陣列測量的影響。

3.1 束流漂移監測

將左、右監測器M1、M2的計數記為N1、N2;上、下監測器M4、M3的計數記為N4、N3。理想情況下N2/N1和N4/N3均等于1。束流沿x正方向漂移前后的變化如圖6所示,z和z′為漂移前后的束流方向。根據OO′距離l21即可計算出漂移后M1、M2對應的角度θ1、θ2和立體角dΩ1、dΩ2。根據式(1)、(2)可得到漂移后M2、M1的理論計數比值K21。

K21=f(l21)=dN2/dN1=

(3)

圖6 束流漂移示意圖

由于金硅面壘探測器前的光闌很小(直徑不超過1 mm),但和靶的距離達250 mm,因此立體角的變化很不明顯,而盧瑟福散射截面的變化相對很大,dΩ2/dΩ1可忽略。

求解式(3)的反函數后就可根據K21(或K43)的值求出l21(或l43),但該函數的解析表達式較復雜,采用數值方法求解較簡單。即在-4.5~4.5 mm之間每隔0.225 mm取點,得到l21-K21、l43-K43的系列散點,如圖7所示,考慮到其與對數函數圖像的相似性,用對數函數進行擬合,得到兩條擬合曲線為:

l21=7.000 4lnK21

(4)

l43=7.000 4lnK43

(5)

兩條曲線的相關系數R2均達1.000 00,能滿足高精度下的插值求解,但z方向的漂移對K21和K43無影響。

實驗共計239輪數據,用式(4)和(5)計算每輪對應的左右偏移l21和上下偏移l43,得到束流漂移的二維分布,零點為統計加權的分布中心,如圖8所示。圖中實線為靶框范圍,點劃線為調束光闌范圍。可看出,全部輪次的漂移均在半徑3.0 mm圓內,其中86%輪次(計數占比為89%)的漂移在調束光闌限制的半徑1.5 mm圓內。這說明在實驗過程中,束流保持了較好的穩定性。另外,用于抽取25 MeV和40 MeV彈性散射角分布的單舉測量結果亦示于圖8。可看到,兩個能點的統計加權的中心并不在一起。

圖7 監視器計數比值對應的漂移量

3.2 彈性散射角分布抽取

首先利用蒙特卡羅模擬方法,對圖8中每輪25 MeV和40 MeV單舉輪次實驗數據所對應的實際束流漂移距離進行修正,然后利用模擬刻度、衰變刻度和束流刻度3種刻度立體角的方法,得到彈性散射截面與盧瑟福散射截面的比值[11]。模擬刻度使用蒙特卡羅模擬刻度立體角,即未考慮幾何誤差的理論情況;衰變刻度是利用實驗中熔合蒸發殘余核的α衰變刻度立體角,包含了束流信息和陣列安裝的位置信息等;束流刻度是將能量低于庫侖勢壘(勢壘高度約30 MeV)時的彈性散射截面作為標準盧瑟福散射截面進行立體角刻度,同樣考慮了實驗中的系統誤差。

圖8 實驗測得的束流漂移分布(沿束流入射方向)

用模擬刻度和衰變刻度方法得到的25 MeV和40 MeV6Li+209Bi角分布如圖9a所示。圖中明顯掉下的點是DSSD的邊緣引起的。作為對比,圖9a也示出了修正束流漂移前、后模擬刻度得到的角分布變化。可看出,束流漂移只對最前角區域的部分數據點產生了影響,根據前面的分析,由于陣列對稱性的優勢,漂移影響在5%以下。模擬刻度誤差為彈性峰計數的統計誤差,未考慮系統誤差。衰變刻度誤差為彈性峰計數與衰變峰計數的比值的統計誤差,幾何引起的誤差相互抵消。兩者比較,衰變刻度誤差更小,計數掉落更不明顯,結果更精確。v

圖9 模擬刻度和衰變刻度得到的25 MeV和40 MeV 6Li+209Bi的彈性散射角分布(a)和束流刻度得到的40 MeV 6Li+209Bi的彈性散射角分布(b)

用束流刻度方法,以25 MeV截面作為盧瑟福散射截面,得到的40 MeV角分布結果如圖9b所示,誤差為40 MeV彈性峰計數與25 MeV彈性峰計數比值的統計誤差,幾何引起的誤差相互抵消。根據圖9b,束流刻度時誤差最小,計數掉落的現象基本消失。

圖9b示出了文獻[12]中40 MeV6Li+209Bi的實驗結果,以及用Ptolemy程序[13]進行光學模型擬合的結果,與文獻數據基本一致。該能量下的彈性散射規律符合能量高于庫侖勢壘時產生的菲涅耳(Fresnel)散射規律[11],后角區由于核吸收效應,截面快速下降。

4 小結

本文討論了束流漂移對大型硅條探測器陣列計數測量的影響。根據蒙特卡羅模擬得到在α衰變和盧瑟福散射兩種情形中,束流在不同方向漂移不同的距離后對計數角分布造成的不同影響,并討論了陣列對稱性布置的優勢是能消除束流漂移帶來的大部分誤差;其次,根據束流監測器計數,得出在大多數時間內實驗束流的漂移距離小于1.5 mm的結論,表明了實驗過程中北京HI-13串列加速器束流具備較高的穩定性。無論是α衰變還是對散射角最敏感的盧瑟福散射,由于對稱性的抵消作用,在漂移距離小于1.5 mm(3.0 mm)時,對陣列測量造成的影響在5%(10%)的誤差范圍內。在修正束流漂移后,利用3種刻度立體角的方法——模擬刻度、衰變刻度和束流刻度,得到25 MeV和40 MeV6Li+209Bi彈性散射的角分布,其中40 MeV的角分布與文獻結果基本一致。

猜你喜歡
方向影響
是什么影響了滑動摩擦力的大小
2022年組稿方向
計算機應用(2022年2期)2022-03-01 12:33:42
2022年組稿方向
計算機應用(2022年1期)2022-02-26 06:57:42
2021年組稿方向
計算機應用(2021年4期)2021-04-20 14:06:36
哪些顧慮影響擔當?
當代陜西(2021年2期)2021-03-29 07:41:24
2021年組稿方向
計算機應用(2021年3期)2021-03-18 13:44:48
2021年組稿方向
計算機應用(2021年1期)2021-01-21 03:22:38
沒錯,痛經有時也會影響懷孕
媽媽寶寶(2017年3期)2017-02-21 01:22:28
擴鏈劑聯用對PETG擴鏈反應與流變性能的影響
中國塑料(2016年3期)2016-06-15 20:30:00
基于Simulink的跟蹤干擾對跳頻通信的影響
主站蜘蛛池模板: 国产欧美日韩va另类在线播放| 国产九九精品视频| 久久综合婷婷| 天堂网亚洲系列亚洲系列| 国产人成在线视频| 成人精品亚洲| 国产一区二区在线视频观看| 国产午夜人做人免费视频中文| 97精品伊人久久大香线蕉| 91亚洲免费| 日韩亚洲高清一区二区| 日本人妻丰满熟妇区| 国产精品久久久久鬼色| 亚洲精品高清视频| 久久久久久午夜精品| 欧美日韩北条麻妃一区二区| 亚洲欧美色中文字幕| 国产国产人成免费视频77777 | 国产成人久视频免费| 日本精品一在线观看视频| 激情综合图区| 免费不卡视频| 国产成人精品高清不卡在线| 夜夜爽免费视频| 国产91九色在线播放| 成人综合网址| 国产无码精品在线| 中国黄色一级视频| 54pao国产成人免费视频| 久久综合九九亚洲一区| 日韩大乳视频中文字幕| 亚洲伊人久久精品影院| 在线国产综合一区二区三区| 色综合五月婷婷| 欧美不卡二区| 伦伦影院精品一区| 国产成人三级| 国产网友愉拍精品| 大乳丰满人妻中文字幕日本| 最新精品国偷自产在线| 亚洲天堂伊人| 四虎影视8848永久精品| 国产精品人成在线播放| 无码AV动漫| 欧美区在线播放| 在线看免费无码av天堂的| 国产欧美专区在线观看| 美女视频黄又黄又免费高清| 找国产毛片看| 成人在线综合| 91精品国产自产91精品资源| 久久国产毛片| 亚洲欧洲日韩综合| 国产哺乳奶水91在线播放| 日韩第一页在线| 亚洲天堂777| 欧美精品一二三区| 国产精品精品视频| 国产亚洲精品97在线观看| 亚洲精品国产精品乱码不卞 | 亚洲一级毛片免费观看| 久久99精品国产麻豆宅宅| 久久天天躁狠狠躁夜夜躁| jizz国产视频| 免费人欧美成又黄又爽的视频| 无码专区第一页| 成人韩免费网站| 欧美日韩国产综合视频在线观看| 国产成人啪视频一区二区三区| 国产乱人伦AV在线A| 伊人久久综在合线亚洲91| 真人高潮娇喘嗯啊在线观看| 黄色国产在线| 国产一级小视频| 国产幂在线无码精品| 91po国产在线精品免费观看| 熟妇丰满人妻| 九九免费观看全部免费视频| 国产亚洲精品自在线| 曰AV在线无码| 日韩欧美高清视频| 一区二区偷拍美女撒尿视频|