999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Twin Domination Number of Cartesian Product of Directed Cycle and Path

2020-07-08 03:25:34MaHongxia
數學理論與應用 2020年4期

Ma Hongxia

(College of Preparatory, Xinjiang Normal University, Urumqi, Xinjiang 830017, China)

Abstract Let γ*(D)denote the twin domination number of digraph D and let Cm□Pn denote the Cartesian product of the directed cycle Cm and the directed path Pn, for m,n≥2. In this paper, we give a lower bound for γ*(Cm□Pn). Furthermore, we determine the exact values: γ*(C2□Pn)=n; γ*(C3□Pn)=n+2; γ*(C4□ γ*(C5□Pn)=2n+2.

Key words Twin domination number Cartesian product Directed cycle Directed path

1 Introduction

LetD1=(V1,A1)andD2=(V2,A2)be two digraphs which have disjoint vertex setsV1={x1,x2,…,xn1} andV2={y1,y2,…,yn2} and disjoint arc setsA1andA2, respectively.The Cartesian productD=D1□D2has vertex setV=V1×V2and(xi,yj)(xi′,yj′)∈A(D)if and only if one of the following holds:

(a)xi=xi′andyjyj′∈A2;

(b)yj=yj′andxixi′∈A1.

In this paper, we study the twin domination number ofCm□Pnand obtain the lower bound ofγ*(Cm□Pn).Furthermore, we determine the exact values ofγ*(Cm□Pn), whenm=2,3,4,5.

2 Main results

We emphasize that the vertices of a directed cycleCmare always denoted by the integers {0,1,…,m-1} and the vertices of a directed pathsPnare denoted by the integers {0,1,…,n-1}.These notations turned out to be convenient to formulate the proof of the following results.

Letm=3k+1 andai≤k, thenai+ai+1≥2k+1.Whenai≥k+1, it is obvious thatai+ai+1≥2k+1 holds.Hence, whenm≡1(mod 3),ai+ai+1≥2k+1.

Letm=3k+2 andai≤k, thenai+ai+1≥2k+2.Whenai≥k+1, it is easy to see thatai+ai+1≥2k+2.Thus, we haveai+ai+1≥2k+2 form≡2(mod 3).

ProofLetSbe a twin dominating set ofCm□Pnwithn≥4.We apply the following algorithm:I=?,J=?,i=1;

Whilei≤n-3 do

ifai≥k+1 then

I=I∪{i};i=i+1

else

J=J∪{i,i+1};i=i+2

end if

end while.

From the above algorithm, we see that wheni=n-1 ori=n-2, the algorithm will stop.Hence we get two disjoint setsI,Jsuch that either {0,1,…,n-1}={0}∪I∪J∪{n-1} or {0,1,…,n-1}={0}∪I∪J∪{n-2,n-1}.

Therefore, we have

(1)

or

(2)

We consider the following three cases.

Case 1m≡0(mod 3).

Subcase 1.11∈I.

In the second case we get

Subcase 1.21?I.

Thusa1≤k.So we obtain thata0≥2kby Lemma 2.1.Then by(1)

According to(2), we get that

|S|≥2k+|I|(k+1)+(n-3-|I|)k+3k

Case 2m≡1(mod 3).

Similarly, if 1∈I, then

Otherwise

If 1?I, we can obtain thata0≥2k+1 by Lemma 2.1.Thus,

Case 3m≡2(mod 3).

We now investigate the twin domination number ofC2□Pn.

It is clear thatγ*(C2□P2)=2 andγ*(C2□P3)=3.Whenn≥4, by Theorem 2.3, we haveγ*(C2□Pn)≥n.We define a setS1={(0,j)|j∈{0,1,…,n-1}}.It is easy to see thatS1is a twin dominating set ofC2□Pnand |S1|=n.Therefore we obtain the following Theorem.

Theorem 2.4Letn≥2, thenγ*(C2□Pn)=n.

We now consider the twin domination number of Cartesian productC3□Pnand define a setS2(see Figure 1)as:S2={(0,0),(2,0);(0,j)j≡0(mod 3);(1,j)j≡1(mod 3);(2,j)j≡2(mod 3), forj≥1}.Note that |S2|=n+1.

Figure 1 The set S2

Theorem 2.5Letn≥2, thenγ*(C3□Pn)=n+2.

ProofIt is easy to calculate thatγ*(C3□P2)=4 andγ*(C3□P3)=5.Letn≥4, by Theorem 2.3, we getγ*(C3□Pn)≥n+2.

Note thatS2∪{(0,n-1)} is a twin dominating set ofC3□Pn, whenn≡0,2(mod 3).Similarly,S2∪{(2,n-1)} is a twin dominating set ofC3□Pn, whenn≡1(mod 3).Thusγ*(C3□Pn)=n+2.

Figure 2 The set S3

We consider the twin domination number of Cartesian productC5□Pn, and define a setS4(see Figure 3)as:S4={(0,0),(2,0),(4,0),(0,j),(2,j)j≡0(mod 3);(1,j),(3,j)j≡1(mod 3);(2,j),(4,j)j≡2(mod 3), forj≥1}.Note that |S4|=2n+1.

Figure 3 The set S4

It is easy to see thatγ*(C5□P2)=6 andγ*(C5□P3)=8.Whenn≥4, we obtain thatγ*(C5□Pn)≥2n+2 by Theorem 2.3.

Note thatS4∪{(4,n-1)} is a twin dominating set ofC5□Pn, whenn≡1,2(mod 3).Similarly,S4∪{(0,n-1)} is a twin dominating set ofC5□Pn, whenn≡0(mod 3).Therefore we can obtain the following Theorem.

Theorem 2.7Letn≥2, thenγ*(C5□Pn)=2n+2.

主站蜘蛛池模板: 四虎国产永久在线观看| 久久黄色毛片| 国产十八禁在线观看免费| 欧美精品另类| 亚洲无码免费黄色网址| 奇米影视狠狠精品7777| 国产激情无码一区二区免费| 色噜噜狠狠狠综合曰曰曰| 国产成人精品一区二区免费看京| 无码AV高清毛片中国一级毛片| 在线国产91| 中文字幕在线观| 久一在线视频| 亚洲精品黄| 国产一区亚洲一区| 亚洲欧洲日本在线| 狼友视频国产精品首页| 亚洲综合色婷婷中文字幕| 免费一级毛片在线播放傲雪网| 97无码免费人妻超级碰碰碰| 亚洲AV电影不卡在线观看| 精品福利国产| 伊人久久大线影院首页| 在线观看免费国产| 亚洲中文字幕久久精品无码一区| 老司国产精品视频91| 手机在线看片不卡中文字幕| 99视频只有精品| 国产亚洲精品在天天在线麻豆| 性欧美在线| 日韩亚洲高清一区二区| 国产美女一级毛片| 国产人成网线在线播放va| 欧洲高清无码在线| 蜜桃视频一区二区| 午夜福利亚洲精品| 免费看的一级毛片| 亚洲国产精品久久久久秋霞影院| 91色综合综合热五月激情| 在线观看欧美国产| 波多野结衣一区二区三区四区| 免费xxxxx在线观看网站| 国产毛片高清一级国语 | 国产欧美另类| 波多野结衣一区二区三区AV| 蜜桃视频一区| 亚洲成人网在线观看| 午夜电影在线观看国产1区| 精品天海翼一区二区| 亚洲第一av网站| 一区二区理伦视频| 青青青草国产| 精品国产网| 欧美在线视频不卡| 国产色图在线观看| 亚洲成人精品久久| 亚洲一级毛片| 九九久久精品国产av片囯产区| 亚洲swag精品自拍一区| 欧美成人a∨视频免费观看| 久久国产亚洲偷自| 亚洲黄色成人| 亚洲天堂日韩在线| 91无码国产视频| 色视频国产| 国产v精品成人免费视频71pao| 国产免费久久精品99re不卡 | 欧美成人aⅴ| 亚洲日韩第九十九页| 亚洲综合久久一本伊一区| 日韩小视频在线观看| 青青草91视频| 日韩欧美国产中文| 国产剧情国内精品原创| 亚洲国产精品久久久久秋霞影院| 尤物精品视频一区二区三区| 亚洲精品国偷自产在线91正片| 国产成人做受免费视频| 91久草视频| 亚洲中文无码av永久伊人| 欧美人在线一区二区三区| 丁香综合在线|