999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

約束條件下的線性貝葉斯估計

2020-07-06 07:37:38林盼盼張鳳月王立春
工程數學學報 2020年3期
關鍵詞:模型

林盼盼, 張鳳月, 王立春

(北京交通大學理學院,北京 100044)

1 引言

線性模型是現代統計學中應用最為廣泛的模型之一,生物、醫學、經濟和管理等領域的眾多現象都可以用線性模型近似描述.目前,關于其無約束條件下的參數估計方法已經十分成熟,但在許多情況下,需要對約束條件下的回歸參數進行估計.約束條件可能是真實的,例如,經濟計量中支出份額模型要求支出總和等于收入或者成本函數中投入價格的總和為常數;約束條件也有可能是假定的,例如,解決復共線性時往往會對參數施加約束條件.眾所周知,當回歸自變量存在著近似線性關系時,最小二乘估計表現不理想,有時某些回歸參數的估計的絕對值異常大,有時回歸參數的估計值的符號與問題的實際意義相違背等.因此,在約束條件下對回歸參數進行估計具有重要意義.

線性貝葉斯估計是由Rao[1]首先提出并且持續受到關注,相關的文獻有[2-4].Wei 和Zhang[5]在加權平方損失下獲得了回歸參數的線性貝葉斯估計,并且證明了在均方誤差矩陣準則和Pitman closeness 準則下線性貝葉斯估計相對于最小二乘估計的優越性;進一步,Zhang 等[6]研究了分塊線性模型中回歸參數的線性貝葉斯估計的優良性;Qiu 等[7]考察了平衡損失下回歸參數的線性貝葉斯估計.然而,上述文獻關注的多是無約束條件下回歸參數的估計問題.

本文主要結合貝葉斯方法討論在約束條件下的回歸參數的估計問題,提出了回歸參數的線性貝葉斯估計并論證其優越性.文章安排如下:第2 節,提出線性貝葉斯估計的表達式;第3 節,考察其性質;第4 節,借用蒙特卡洛模擬和實際數例佐證其性質;第5 節,給出結論.

2 線性貝葉斯估計

考慮下面的約束線性模型

其中rank(X)=p, rank(R)=m <p,σ2為方差參數.

若d ?= 0,設β0是(2)式的特解,有R(β ?β0) = 0.令β1= β ?β0,上述模型可以轉變為

這里y1=y ?Xβ0,故(2)式中只考慮d=0 的情形.

將所有滿足約束條件的β 記為集合Gβ={β :Rβ =0},那么,由約束條件可知

這里M(R′)⊥表示R′的列向量張成的子空間M(R′)的正交補空間.因此,可將β 與無約束最小二乘估計?β =(X′X)?1X′y 建立如下關系式

由于A 列滿秩,所以τ 的廣義最小二乘估計為

從而β 的約束最小二乘估計為

將(7)式代入下式,有

此處

為對稱冪等矩陣.定理證畢.

假設π(β)為參數β 的先驗分布,并滿足下列條件

由(11)式可得b=(I ?B)E(β)=(I ?B)μ,因此

這里H =A[A′(X′X)A]?1A′,且我們利用了下列事實

3 線性貝葉斯估計的性質

下面給出線性貝葉斯估計的性質:

因此,由無偏性的定義有

由協方差矩陣的定義有

將B =Σ(σ2H +Σ)?1代入上式并化簡得

于是,由(17)和(20)式有

注意到,由σ2H+Σ ≥Σ >0 可推得(σ2H+Σ)?1≤Σ?1,因此,Σ(σ2H+Σ)?1Σ ≤Σ.從而

定理證畢.

證明 由均方誤差矩陣的定義知

由(23)式和(24)式知

定理證畢.

4 蒙特卡洛模擬和數值實例

4.1 蒙特卡洛模擬

本小節利用蒙特卡洛模擬闡明線性貝葉斯估計的優越性.

設模型如下

其中rank(X)=p, rank(R)=m <p,σ2為方差常數.

若根均方誤差越小,則說明相對應的估計量對真值近似的效果越好.

其中

由(9)式可獲得剩余參數βp?m的先驗分布π(βp?m),再和樣本似然函數f(y|βp?m)結合來獲得βp?m的后驗分布f(βp?m|y).為了研究先驗分布的類型對估計量估計效果的影響,對于β 選取兩種先驗分布:正態先驗和均勻先驗,且為了便于比較,兩種分布在模擬時選取的均值與協方差矩陣相等.

情形1由于β 具有正態先驗,導出剩余參數βp?m具有正態先驗Np?m(β0,Σ0),從而βp?m的后驗為

此為正態分布Np?m(β1,Σ1),其中

C1和C2為常數.

情形2由于β 具有均勻先驗,導出剩余參數βp?m具有均勻先驗,即βp?m在區域D 上服從均勻分布,從而βp?m的后驗為

此為截斷的正態分布Np?m(β2,Σ2)ID(βp?m),其中ID(βp?m)為示性函數,C3和C4為常數.

注意到二次損失下,βp?m的貝葉斯估計為后驗均值.在表1 至表4 中,我們針對不同的β 維數和不同約束條件個數的組合進行了模擬.

表1: p=2 和m=1 時,估計量的根均方誤差

表2: p=3 和m=1,且剩余參數的各分量先驗獨立時,估計量的根均方誤差

表3: p=3 和m=1,且剩余參數的各分量先驗不獨立時,估計量的根均方誤差

表4: p=3 和m=2 時,估計量的根均方誤差

由表1 至表4 可知,當β 的維數、約束條件個數和先驗分布相同時,三種估計量與真值β 的距離隨著樣本量的增大均有減小的趨勢,表明隨著樣本信息增多,估計效果越好;此外,從表1、表2 和表3 中可以發現,正態先驗分布下LBE與BE近似相等,且它們與β 的距離均小于CLS與β 的距離,而均勻先驗分布下?βLBE與β 的距離小于CLS和BE與β 的距離.還可以發現,無論βp?m的各分量獨立與否,LBE均有著良好的近似效果.進一步,在表4 中,三種估計量與真值的距離近似相等且與表2 和表3 對比存在明顯減小,此表明隨著約束條件增多,有關回歸參數的信息增加,LBE、CLS和BE的近似差異逐漸減小.總體來看,線性貝葉斯估計不僅具有顯示表達式,其在模擬方面也要優于約束最小二乘估計和貝葉斯估計,而且對于先驗分布的改變具有一定的穩健性.

下面研究當先驗參數改變時,估計量的根均方誤差的變化情況.這里考察正態先驗下的情形,取p = 2 和m = 1,且選取的先驗均值相同、相關系數相同,但先驗的方差不同,如表5 所示.

表5: 正態先驗分布的參數取值

表6: 正態先驗分布下,?βCLS 和?βLBE 的根均方誤差

圖1: 正態先驗分布下,根均方誤差隨樣本量的變化

4.2 數值實例

下面用硅酸鹽水泥的數據來驗證我們的結論.數據來自于文獻[8],并且被Hamaker[9],Gorman 和Toman[10]以及Nomura[11]廣泛分析.數據主要探究的是硅酸鹽水泥在凝固和硬化過程中產生的熱量與四種化合物所占百分比的關系.這四種成分是:鋁酸三鈣、硅酸三鈣、鐵鋁酸四鈣和硅酸二鈣,分別記為X1, X2, X3, X4.固化180 天后產生的熱量用每克水泥所含的卡路里來計算,并用y 表示.Hald 和Friedman[8], Gorman 和Toman[10]以及Daniel 和Wood[12]對該數據用非齊次線性回歸模型進行擬合,如公式(26),收集數據如下

其中矩陣X 是13×5,第一列為常數列,剩余4 列分別對應變量X1, X2, X3, X4,對應參數分別為β0, β1, β2, β3, β4,并且矩陣X′X 的特征值為

X′X 的條件數為最大特征值與最小特征值之比,即14372006,故可以認為矩陣X 存在嚴重的復共線性.根據Ka?ciranlar 等[13]的建議,添加約束條件:β1?β2+β3=0,并且該約束條件在5%的顯著水平下是不被拒絕的.令β3= ?β1+β2,代入(26)式中,化為如下無約束模型

y =X1θ+ε, ε ~N13(0,σ2I13),

β =(β0,β1,β2,β3,β4)′的先驗均值和協方差陣及相應的模擬結果如下:

這里βp?m各分量獨立時計算所得

βp?m各分量不獨立時計算所得

表7: 正態先驗分布下CLS 及LBE 與BE 的距離

表7: 正態先驗分布下CLS 及LBE 與BE 的距離

β E(β) Cov(β) ‖?βCLS ??βBE‖ ‖?βLBE ??βBE‖βp?m各分量獨立 01210 4 0 0 0 0 0 9 0 ?8 0 0 0 16 16 0 0 ?8 16 25 0 0 0 0 0 25 141.190 0.024 βp?m各分量不獨立 01210 4 0 0 0 ?4 0 9 6 ?2 0 0 6 16 10 0 0 ?2 10 13 0?4 0 0 0 25 141.422 0.010

5 結論

本文主要研究了約束線性模型中回歸參數的線性貝葉斯估計的表達式及其性質,證明了線性貝葉斯估計相對于約束最小二乘估計的優越性,并利用蒙特卡洛模擬和數值實例驗證了相關理論結果.

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 精品人妻无码中字系列| 色天天综合| 欧美精品不卡| 97se亚洲综合在线天天| 中文无码精品A∨在线观看不卡| 亚洲天堂视频在线观看免费| 国产精品亚洲一区二区在线观看| 久久久精品国产SM调教网站| 欧美无遮挡国产欧美另类| 19国产精品麻豆免费观看| 午夜福利在线观看成人| 午夜影院a级片| 欧美黄色网站在线看| 中文字幕久久亚洲一区| 色综合中文综合网| 中文字幕日韩丝袜一区| 国产成人AV综合久久| 欧美在线导航| 亚洲成a∧人片在线观看无码| 福利视频一区| 欧美日韩在线成人| 久久99国产精品成人欧美| 啊嗯不日本网站| 无码国产伊人| 日韩欧美国产成人| 色哟哟国产成人精品| 色偷偷男人的天堂亚洲av| 狠狠色婷婷丁香综合久久韩国| 91年精品国产福利线观看久久| 偷拍久久网| 国产va在线观看免费| 国产自在线拍| 最新痴汉在线无码AV| 国产一区二区三区免费观看| 国产一级毛片在线| 成人无码区免费视频网站蜜臀| 亚洲国产亚洲综合在线尤物| 玖玖免费视频在线观看| 又爽又黄又无遮挡网站| 国产美女丝袜高潮| 亚洲无码精彩视频在线观看| 国产成人1024精品| 国产真实乱人视频| 久久久久夜色精品波多野结衣| 国产精品xxx| 在线精品视频成人网| 欧美日韩第二页| 九色视频线上播放| 99视频全部免费| 全午夜免费一级毛片| 91成人在线观看| 国产日韩丝袜一二三区| 国产色爱av资源综合区| 欧美亚洲国产日韩电影在线| 91在线日韩在线播放| 久久永久视频| 四虎永久免费网站| 国产三级成人| 亚洲一区二区无码视频| 久久一级电影| 国产亚洲视频免费播放| 久久久久九九精品影院| 一区二区理伦视频| 在线看片免费人成视久网下载| 中文字幕首页系列人妻| 国产成人免费观看在线视频| 国产精品一区二区无码免费看片| 亚洲精品无码久久毛片波多野吉| 亚洲一区国色天香| 亚洲av综合网| 毛片一级在线| www亚洲天堂| 欧美成人午夜在线全部免费| 91无码视频在线观看| 日本a∨在线观看| 91视频国产高清| 97超碰精品成人国产| 美女被操黄色视频网站| 九九这里只有精品视频| 97成人在线视频| 无码av免费不卡在线观看| 亚洲va在线∨a天堂va欧美va|