999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于PPG信號的運動偽影去除算法研究進展

2020-06-19 08:45:58侯殷偉程云章邊俊杰
軟件導刊 2020年4期

侯殷偉 程云章 邊俊杰

摘要:目前可穿戴式無創血壓監測設備大多采用光電容積脈搏波描記法(PPG)信號進行血壓監測,然而在運動過程中,PPG信號極易受運動偽影(Motion Artifacts)影響,從而大幅降低血壓監測的準確性。近年來,基于PPG信號的運動過程血壓實時估計成為研究熱點。主要介紹PPG信號抗運動偽影技術研究進展,闡述PPC信號原理及噪聲來源,并對現有PPG信號去噪算法原理與優缺點進行比較,最后分析運動偽影去除技術存在的問題及未來發展趨勢。

關鍵詞:運動偽影;血壓估計;PPG信號;基線漂移

DOI: 10. 11907/rjdk.191753

開放科學(資源服務)標識碼(OSID):

中圖分類號:TP312

文獻標識碼:A

文章編號:1672-7800(2020)004-0107-04

Research Progress of Motion Artifact Removal Algorithm Based on PPG Signal

HOU Qj-wej', CHENG Yun-zhang', BIAN Jun-jie1.2

(I.Sh.anghai Interventional Medical Device Engineering Technology Re.search Center . Univer.sity of Sha,zghaifor Science and

Technology, Shanghai 200093. China ; 2. Zhejiang .Shan.shi Medical In.strument Co.Ltd. , Hangzhou 311100 . China )Abstract: Currently , wearahle non-invasive blood pressure monitoring devices are mostly based on photoplethysmography signals.However. during the movement. the PPG signal is highly susceptihle to motion artifacts. and the existing motion artifacts seriously in-terfere with the accuracy of blood pressure monitoring. In recent years. real-time estimation of' blood pressure based on PPG signalshas become a hot topic in current research. This paper mainly studies the research progress of PPG signal anti-motion artifact technolo-gy . The principle of PPG signal and the source of noise are expounded, and the principle, advantages and disadvantages of the existingPPG signal denoising algorithm are analyzed and compared. Finally, the problems existing in the motion artifact removal technologyand the f'uture development trends are analyzed.Key Words : motion artifacts;blood pressure estimation ; PPG signal;baseline drift

O 引言

血壓(BP)是與高血壓患者密切相關的生理指標,可作為重要參數用于發現早期心血管疾病。血壓監測的準確性對于心血管疾病診斷具有重要價值…。無創連續血壓監測能夠反映人體血壓變化規律,掌握血壓變化率可以大幅降低高血壓患者出現致命危險的概率[2]。同時,長期、連續的血壓監測數據對于病患心血管狀況的評估與診斷具有重要作用。近年來,使用可穿戴式設備監測血壓的方式已得到了普及,由于成本較低,在這種設備中監測血壓最常用的方法是使用光電容積脈搏波(PhotoPlethysmoGraphy,PPG)信號[3]。光電容積脈搏波描記法[4]是一種電光技術,其將傳感器置于皮膚上方,通過發射綠光照亮皮膚表層,由傳感器接收反射光強度變化,并通過對PPG信號的周期性檢測與分析得到血壓值。該方式能夠克服傳統血壓測量的缺點,擺脫傳統袖帶帶來的不適感,適用于連續血壓監測。然而,由于傳感器的安裝機制,獲取的PPG信號可能會受到測量部位運動引起的運動偽影影響,從而降低PPG信號傳感器的輸出精度。為了獲取更有效的結果,必須補償運動偽影對PPG信號造成的影響。

在存在運動偽影情況下,估計血壓值的典型方式是先對PPG信號進行預處理,以去除信號中的運動干擾。近年來,學者們[5-7]針對如何減少運動偽影對PPG信號的影響進行了大量研究。下面系統介紹PPG信號原理及運動偽影產生過程,從去除基線漂移和去除高頻噪聲兩方面介紹目前抗運動偽影的算法,并分析其優劣性。

1 PPG信號

1.1 PPG原理

PPG信號是通過光電容積描記法獲得的一種波形信號,是進行血壓估計的基礎,其理論基礎是朗伯·比爾定律。當入射光透過人體血管組織后會被部分吸收,從而產生衰減。其關系式如下:

其中,厶為入射光強,L為被介質吸收后的透射光強,A為吸光度,K為吸收系數,,為吸收介質厚度,c表示濃度。

將PPG傳感器置于手腕處即可獲得脈搏波的PPG信號,并根據脈搏形成與血壓的關聯性進行無創血壓估計。

1.2 PPG信號中的噪聲

在采用可穿戴式設備獲取PPG信號時,PPG信號易受到噪聲影響,這些噪聲將嚴重影響血壓監測的準確性。PPG信號中的噪聲[8]主要包括:環境光、基線漂移和運動偽影。其中環境光影響可以從硬件層面加以解決,基線漂移主要是由呼吸引起的,通過低通濾波器可將其有效去除,而運動偽影是由可穿戴式設備與手腕之間間距的不規律變化導致的。

本文通過選取MIMIC數據庫中靜止狀態與運動狀態下的容積脈搏波數據,并截取其中10秒鐘的數據。靜止狀態下的PPG波形如圖1所示,由于神經交感活動以及人體溫度和呼吸變化的影響,造成PPG信號中基線的緩慢變化,即基線漂移,從圖1中可以看出靜止狀態下的PPG信號出現了明顯的基線漂移。在運動狀態下,運動偽影嚴重破壞了PPG信號波形,如圖2所示,可以看出運動中的PPG信號含有大量運動偽影。

2 PPG信號去噪算法

實際采集到的PPG信號往往受到環境光、基線漂移和運動偽影等外界因素干擾,使用受到破壞的PPG信號無法進行準確的血壓估計,需要對采集的PPG信號進行降噪處理,以提取出優質的PPG信號。由于PPG信號和噪聲信號不存在線性關系,不同去噪算法具有不同的優缺點,因此針對PPG信號的降噪算法也是目前的研究熱點。本節從去除基線漂移和去除高頻噪聲兩方面介紹現有PPG信號去噪算法,并對不同方法的優缺點進行分析比較。

2.1 去除基線漂移

基線漂移一般是指由人體呼吸及皮膚表面與PPG傳感器出現相對摩擦而產生的頻率在IHz以下的噪聲。含基線漂移影響的PPG信號可以看成是特征波形與基線漂移信號疊加的結果,對其進行適當的濾波處理,即可分離出基線漂移信號。由于傳統FIR或IIR濾波器[9]截止頻率固定,無法有效濾除高于截止頻率的基線,因而不適用于去除基線漂移。

去除基線漂移的一個主流方法是采用小波變換法[10]。對含噪信號進行多尺度小波分解后,由于信號與噪聲在頻譜和能量分布上有所不同,可以直接去除噪聲對應的小波分解尺度上的細節分量,接著采用小波逆變換進行信號重構,即可有效去除信號中的基線漂移。連續小波變換定義為:

其中,a為尺度因子,r為平移參數,v表示復共軛,小波變換可依據頻域上的相似達到去除基線漂移的目的,在選擇尺度適中的情形下可以取得很好的效果。但小波變換法一般需要對信號進行8-10層小波分解,運算量過大,且噪聲頻帶往往與有用信號頻帶存在部分重疊,從而導致有效信息丟失。

有研究者提出用三次樣條插值[11]算法去除基線漂移,三次樣條插值是針對一個特定數據集合,利用給定的n+l個點將數據分為n段,用n段三次多項式在連續數據點之間建立一個三次樣條,利用三次樣條插值函數計算兩個定點之間的數據,提取出基線波形。在此基礎上,將信號波谷而非起始點作為插值基準點,并且將信號首尾結點也作為基準點處理。其插值函數表達式如下:

其中,m是函數S(x)在定點x:(i=0,1,2,…,n)的微商值。該方法的不足之處在于忽略了信號首尾點的處理,從而導致最后一個起始點至信號末點之間的基線未被擬合。

為了在有效消除基線漂移的同時,保留原始信號的全局與局部特征,有研究者提出基于形態學濾波的方法[12],通過對含基線漂移PPG信號的廣義形態閉一開濾波與開一閉濾波結果進行平均后,可得到與基線漂移信號有關的分量,用原始信號減去估計得出的基線漂移信號分量去除基線漂移。該方法的優點在于結構元素較短且運算量小,可以有效保留原始信號特征。

2.2去除高頻噪聲

一般來說,由于在PPG信號采集過程中,人體時刻處于某種運動狀態,步行、跑步等不規則運動導致的高頻噪聲是無法完全消除的,因而在去除PPG信號高頻噪聲過程中選用合適的方法很重要。

2.2.1 基于自適應濾波器的算法

大部分文獻采用的方法都是基于白適應濾波器法去除高頻噪聲,實現白適應濾波器的算法有很多,其中LMS算法[13-14],即最小均方算法是最常見的,通過找到一組權值向量,使樣本預測輸出值與實際輸出值之差平方的期望值最小。LMS算法權值向量更新公式如下:

其中,系統權值矢量為為 e(n)為誤差信號,“為步長因子。該算法使系統輸出響應盡量逼近期望響應,通過迭代的方法更新權值,其優點在于原理與結構簡單.具有較好的穩定性。一般來說,當選擇的參數因子“較大時,收斂速度較快,但穩態誤差波動較大;當“較小時,收斂速度較慢,但穩態誤差波動較小。所以可以看出,LMS算法中的主要矛盾在于收斂速度與穩態誤差的矛盾。

為了克服LMS算法收斂速度慢的問題,有研究者[15-17]提出變步長LMS算法,在參數因子“發生改變或在收斂開始時選擇較大的參數因子,以獲得更快的收斂速度。當變步長LMS算法收斂時,選擇較小的參數因子,以縮小穩態誤差。但由于算法中仍有全局固定的參數因子,整體收斂速度依舊受到固定步長的影響,導致收斂速度較慢。

經驗模態分解[18](EMD)算法也是一種常用算法,由Huang等[19]提出,依據數據白身的時間尺度特征將信號分解成若干分量,找到并去除其中與運動相關的分量進行去噪,具體公式如下:

為原始信號x(t)的n個IMF分量,階數由低到高,YN(f)表示分解后的剩余分量。EMD算法本質上是對原始信號進行平穩化處理,通過分解產生一系列具有不同特征尺度的本征模態函數(IMF)。然而,由于算法本身缺少完整的理論基礎,且當信號中存在間斷信號等引起的間歇現象時,EMD分解結果會出現模態混疊[20]。因此,Wu等[21]在此基礎上提出集合經驗模態分解算法(EEMD),利用EMD濾波器組行為及白噪聲頻譜均勻分布的統計特性抑制模態混疊,其信號重構公式如下:

其中 為各階集合平均固有模態分量 為剩余分量, 為重構誤差。EEMD算法雖然可以有效抑制模態}昆疊,但其是以增加計算成本為代價的,且算法重構誤差大,分解完備性差。

2.2.2基于模型的算法

上述基于白適應濾波器的算法雖然去除了高頻噪聲,但復雜性都較高,且主要針對較為平緩及不劇烈的運動,不適用于較強或劇烈運動下的偽影去除。近年來,很多研究者提出基于模型的算法,利用多通道PPG信號的運動噪聲與同步運動加速器信號之間的相關性去除強烈的高頻噪聲。通過加速度信號判定是否存在噪聲,并獲取噪聲頻率。文獻[22]提出基于加速度傳感器、以均值濾波為基礎去除高頻運動偽影,獲得運動信號后,選取窗口對去除基線漂移后的信號進行均值濾波處理,從而有效抑制該頻率的運動偽影,其幅度補償公式如下:

其中,x為加速度傳感器x軸信號,在對運動偽影進行均值濾波處理后,對A(x)作幅度補償。此外,由于PPG信號在頻域內具有稀疏性,部分學者提出基于稀疏信號重構的運動偽影去除算法,如Zhang等[23]提出TROIKA框架,由于運動加速度信號與運動偽影信號的強相關性,PPG信號頻譜和加速度信號頻譜的譜峰位置大致相同,所以該框架基于壓縮感知的SMV模型估計原始信號的稀疏頻譜,其目標函數如下:

其中, 為一段原始信號 為一個冗余離散傅里葉變換基, 為要求解的解向量, 為模型誤差,框架中PPG信號頻譜和加速度信號頻譜是分開計算的,容易導致PPG信號頻譜和加速度信號頻譜中的譜峰位置不對應,導致該模型無法有效去除PPG信號頻譜中的所有強運動偽影。為了解決該問題,文獻[24]提出一種基于聯合稀疏重構(JSRR)的算法,在壓縮感知框架下,將去噪過程轉換為稀疏信號重構過程,通過迭代尋優獲得最優解。JSRR模型引入兩個松弛變量 與兩個約束條件,新的目標函數如下:

JSSR模型中的行稀疏約束有效解決了PPG信號與加速度信號譜峰位置不對應的問題,但計算成本較高。為了解決算法性能問題,有研究者[25]采用支持向量機(SVM)模型區分并去除運動偽影,該模型使用了Chang等提出的C-支持向量分類(C-SVC)算法,使用徑向基核函數將輸入數據映射到高維特征空間,其徑向基核函數定義如下:其中,y為徑向基內核特定參數,該算法模型通過尋找最適合當前分類的參數,以有效分離出運動偽影源。實驗結果表明,該模型對多種運動狀態下的運動偽影均有較好的去除效果。同時,SVM方法存在的主要問題是,其精確度受參數影響較大,而對參數的確定大多依靠經驗,沒有統一標準。

不同運動偽影去除算法都有各白的優缺點,需要根據實際使用情況決定采用哪種去噪算法。由于PPG信號中的運動偽影成分范圍無法精確測量,因此不能輕易給出所有模型的去噪精度對比。

3 總結與展望

本文總結了PPG信號抗運動偽影的研究進展。將當前去除運動偽影的算法分成兩類,分別為去除基線漂移的算法和去除高頻噪聲的算法,并分析比較了各方法的優缺點。去除基線漂移的主流方法為基于小波變換法,由于其運算量過大,且存在信息丟失問題,進而有研究者提出三次樣條插值算法和基于形態學的方法,從而有效降低了運算量并保留了有效信息。對于運動偽影中由于劇烈運動造成的高頻噪聲,研究者提出多種基于白適應濾波器的方法,如LMS算法、變步長LMS算法和經驗模態分解算法,盡管這些方法可以有效去除高頻噪聲,但都具有收斂速度慢等問題,因此需要更復雜的模型。之后有研究者提出基于加速度信號的關聯模型、TROIKA框架以及支持向量機分類的模型算法。相關文獻研究表明,復雜模型的去噪效果普遍優于簡單模型,但當模型固定時,由于運動的不斷變化將導致運動偽影的去噪誤差增大。因此,未來研究方向為:一是將簡單靜態模型轉換為動態復雜模型,實時更新模型中的參數信息;二是將動態復雜模型運用于可穿戴式血壓監測產品中。

參考文獻:

[1] National Heart , Lung, and Blood Institute.What is high blood pressure[R] . NHLBI Health Information Center Attentinn , 2012.

[2]滕曉菲 .張元亭 .移動醫療 :穿戴式醫療儀器的發展趨勢 [J]中國醫療器械雜志 .2006(5) : 330-340.

[3]KAMAL A A R. HARNESS J B . IRVINC G, et al. Skin photoplethysmographya review [j] . Computer methods and programs in biomedi-cine. 1989.28(4) : 257-269.

[4]ALLEN J. Photoplethysmograpb and its application in clinic:al physio-Ingical measurement [J]. Phvssiological measurement. 2007 . 28 (3) :R1-R39.

[5]HAN H. KIM M J, KIM J. Development of real-time motion arcifactreductir)n algoritlun for a wearable photoplethysmography Fcl. 29thAnnu al International Conference of the IEEE Engineering in Medicineand Biology Society. IEEE , 2007: 1538-1541.

[6]KIM B S, YOO S K. Motion artifact reduction in photopleth}'smogra-phy using independent compc)nent analysis [J] . IEEE Transactions nnBiomedical Engineering, 2006, 53(3) : 566-568.

[7]KRISHNAN R. NATARAJAN B . WARREN S. Analysis and detectionof motion aitifact in photoplethysmographic data using higher order sta-tistics[C]2008 lEEE International Conference on Acoustics, Speechand Signal Processing. IEEE. 2008: 613-616

[8]張虹,孫衛新,金捷脈搏血氧飽和度檢測系統設計中干擾信號的處理方法[J].國外醫學:生物醫學工程分冊,2000(2):90-95.

[9]劉艷麗,趙為松,李海坤,等,基于形態濾波的脈搏波信號基線漂移消除方法研究[J].合肥工業大學學報:自然科學版,2011, 34(4):525-528.

[10]王鵬,魏守水,黃青華.基于小波變換的自適應濾波器消除脈搏波基線漂移[J].中國醫學物理學雜志,2004(5):296-299.

[II]楊琳,張松,楊益民,等.利用三次樣條差值法抑制脈搏波基線漂移[j]北京生物醫學工程,2010.29(2):198-200.

[12]CHL C H H,DELP E J.Impulsive noise suppression and hackgroundnormalization of electrocardiogram signals using morphological opera- tors[Jl. IEEE Transactions on Biomedical Engineering, 1989, 36(2):262-273.

[13]HAN H, KIM J Artifacts in wearahle photoplethysmographs duringdailv life motions and their reduction with least mean square basedactive noise cancellation method[J].Computers in hiology and medi-cine. 2012. 42(4): 387-393.

[14]CHAN K W,ZHANC Y T.Adaptive reduction of motion artifact fromphotopletbsmographic recordings using a variable step-size LMS fil-terEC]Sensors, IEEE. 2002,2:1343-1346

[15]覃景繁,歐陽景正.一種新的變步長LMS自適應濾波算法[J].數據采集與處理,1997. 12(3):171-174

[16]孫恩昌,李于衡,張冬英,等.自適應變步長LMS濾波算法及分析[J].系統仿真學報,2007,19(14):3172-3175.

[17]熊英.運動噪聲環境中穿戴設備心率提取算法研究[D]長沙:長沙理工大學,2017

[18]RAGHURAM M,SIVANI K, REDDY K A Use of complex EMD gen-erated noise reference for adaptive reduction of motinn artifacts fromPPC signals[C]2016 International Conference on Electrical. Elec-tronics, and Optimization Techniques, 2016: 1816-1820.

[19]HL'ANG N E, SHEN Z, LONC S R.et al. The empirical mode de-composition and the Hilhert spectrum for nonlinear and non-station-arv time series analysis[J]. Proceedings of the Roval Societv of Lon-don. Series A: Mathematical. Ph\:sical and Engineering Sciences,1998. 454: 903-995.

[20]WUZ, HUANG N E.Ensemhle empirical mode decomposition:anoise-assisted data analy'sis method[J]. Advances in adaptive dataanah-sis. 2009(1):1-41.

[21] DAI X,DIAMOND J A. Intracerehral heniorrhage:a life-threateningcomplication of hypertension during pregnancy[J]. The Journal ofClinical Hypertension, 2007,9(11): 897-900

[22]陳炎,李丹,李彥海,等.基于加速度傳感器的心率信號處理及檢測方法[J].科學技術與工程,2016, 16(9):67-70.

[23]ZHANC Z. PI Z, LIU B.TROIKA:a general framework for heartrate monitoring using wrist-type phntoplethysmographic signals dur-ing intensive physical exercise[J].IEEE Transactions on biomedicalengineering, 2015, 62(2): 522-531.

[24]熊繼平,蔣定德,蔡麗桑,等.基于聯合稀疏譜重構的PPG信號降噪算法[J].電子學報,2017.45(7):1646-1652

[25] COUCEIRO R. CARVALHO P, PAIVA R P. et al. Detection of mo-tion artifac.t patterns in photoplethysmographic signals based on timeand period domain anah-sis[J].Physiologic:al measurement, 2014,35( 12):2369

(責任編輯:黃健)

收稿日期:2019-05-23

基金項目:上海工程技術研究中心資助項目(18D22250900)

作者簡介:侯殷偉(1993-),男,上海理工大學上海介入醫療器械工程技術研究中心碩士研究生,研究方向為無創血壓實時監測技術;

程云章(1964-),男,上海理工大學上海介入醫療器械工程技術研究中心教授、博士生導師,研究方向為血流動力學及其臨床應用;邊俊杰(1972-),男,碩士,上海理工大學上海介入醫療器械工程技術研究中心碩士生聯合導師,浙江善時醫療器械有限公司董事長,研究方向為無創血流動力學監測技術。本文通訊作者:程云章。

主站蜘蛛池模板: 国产高清国内精品福利| 男人的天堂久久精品激情| 国产主播在线一区| 色综合中文字幕| 久草视频精品| 国产尤物在线播放| 欧美日韩免费在线视频| 色综合天天操| 最新痴汉在线无码AV| 香港一级毛片免费看| 黄色污网站在线观看| 91丝袜在线观看| 久久综合成人| 国产精品手机在线播放| 日韩精品亚洲精品第一页| 国产91蝌蚪窝| 自偷自拍三级全三级视频| 一级看片免费视频| 欧美性精品不卡在线观看| 精品欧美日韩国产日漫一区不卡| 亚洲欧美综合精品久久成人网| 久久精品丝袜高跟鞋| 国产激爽大片高清在线观看| 精品国产成人高清在线| 91精品国产自产91精品资源| 青青草原国产av福利网站| 亚洲国产日韩视频观看| 三上悠亚一区二区| 直接黄91麻豆网站| 精品国产福利在线| 亚洲日韩图片专区第1页| 久久国产精品夜色| 国产成人免费手机在线观看视频| 国产午夜福利片在线观看| 国产高清无码麻豆精品| a亚洲视频| 九九久久精品免费观看| av尤物免费在线观看| 人人看人人鲁狠狠高清| 第一区免费在线观看| 中文字幕久久精品波多野结| 久久美女精品| 视频二区中文无码| 看国产一级毛片| 亚洲第一页在线观看| 韩国福利一区| 国产视频只有无码精品| 欧洲日本亚洲中文字幕| 精品人妻无码中字系列| 日本www在线视频| 亚洲日本一本dvd高清| 亚洲综合中文字幕国产精品欧美| 久久性视频| 色综合成人| 欧美不卡视频在线观看| 91啪在线| 欧美无遮挡国产欧美另类| 色综合综合网| 免费日韩在线视频| 国产成人在线无码免费视频| 理论片一区| 免费一级毛片完整版在线看| 欧美激情福利| 波多野结衣无码AV在线| 成人毛片免费在线观看| 在线播放真实国产乱子伦| 久久久久亚洲Av片无码观看| 成人在线亚洲| 国产成熟女人性满足视频| 欧美精品三级在线| 性色一区| 亚洲国产中文精品va在线播放| 午夜a级毛片| 国禁国产you女视频网站| 91精品啪在线观看国产60岁| 91人妻日韩人妻无码专区精品| 亚洲首页国产精品丝袜| 久爱午夜精品免费视频| 看看一级毛片| a毛片免费看| 91久久精品日日躁夜夜躁欧美| 一本大道在线一本久道|