陳 維 魏守祥 李禹含 潘魯青
櫛孔扇貝消化盲囊亞細(xì)胞組分分離與鑒定技術(shù)*
陳 維 魏守祥 李禹含 潘魯青①
(中國海洋大學(xué)海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室 青島 266003)
采用勻漿、差速離心、鏡檢和標(biāo)志酶測定等方法,研究了櫛孔扇貝()消化盲囊亞細(xì)胞組分分離與鑒定技術(shù)。結(jié)果顯示,經(jīng)Hoechst 33258染色,在勻漿2 min對(duì)照組中,觀察到大量櫛孔扇貝消化盲囊完整細(xì)胞,呈圓形或橢圓形,細(xì)胞膜完整,熒光強(qiáng)度較高;在勻漿3、4、5 min實(shí)驗(yàn)組中,完整細(xì)胞數(shù)目逐漸減少,且出現(xiàn)許多形態(tài)較小、熒光強(qiáng)度弱、輪廓模糊的細(xì)胞碎片。通過血球計(jì)數(shù)板法得到的細(xì)胞破碎結(jié)果與上述染色結(jié)果一致,隨著勻漿時(shí)間(2~5 min)的增加,細(xì)胞破碎率升高,當(dāng)勻漿時(shí)間達(dá)到5 min時(shí),細(xì)胞破碎率升至94.24%。利用Hoechst 33258染色櫛孔扇貝消化盲囊亞細(xì)胞分離組分(S2、C2、C4、S5和C5),鏡檢發(fā)現(xiàn),C2組分熒光強(qiáng)度最強(qiáng),熒光顆粒數(shù)目多,而其他組分熒光強(qiáng)度弱,且基本觀察不到熒光顆粒。由此推測,細(xì)胞核主要存在于C2組分中;同時(shí),細(xì)胞膜(5¢-核苷酸酶)、線粒體(琥珀酸脫氫酶)、細(xì)胞質(zhì)(乳酸脫氫酶)和微粒體(葡萄糖-6-磷酸酶)標(biāo)志酶活力在其他亞細(xì)胞組分中有少量檢出,但它們在S2、C4、S5和C5組分中的的標(biāo)志酶活性比例較高(分別為63.90%、64.89%、77.82%和67.55%)。由此推測,S2、C2、C4、S5和C5分離組分分別為細(xì)胞膜、細(xì)胞核、細(xì)胞質(zhì)、線粒體和微粒體。本研究成功構(gòu)建了櫛孔扇貝消化盲囊亞細(xì)胞組分分離與鑒定技術(shù)方法,為貝類生理機(jī)制研究提供技術(shù)支持。
櫛孔扇貝;消化盲囊;亞細(xì)胞組分;分離鑒定
細(xì)胞是生物體結(jié)構(gòu)和功能的基本單位,由具有一定形態(tài)、在細(xì)胞內(nèi)執(zhí)行特定功能的亞細(xì)胞組分構(gòu)成,包括細(xì)胞膜、細(xì)胞質(zhì)、細(xì)胞器、細(xì)胞核等。亞細(xì)胞組分是細(xì)胞內(nèi)生理代謝反應(yīng)的主要場所,分布著許多重要的生化代謝酶。目前,關(guān)于亞細(xì)胞組分的生化組成、特定功能和超微結(jié)構(gòu)等研究已成為熱點(diǎn)(趙艷芳等, 2013; 陳揚(yáng)等, 2017: Jadot, 2017),而亞細(xì)胞組分分離技術(shù)則是研究的前提與關(guān)鍵,主要的分離方法有超速離心、電泳(Heidrich, 1976; Islinger, 2011)、親和純化(Vitale, 1998; Takemoto, 2002; Merino, 2012)等,其中,超速離心是最常用的亞細(xì)胞組分分離技術(shù)(賀芳等, 2005)。在哺乳動(dòng)物中,通過超速離心已能分離出細(xì)胞核、細(xì)胞膜、細(xì)胞質(zhì)、線粒體、微粒體、溶酶體等多種亞細(xì)胞組分。同時(shí),采用標(biāo)志酶、蛋白質(zhì)印跡、電鏡觀察等方法,建立了亞細(xì)胞組分種類鑒定、純度分析的技術(shù)方法(Fleischer, 1974; Cooper, 2010; Lieb, 2010)。王偉等(2012)用超速離心法從新生大鼠()右側(cè)大腦皮質(zhì)組織中分離得到線粒體和胞漿2種亞細(xì)胞組分,并通過測定凋亡蛋白Smac、Diablo蛋白在其中的表達(dá),探究大鼠H/I后神經(jīng)元Smac/Diablo的亞細(xì)胞器轉(zhuǎn)移與神經(jīng)元凋亡的作用機(jī)制;Jiang等(2004)離心分離了大鼠肝臟粗制線粒體、純化線粒體、胞質(zhì)等亞細(xì)胞組分,通過亞細(xì)胞蛋白質(zhì)組學(xué)分析,鑒定了共564個(gè)蛋白質(zhì),又根據(jù)物理化學(xué)特征和功能對(duì)其進(jìn)行了詳細(xì)的生物信息學(xué)注釋;Kiri等(2005)通過蔗糖密度梯度離心得到高度富集的牛心臟線粒體,發(fā)現(xiàn)了來自不同年齡牛心臟的線粒體制劑的蛋白質(zhì)譜存在顯著差異。
目前,貝類亞細(xì)胞組分分離技術(shù)和功能研究也受到廣泛關(guān)注。Keiichi等(2013)從長牡蠣()和日本蜆()組織中離心分離了線粒體、微粒體,通過體外實(shí)驗(yàn)發(fā)現(xiàn)這2種亞細(xì)胞組分提取物在岡田酸酰化反應(yīng)中起到關(guān)鍵作用;Livingstone等(1984)分離了紫貽貝()微粒體、線粒體、細(xì)胞質(zhì)等亞細(xì)胞組分,但僅在微粒體及線粒體中檢測到混合功能氧化酶(MFO)及苯并[a]芘(BaP)代謝相關(guān)酶酶活性;Siebert等(2017)離心分離了牡蠣()鰓和消化盲囊的微粒體、細(xì)胞質(zhì),也僅在微粒體中檢測到乙氧基脫嘌呤O-脫乙酰酶(EROD)的活性。目前,獲得貝類亞細(xì)胞組分的方法仍主要參照哺乳動(dòng)物亞細(xì)胞組分分離方法的研究,通過超速離心能夠獲得細(xì)胞核、細(xì)胞質(zhì)、線粒體、微粒體等亞細(xì)胞組分中的1~2個(gè)組分,但之后極少有開展亞細(xì)胞組分種類鑒定及純度分析的研究,因此分離效率低,準(zhǔn)確性難以保證。
本研究以櫛孔扇貝()為對(duì)象,在已有的哺乳動(dòng)物和貝類亞細(xì)胞組分分離技術(shù)的基礎(chǔ)上,依據(jù)櫛孔扇貝消化盲囊特有的組織細(xì)胞特征,開展組織勻漿液制備和檢驗(yàn)技術(shù)的研究,探究貝類亞細(xì)胞組分超速離心分離與鑒定技術(shù),不僅可為貝類亞細(xì)胞組分的生理功能研究提供技術(shù)支持,也可為貝類亞細(xì)胞組分標(biāo)準(zhǔn)化分離技術(shù)提供科學(xué)依據(jù)。
實(shí)驗(yàn)所用櫛孔扇貝于2018年4月購自山東省青島市嶗山區(qū)沙子口養(yǎng)殖場,殼高為(6.15±0.50) cm。采用青島近海自然海水暫養(yǎng)10 d,溫度為(18±1)℃,海水鹽度為31,pH為8.1,連續(xù)充氣,日換水量為1/2,投喂螺旋藻粉,日投餌量為3 mg/L。
1.2.1 消化盲囊組織勻漿液的制備 配制勻漿緩沖液,A液:0.02 mol/L Tris、0.15 mol/L KCl、1 mmol/L DTT、0.5 mol/L蔗糖,pH調(diào)至7.7,于4℃保存;B液:150 mmol/L MgCl2,于4℃保存;C液:100 mmol/L PMSF,于-20℃保存。
選擇健康、活力強(qiáng)的櫛孔扇貝,解剖并稱取消化盲囊組織2 g,剪碎后,放入預(yù)冷的玻璃勻漿器中,加入10 ml A液、100 μl B液和10 μl C液,4℃冰水浴下研磨,經(jīng)預(yù)實(shí)驗(yàn)設(shè)置勻漿時(shí)間分別為2、3、4、5 min,然后采用醫(yī)用紗布擠壓過濾,濾液放入預(yù)冷的15 ml離心管中。
1.2.2 細(xì)胞裂解率檢驗(yàn) 取100 μl過濾液,用勻漿緩沖液A液稀釋10倍。再取100 μl稀釋后的過濾液,加入100 μl 10 μg/ml的Hoechst工作液,混勻,暗處理10 min,之后,取2.5 μl均勻涂片,在熒光顯微鏡(Nikon50i,藍(lán)色濾光片,熒光激發(fā)光波長為346~ 352 nm,發(fā)射波長為460~461 nm)下觀察細(xì)胞形態(tài)及大小,以勻漿2 min染色結(jié)果為對(duì)照組,其他勻漿時(shí)間與之比較,觀察完整細(xì)胞形態(tài)并計(jì)數(shù)。
吸取2.5 μl上述稀釋的勻漿液,滴于血球計(jì)數(shù)板上,在熒光顯微鏡光鏡下(10×40 倍)觀察細(xì)胞形態(tài)并計(jì)數(shù)。細(xì)胞破碎率公式:破碎率(%)=1-實(shí)驗(yàn)組完整細(xì)胞個(gè)數(shù)/對(duì)照組完整細(xì)胞個(gè)數(shù),當(dāng)破碎率達(dá)90%以上時(shí),視為勻漿質(zhì)量良好,可用于亞細(xì)胞組分的分離實(shí)驗(yàn)。
1.2.3 消化盲囊亞細(xì)胞組分的分離 參照Livingstone等(1984)和Song等(2006)的分離方法,并根據(jù)預(yù)實(shí)驗(yàn)情況對(duì)緩沖液和具體離心步驟進(jìn)行調(diào)整和優(yōu)化,所有分離過程溫度均控制在0℃~4℃,具體操作步驟如圖1所示。

圖1 櫛孔扇貝消化盲囊亞細(xì)胞組分分離流程
取勻漿質(zhì)量良好的過濾液10 ml,加入10 μl C液,混勻,于600×g離心1 h,分離上清液S1和沉淀C1。C1中加入0.5 ml D液和4.5 ml E液重懸,重懸液于71000×g離心90 min,分離上清液S2和沉淀C2。S1于12000×g離心45 min,分離獲得上清液S3和沉淀C3,C3加入2 ml勻漿緩沖液重懸,于12000×g離心45 min,分離獲得沉淀C4和上清液S4,S4與S3合并后于100000×g下離心90 min,分離獲得上清液S5和沉淀C5。沉淀C2、C4、C5中加入2 ml儲(chǔ)備緩沖液F液和0.4 g儲(chǔ)備緩沖液G液,懸浮沉淀,置于-80℃保存。
離心步驟中用到的緩沖液配方如下,D液:0.3 mol/L蔗糖溶液、50 mmol/L Tris、1.5 mmol/L MgCl2,pH 7.7;E液:1.98 mol/L蔗糖溶液、50 mmol/L Tris、1.5 mmol/L MgCl2,pH 7.7;F液:20 mmol/L Tris、1 mmol/L DTT,pH 7.7,均在4℃保存;G液:甘油。
1.2.4 細(xì)胞核純度及活性檢驗(yàn) 取S2、C2、C4、S5和C5各100 μl,稀釋10倍后,分別按1.2.2中步驟進(jìn)行Hoechst染色,在熒光顯微鏡下觀察細(xì)胞核形態(tài)和大小。
1.2.5 亞細(xì)胞組分標(biāo)志酶的活性測定 按照Beneking等(1978),測定細(xì)胞膜標(biāo)志酶5¢-核苷酸酶(5¢-NT);參照Storrie等(1990),測定細(xì)胞質(zhì)標(biāo)志酶乳酸脫氫酶(LDH);依據(jù)Klaassen等(1969),測定微粒體標(biāo)志酶葡萄糖-6-磷酸酶(G-6-Pase);采用南京建成試劑盒,測定線粒體標(biāo)志酶琥珀酸脫氫酶(SDH)。蛋白質(zhì)含量的測定按照Bradford(1976),以牛血清白蛋白(BSA)為標(biāo)準(zhǔn)蛋白。
所有實(shí)驗(yàn)數(shù)據(jù)均以4個(gè)平行組數(shù)據(jù)的平均值±標(biāo)準(zhǔn)差(Means±SD)表示,采用SPSS 22.0軟件進(jìn)行單因素方差分析(One-way ANOVA)、差異顯著性分析用Duncan檢驗(yàn)法,以<0.05表示差異顯著,>0.05表示差異不顯著。
由圖2可以看出,Hoechst 33258染色后,在熒光顯微鏡下,消化盲囊組織在勻漿后完整,細(xì)胞形態(tài)飽滿,呈圓形或橢圓形,細(xì)胞膜完整,熒光強(qiáng)度較強(qiáng);而破碎細(xì)胞形態(tài)較小,熒光強(qiáng)度弱,細(xì)胞輪廓模糊。在勻漿2 min對(duì)照組中,可以觀察到大量完整的細(xì)胞,隨著勻漿時(shí)間的增加,完整細(xì)胞個(gè)數(shù)減少,熒光強(qiáng)度弱的顆粒數(shù)增加,勻漿5 min實(shí)驗(yàn)組中基本沒有完整細(xì)胞的存在。隨著勻漿時(shí)間(2~5 min)的增加,櫛孔扇貝消化盲囊組織細(xì)胞破碎率升高,以勻漿2 min為對(duì)照組,勻漿時(shí)間為5 min時(shí),細(xì)胞破碎率達(dá)到94.24% (表1)。
表1 櫛孔扇貝消化盲囊在不同勻漿時(shí)間下細(xì)胞破碎率

Tab.1 Broken rate of digestive gland cells of C. farreri at different homogenization time
注:勻漿2 min作為對(duì)照組,同一列標(biāo)有不同上標(biāo)字母表示差異顯著(<0.05)
Note: 2 min homogenization group was the control group, different superscripts in the same column indicate significant differences (<0.05)
將櫛孔扇貝消化盲囊亞細(xì)胞分離組分(S2、C2、C4、S5和C5)進(jìn)行Hoechst 33258染色,在熒光顯微鏡下觀察,C2組分熒光強(qiáng)度最強(qiáng),視野中熒光顆粒數(shù)多,顆粒間粘黏比例低,說明細(xì)胞核提純質(zhì)量較好(圖3);其他組分熒光強(qiáng)度弱,基本觀察不到熒光顆粒。因此,細(xì)胞核主要存在于C2組分中,其他組分中不存在細(xì)胞核。
由表2可知,細(xì)胞膜(5¢-NT)、線粒體(SDH)、微粒體(G-6-Pase)和細(xì)胞質(zhì)(LDH)標(biāo)志酶在櫛孔扇貝消化盲囊亞細(xì)胞組分(S2、C2、C4、S5和C5)中顯示有不同的分布,其中,5¢-NT、SDH、LDH和G-6-Pase分別在S2、C4、S5和C5組分中占有高比例(63.90%、64.89%、77.82%和67.55%)的標(biāo)志酶活性(圖4),由此推測,S2、C4、S5和C5分離組分分別為細(xì)胞膜、細(xì)胞質(zhì)、線粒體和微粒體。雖然4種亞細(xì)胞組分標(biāo)志酶在C2中均有微量檢出,但結(jié)合細(xì)胞核Hoechst 33258染色結(jié)果,確定為細(xì)胞核。綜合標(biāo)志酶檢測和Hoechst 33258染色細(xì)胞核的結(jié)果,本實(shí)驗(yàn)得到的S2、C2、C4、S5和C5分別為細(xì)胞膜、細(xì)胞核、線粒體、細(xì)胞質(zhì)和微粒體。
動(dòng)物組織細(xì)胞勻漿質(zhì)量直接關(guān)系到亞細(xì)胞組分的充分釋放和完整程度,實(shí)驗(yàn)材料處理方法、勻漿方法和勻漿介質(zhì)等是影響組織勻漿質(zhì)量的重要因素。新鮮動(dòng)物肝臟是亞細(xì)胞組分分離的最佳材料(Mootha, 2003; Kikuchi, 2004; Li, 2004; Bagshaw, 2005),但有時(shí)因?yàn)閷?shí)驗(yàn)條件限制,低溫冷凍的實(shí)驗(yàn)材料也被用來離心分離亞細(xì)胞組分(Hoffmann, 2005)。Song等(2006)研究顯示,小鼠()冷凍肝臟制備的亞細(xì)胞組分回收率顯著低于新鮮肝臟組和冷凍均質(zhì)肝臟組。Nielsen等(2005)研究顯示,冷凍處理導(dǎo)致細(xì)胞核破碎釋放DNA,會(huì)引起其他膜系細(xì)胞器的聚集,不利于細(xì)胞膜和其他亞細(xì)胞組分的分離。因此,不建議冷凍肝臟用于亞細(xì)胞組分分離研究。此外,還應(yīng)根據(jù)待均質(zhì)化的組織類型和實(shí)驗(yàn)的具體目的,合理選擇玻璃勻漿、過濾、研磨、超聲處理、酶溶解等勻漿方法。本研究以新鮮櫛孔扇貝消化盲囊組織作為實(shí)驗(yàn)材料,采用玻璃勻漿法研磨組織細(xì)胞,整個(gè)勻漿、分離過程嚴(yán)格控制實(shí)驗(yàn)溫度在0℃~4℃,亞細(xì)胞組分分離效果好、損傷小。

圖2 在不同勻漿時(shí)間下的櫛孔扇貝消化盲囊細(xì)胞Hoechst 33258染色

圖3 櫛孔扇貝消化盲囊亞細(xì)胞組分的Hoechst 33258染色
A: S2; B: C2; C: C4; D: S5; E: C5
表2 櫛孔扇貝消化盲囊亞細(xì)胞組分標(biāo)志酶分布

Tab.2 Distribution of marker enzymes in subcellular fractions of digestive glands of C. farreri
注:同一行中標(biāo)有不同上標(biāo)字母表示差異性顯著(<0.05)
Note: Different superscripts in the same line indicate significant differences (<0.05)

圖4 櫛孔扇貝消化盲囊的5種亞細(xì)胞組分中標(biāo)志酶活性比例
以櫛孔扇貝消化盲囊亞細(xì)胞各分離組分(S2、C2、C4、S5和C5)標(biāo)記酶活性總和為參照,計(jì)算各分離組分所占標(biāo)記酶活性的比例。同一顏色柱子標(biāo)有不同上標(biāo)字母表示差異顯著(<0.05)
The total activity of marker enzymes in subcellular fractions (S2, C2, C4, S5, and C5) of digestive glandsofwas used as a reference to calculated the proportions of the marker enzymes activity in each isolated fraction. Different letters in the column of the same color indicate significant differences (<0.05)
動(dòng)物組織勻漿介質(zhì)的選擇和制備要考慮滲透壓、pH、蛋白質(zhì)保護(hù)劑等條件,這對(duì)于亞細(xì)胞組分的分離及完整性至關(guān)重要。已有研究表明,在蔗糖溶液中加入低濃度的Ca2+或Mg2+可防止細(xì)胞核團(tuán)簇(Anderson, 1951; Hogeboom, 1952),但Ca2+、Mg2+的存在對(duì)線粒體的功能有害(Graham, 2006);因而,在勻漿緩沖液中加入100 mmol/L KCl,或在細(xì)胞核分離步驟完成后,往上清液中加入EDTA,可平衡Ca2+、Mg2+等引起的核粘連以及核和其他碎片粘連(費(fèi)一楠等, 2007)。本研究中,櫛孔扇貝消化盲囊組織細(xì)胞勻漿緩沖液已經(jīng)過預(yù)實(shí)驗(yàn)優(yōu)化,結(jié)果顯示,勻漿液中不加細(xì)胞核穩(wěn)定劑MgCl2,會(huì)發(fā)生細(xì)胞核大面積團(tuán)簇現(xiàn)象,而加入MgCl2的實(shí)驗(yàn)組,得到的細(xì)胞核分散、形態(tài)清晰、個(gè)體完整,這與上述一些研究結(jié)果類似。與Livingstone等(1984)在紫貽貝上和Siebert等(2017)在牡蠣上所用勻漿緩沖液相比,其優(yōu)點(diǎn)在于能更好地保護(hù)膜蛋白,且協(xié)調(diào)了MgCl2能減少細(xì)胞核破裂、結(jié)塊的優(yōu)點(diǎn)和影響其他細(xì)胞器功能缺點(diǎn)之間的矛盾。
目前,動(dòng)物組織細(xì)胞勻漿破碎率大多利用形態(tài)學(xué)手段如臺(tái)盼藍(lán)染色(Lepvrier, 2017)、相差顯微鏡觀察(Huber, 2003)等方法檢驗(yàn),通過測定完整細(xì)胞的數(shù)量和觀察細(xì)胞核的聚集情況,來評(píng)估均質(zhì)化的質(zhì)量,但這些方法存在觀察結(jié)果模糊、對(duì)比不明顯等缺點(diǎn)。Hoechst 33258是一種毒性較低的藍(lán)色熒光染料,因其能穿透細(xì)胞膜與核酸結(jié)合,常用于細(xì)胞凋亡檢測和活細(xì)胞標(biāo)記(謝興文等, 2012; 吳彪等, 2013; 王凈等, 2015)。本研究利用Hoechst 33258染色的特性,通過該方法觀察不同勻漿時(shí)間里的完整細(xì)胞數(shù)量,結(jié)果顯示,經(jīng)玻璃勻漿5 min時(shí)完整細(xì)胞數(shù)目最少,勻漿效果較好。同時(shí),將Hoechst 33258染色結(jié)果與血球計(jì)數(shù)板計(jì)數(shù)結(jié)果進(jìn)行比較,驗(yàn)證了Hoechst 33258染色法檢驗(yàn)勻漿破碎率的可行性。由此,建立了櫛孔扇貝(貝類)消化盲囊組織細(xì)胞勻漿破碎率Hoechst 33258染色檢驗(yàn)方法。
亞細(xì)胞組分分離技術(shù)在過去的幾十年中得到了很大完善,同時(shí),也發(fā)展出了一系列提純亞細(xì)胞組分的方法,如重復(fù)洗滌、密度梯度離心或其他蛋白質(zhì)純化程序(Pasquali, 1999),但要得到純凈的亞細(xì)胞組分仍然是現(xiàn)在細(xì)胞生物學(xué)中很難實(shí)現(xiàn)的目標(biāo)。提純亞細(xì)胞組分的每一步操作都以損失亞細(xì)胞組分的活性為代價(jià),因此,分離純化亞細(xì)胞組分的純度只要達(dá)到實(shí)驗(yàn)要求即可。
標(biāo)志酶、蛋白質(zhì)印跡、電鏡觀察等方法是常用的動(dòng)物組織細(xì)胞亞細(xì)胞組分鑒定與純度分析方法(Fleischer, 1974; Cooper, 2010; Lieb, 2010),其中,標(biāo)志酶法通過檢測各個(gè)亞細(xì)胞分離組分的標(biāo)志酶活性大小和酶活性貢獻(xiàn)比率,獲得亞細(xì)胞組分純度和分布信息(Andreyev, 2010),如某一目標(biāo)亞細(xì)胞組分中檢測到有對(duì)應(yīng)的標(biāo)記酶以外的其他標(biāo)志酶活性,則表明存在其他亞細(xì)胞組分,通過計(jì)算標(biāo)記酶的酶活性貢獻(xiàn)比率,可以得到亞細(xì)胞組分富集和分布情況。Siebert等(2017)未對(duì)牡蠣消化盲囊組織離心得到的微粒體和細(xì)胞質(zhì)進(jìn)行鑒定和純度分析,難以保證實(shí)驗(yàn)精確性;Livingstone等(1984)利用琥珀酸脫氫酶(SDH)、葡萄糖-6-磷酸酶(G6PASE)、丙酮酸激酶(PK)對(duì)紫貽貝消化盲囊線粒體、細(xì)胞質(zhì)、微粒體進(jìn)行鑒定,且用標(biāo)志酶活性大小表示它們的富集情況,結(jié)果顯示,G6PASE酶活性在分離得到的其他幾個(gè)組分中都有較高的檢出,微粒體富集程度不理想。
本研究通過5¢-核苷酸酶、琥珀酸脫氫酶、乳酸脫氫酶和葡萄糖-6-磷酸酶鑒定了細(xì)胞膜、線粒體、細(xì)胞質(zhì)、微粒體4種亞細(xì)胞組分的種類,且通過標(biāo)志酶活力大小和酶活性貢獻(xiàn)比率顯示4種標(biāo)志酶分別在S2、C4、S5和C5組分中占有高比例(63.90%、64.89%、77.82%和67.55%)的標(biāo)志酶活性。由此確定,S2、C2、C4、S5和C5組分分別為細(xì)胞膜、細(xì)胞核、細(xì)胞質(zhì)、線粒體和微粒體。另外,本研究將分離組分(S2、C2、C4、S5和C5)用Hoechst 33258染色,鏡檢發(fā)現(xiàn),C2組分熒光強(qiáng)度最強(qiáng),熒光顆粒數(shù)目多,其他組分熒光強(qiáng)度微弱,熒光顆粒數(shù)目稀少,由此推出細(xì)胞核存在于C2組分中。由此說明,本研究不僅分離、鑒定出5個(gè)櫛孔扇貝消化盲囊組織亞細(xì)胞組分,還獲得了活性良好的細(xì)胞核,充分證明本研究建立的櫛孔扇貝組織細(xì)胞亞細(xì)胞組分分離、鑒定方法是可行的,對(duì)于貝類組織細(xì)胞亞細(xì)胞組分分離鑒定和生理機(jī)制研究具有重要意義。
Anderson NG, Wilbur KM. Studies on isolated cell components: II. The release of a nuclear gel by heparin. Journal of General Physiology, 1951, 34(5):647?655
Andreyev AY, Shen Z, Guan Z,. Application of proteomic marker ensembles to subcellular organelle identification. Molecular and Cellular Proteomics, 2010, 9(2): 388?402
Bagshaw RD, Mahuran DJ, Callahan JW. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Molecular and Cellular Proteomics, 2005, 4(2): 133?143
Beneking M, Schmidt H, Weiss G. Subcellular distribution of a factor inactivating tyrosine aminotransferase. FEBS Journal, 1978, 82(1): 235?243
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1–2): 248–254
Chen Y, Yu L. Research progress of membranous organelles and their subcellular structures in China. Chinese Science Bulletin, 2017, 62(19): 2055?2062 [陳揚(yáng), 俞立. 膜性細(xì)胞器及其亞結(jié)構(gòu)的動(dòng)態(tài)調(diào)控機(jī)制國內(nèi)研究進(jìn)展. 科學(xué)通報(bào), 2017, 62(19): 2055?2062]
Cooper S, Hare L, Campbell PG. Subcellular partitioning of cadmium in the freshwater bivalve,, after separate short-term exposures to waterborne or diet-borne metal. Aquatic Toxicology, 2010, 100(4): 303?312
Fei YN, Zhang Z, Cao C,. The culture of tobacco suspension cells and the isolation of organelles. Journal of Capital Normal University(Natural Science), 2007, 28(2): 68?74 [費(fèi)一楠, 張釗, 曹聰, 等. 煙草懸浮系培養(yǎng)與細(xì)胞器的分離. 首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 28(2): 68?74]
Fleischer S, Kervina M. Subcellular fractionation of rat liver. Methods in Enzymology, 1974, 31(Pt A): 6?41
Graham J, Harris JR. Isolation and functional analysis of organelles. Cell Biology Protocols. John Wiley and Sons, Ltd, 2006, 87?151
He F, He DC. The development of the techniques of subcellular isolation. Modern Instruments, 2005, 11(2): 1?5 [賀芳, 何大澄. 亞細(xì)胞器分離純化技術(shù)的發(fā)展. 現(xiàn)代儀器, 2005, 11(2): 1?5]
Heidrich HG, Dew ME. Preparative free-flow electrophoresis for the isolation of membrane, organelle and cell fractions from rabbit kidney cortex. Current Problems in Clinical Biochemistry, 1976, 6(S2): 108?112
Hoffmann K, Blaudszun J, Brunken C,. New application of a subcellular fractionation method to kidney and testis for the determination of conjugated linoleic acid in selected cell organelles of healthy and cancerous human tissues. Analytical and Bioanalytical Chemistry, 2005, 381(6): 1138?1144
Hogeboom GH, Schneider WC, Striebich MJ. Cytochemical studies. V. On the isolation and biochemical properties of liver cell nuclei. Journal of Biological Chemistry, 1952, 196(196): 111?120
Huber LA, Pfaller K, Vietor I. Organelle proteomics: Implications for subcellular fractionation in proteomics. Circulation Research, 2003, 92(9): 962?968
Islinger M, Kirsch J, Angermüller S,. Subcellular fractionation of brain tissue using free-flow electrophoresis. Neuroproteomics, 2011 in Li K. (eds) Neuroproteomics. Neuromethods, vol 57. Humana Press, Totowa, NJ
Jadot M, Boonen M, Thirion J,. Accounting for protein subcellular localization: A compartmental map of the rat liver proteome. Molecular and Cellular Proteomics, 2017, 16(2): 194
Jiang XS, Zhou H, Zhang L,. A high-throughput approach for subcellular proteome identification of rat liver proteins using subcellular fractionation coupled with two-dimensional liquid chromatography tandem mass spectrometry and bioinformatic analysis. Molecular and Cellular Proteomics, 2004, 3(5): 441
Keiichi K, Tatsuya O, Ryuichi W,.acylation of okadaic acid in the presence of various bivalves’ extracts. Marine Drugs, 2013, 11(2): 300?315
Kikuchi M, Hatano N, Yokota S,. Proteomic analysis of rat liver peroxisome: Presence of peroxisome-specific isozyme of Lon protease. Journal of Biological Chemistry, 2004, 279(1): 421?428
Kiri AN, Tran HC, Drahos KL,. Proteomic changes in bovine heart mitochondria with age: Using a novel technique for organelle separation and enrichment. Journal of Biomolecular Techniques, 2005, 16(4): 371
Klaassen CD, Plaa GL. Comparison of the biochemical alterations elicited in livers from rats treated with carbon tetrachloride, chloroform, 1, 1, 2-trichloroethaneand 1, 1, 1-trichloroethane. Biochemical Pharmacology, 1969, 18(8): 2019?2027
Lepvrier E, Martin S, Collet B. Production of the non-apoptotic metalloprotease-cleaved CD95L and its cytotoxic recombinant counterpart designed Ig-CD95L. Methods in Molecular Biology, 2017, 1557: 1?10
Li KW, Hornshaw MP, van der Schors RC,. Proteomics analysis of rat brain postsynaptic density:Implications of the diverse protein functional groups for the integration of synaptic physiology. Journal of Biological Chemistry, 2004, 279(2): 987?1002
Lieb B, Gebauer W, Gatsogiannis C,. Molluscan mega-hemocyanin: An ancient oxygen carrier tuned by a 550 kDa polypeptide. Frontiers in Zoology, 2010, 7(1): 14
Livingstone DR, Farrar SV. Tissue and subcellular distribution of enzyme activities of mixed-function oxygenase and benzo [a] pyrene metabolism in the common musselL. Science of the Total Environment, 1984, 39(3): 209?235
Merino V, Kumar NS. Isolation, affinity purification and biochemical characterization of a lysosomal cathepsin D from the deuterostome. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology, 2012, 161(3): 240?246
Mootha VK, Bunkenborg J, Olsen JV,. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell, 2003, 115(5): 629?640
Nielsen PA, Olsen JV, Podtelejnikov AV,. Proteomic mapping of brain plasma membrane proteins. Molecular and Cellular Proteomics, 2005, 4(4): 402?408
Pasquali C, Fialka I, Huber LA. Subcellular fractionation, electromigration analysis and mapping of organelles. Journal of Chromatography B: Biomedical Sciences and Applications, 1999, 722(1–2): 89?102
Siebert MN, Mattos JJ, Piazza CE,. Characterization of ethoxyresorufin O-deethylase activity (EROD) in oyster. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2017, 203: 115?121
Song Y, Hao Y, Sun A,. Sample preparation project for the subcellular proteome of mouse liver. Proteomics, 2006, 6(19): 5269?5277
Storrie B, Amadden E. Isolation of subcellular organelles. Methods in Enzymology, 1990, 182: 203?225
Takemoto M, Asker N, Gerhardt H,. A new method for large scale isolation of kidney glomeruli from mice. American Journal of Pathology, 2002, 161(3): 799?805
Vitale N, Horiba K, Ferrans VJ,. Localization of ADP-ribosylation factor domain protein 1 (ARD1) in lysosomes and Golgi apparatus. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15):8613?8618
Wang J, Han YP, Yang RF,. Optimization of labeling and localizing bacterial membrane and nucleus with FM4-64 and Hoechst dyes. Acta microbiologica Sinica, 2015, 55(8): 1068?1073 [王凈, 韓延平, 楊瑞馥, 等. FM4-64和Hoechst染料在活細(xì)菌胞膜和擬核標(biāo)記定位中的條件優(yōu)化與應(yīng)用. 微生物學(xué)報(bào), 2015, 55(8): 1068?1073]
Wang W, Wang J, Xue L. Expression of Smac/Diablo in neonatal rats with hypoxic-ischemic brain damage and protective mechanism of Shenfu injection. Apoplexy and Nervous Diseases, 2012, 29(9): 790?793 [王偉, 王軍, 薛莉. HIBD新生大鼠線粒體凋亡蛋白Smac/Diablo的亞細(xì)胞器表達(dá)及參附注射液的干預(yù)作用. 中風(fēng)與神經(jīng)疾病, 2012, 29(9): 790?793]
Wu B, Yu T, Yang AG,Cytological observations on fertilization offrom China and Korea. Progress in Fishery Sciences, 2013, 34(5): 64?68 [吳彪, 于濤, 楊愛國, 等. 不同地理群體魁蚶雜交受精過程的熒光觀察. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(5): 64?68]
Xie XW, Hou FY, Li N,. Hoechst33342 for labeling rat bone marrow mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research, 2012(49): 9146?9151[謝興文, 侯費(fèi)祎, 李寧, 等. Hoechst33342對(duì)大鼠骨髓間充質(zhì)干細(xì)胞的標(biāo)記. 中國組織工程研究, 2012(49): 9146?9151]
Zhao YF, Shang DR, Ning JS,. Subcellular distributions of trace metals in. Progress in Fishery Sciences, 2013, 34(6): 118?123 [趙艷芳, 尚德榮, 寧勁松, 等. 羊棲菜中微量金屬元素的亞細(xì)胞分區(qū)分布. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(6): 118?123]
Isolation and Identification of Subcellular Fractions from Digestive Glands of
CHEN Wei, WEI Shouxiang, LI Yuhan, PAN Luqing①
(Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003)
In this study, homogenization, centrifugation, microscopy, and marker enzyme assays were used to study the separation and identification techniques for subcellular fractions of the digestive gland tissuesof. The results showed that after Hoechst 33258 staining, a large number of intact cells, which were round or elliptical, with complete cell membrane and high fluorescence intensity, were observed in the 2 min homogenization group. In the 3, 4, and 5 min homogenization group, the number of intact cells gradually decreased, and many cell fragments with small morphology, weak fluorescence, and blurred outline appeared. Additionally, the blood cell counting results were consistent with the Hoechst staining results. With the increase in homogenization time (2~5 min), the broken cell rate was increased under an optical microscope and when the 2 min homogenization group was used as the control group, the broken cell rate reached 94.24% in the 5 min homogenization group. There were more fluorescent particles in C2 with appropriate size, and clear structure, and fewer fluorescent particles were observed in other separated fractions, when fractions (S2, C2, C4, S5, and C5) of the digestive gland tissuesofwere stained with Hoechst 33258. Therefore, the nucleus mainly presented in the C2 fraction. At the same time, the marker enzyme activity of the cell membrane (5?-nucleotidase), mitochondria (succinate dehydrogenase), cytoplasmic (lactate dehydrogenase), and microsomes (glucose-6-phosphatase) accounted for a high proportion (63.90%, 64.89%, 77.82%, and 67.55%) in the S2, C4, S5, and C5 fractions, respectively; however, there were also a small amount found in other subcellular fractions. As a result, the separated fractions of S2, C2, C4, S5, and C5 were cell membrane, nucleus, mitochondria, cytoplasm, and microsomes, respectively, and the technical methods for separation and identification of subcellular fractions of the digestive gland tissuesofwere successfully determined.
; Digestive glands tissues; Subcellular fractions; Isolation and identification
PAN Luqing, E-mail: panlq@ouc.edu.cn
10.19663/j.issn2095-9869.20190214001
http://www.yykxjz.cn/
陳維, 魏守祥, 李禹含, 潘魯青. 櫛孔扇貝消化盲囊亞細(xì)胞組分分離與鑒定技術(shù). 漁業(yè)科學(xué)進(jìn)展, 2020, 41(3): 111–118
Chen W, Wei SX, Li YH, Pan LQ. Isolation and identification of subcellular fractions from digestive glands of. Progress in Fishery Sciences, 2020, 41(3): 111–118
* 山東省2018年重點(diǎn)研發(fā)計(jì)劃(公益性科技攻關(guān)類)(2018GHY115007)資助[This work was supported by Shandong Province 2018 Key Research and Development Plan (Public Welfare Science and Technology Research) (2018GHY115007)]. 陳 維,E-mail: 2209236262@qq.com
潘魯青,教授,E-mail: panlq@ouc.edu.cn
2019-02-14,
2019-03-04
S917.4
A
2095-9869(2020)03-0111-08
(編輯 馬璀艷)