魏守輝,肖雪梅,鐘 源,郁繼華,,呂 劍,胡琳莉,唐中祺,柳帆紅,王舒亞,堅乃丹
日光溫室不同時段補光對番茄果實品質及揮發性物質影響
魏守輝1,肖雪梅1※,鐘 源2,郁繼華1,2,呂 劍1,胡琳莉1,唐中祺1,柳帆紅1,王舒亞1,堅乃丹2
(1. 甘肅農業大學園藝學院,蘭州 730070; 2. 甘肅農業大學干旱生境作物學重點實驗室,蘭州 730070)
為探明日光溫室中提高番茄產量和品質的最佳補光時段,以“粉太郎”番茄為試材,從植株定植后第25天到第一穗果完全成熟時進行補光,利用LED燈設置3種補光時段:揭簾前補光5 h(T1)、蓋簾后補光5 h(T2)、揭簾前蓋簾后分別補光2.5 h(T3),以不補光作為對照(CK),研究其對番茄產量、果實品質以及揮發性物質成分和含量的影響。結果表明:補光處理可提高番茄平均單株產量、果實可溶性糖含量、可溶性固形物含量、糖酸比、揮發性物質總數量和總質量分數,但會降低有機酸含量,T1處理效果最顯著(<0.05)。4個處理共檢測出83種揮發性物質,包括12種酮類、22種醛類、22種醇類、6種酯類、6種烴類和15種其他類物質。各處理揮發性物質總數量和總質量分數由大到小為:T1(68種,3 107.98g/kg)、T3(65種,2 610.74g/kg)、T2(63種,2 438.96g/kg)、CK(59種,2 086.03g/kg)。每個處理醇類含量最多,烴類含量最低,并且含量最高的物質均是順-3-己烯-1-醇。3種補光處理均可提高酮類、醛類、醇類和其他類物質含量,但顯著降低烴類物質含量(<0.05),酯類物質含量只在T1處理時有所提高。所有被檢測出的揮發性物質包含11種番茄特征香氣成分,主要分為花香、果香與青香3種類型,其中青香味物質含量最多。綜上,對番茄進行補光尤其是揭簾前補光5 h可有效提高番茄產量、果實品質和風味,是當地日光溫室越冬茬番茄栽培的較優補光時段。研究結果可為設施番茄種植的光環境調控技術提供科學依據。
溫室;光質;番茄;補光時段;產量;果實品質;揮發性物質;頂空固相微萃取;氣相色譜-質譜聯用
番茄()又稱西紅柿,含有豐富的蛋白質和礦質元素,同時還含有番茄紅素、維生素C以及糖酸類等營養物質[1],具有抗衰老和健胃消食等作用[2]。番茄作為中國種植規模較大的蔬菜作物之一,以其獨特的風味深受廣大消費者的喜愛,被人們稱為“蔬菜中的水果”。隨著人們對番茄需求的大量增加以及日光溫室的加速發展,番茄的周年種植與供應得以實現,但由于溫室蔬菜生產過程存在復種指數高[3]、弱光[4]以及環境封閉[5]等原因,番茄品質和風味出現了明顯的季節性差異[6],加之種植者過分追求番茄產量和外觀商品品質,使得番茄果實可溶性固形物含量少、特征香氣成分不足等品質和風味問題出現[7]。
研究表明,番茄品質和風味形成受多方面影響。從栽培條件看,主要有茬口選擇[8]、水肥用量[9]和氣體環境[10]等因素,也有研究表明光照會影響番茄果實品質和風味的形成[11]。董飛等[11]研究表明,與白光相比,利用不同紅藍光比例LED燈對番茄進行補光,在番茄果實綠熟期、轉色期、成熟期,均可顯著提高番茄果實揮發性物質數量和脂氧合酶、脂氫過氧化物裂解酶等關鍵合成酶含量。李蔚等[12]研究表明,日光溫室秋冬茬番茄在開花前每日補光7 h、開花坐果后每日補光9 h較好。LED燈作為一種新型光源以其節能環保、使用壽命長、安全穩定等諸多優點廣泛應用于農業照明領域,尤其是日光溫室蔬菜栽培[13]。崔曉輝等[14]發現,LED補光能有效促進甜瓜植株生長,同時提高果實產量和特征香氣物質含量。人工補光可改善植物光照條件促進植物生長,有利于植物光合產物積累,從而實現番茄果實的優質高產[15]。
近年來,有關番茄揮發性物質影響因素的研究主要集中在基因型[16]、采收成熟度[17]和采后貯藏[18]等方面,而光照影響番茄揮發性物質的研究很少,不同時段補光對番茄果實品質和揮發性物質的影響更是鮮有報道。本研究以“粉太郎”番茄為試材,從植株定植后第25天到第一穗果完全成熟時進行不同時段補光處理,探討其對番茄產量、果實品質和揮發性物質的影響,為進一步改善中國西北日光溫室番茄果實品質和風味提供理論基礎。
本試驗番茄種植于甘肅省蘭州市榆中縣李家莊(35°85'N,104°12'E)日光溫室,采用有機基質地下槽式栽培,栽培槽規格9 m×0.4 m×0.25 m(長×寬×高),栽培槽間距0.8 m。栽培基質購買于甘肅綠能農業科技股份有限公司,基質體積比為牛糞∶草炭∶椰糠=1∶2∶2,電導率(Electrical Conductivity,EC)為2.56 mS/cm,pH值7.5。試驗選用品種為“粉太郎”,播于72孔穴盤中育苗,幼苗長至四葉一心時定植,采用單壟雙行栽培模式,大行距100 cm,小行距70 cm,株距45 cm,留7穗果打頂。利用膜下滴灌進行水肥一體化管理,施肥罐安裝在滴灌系統首部,每壟鋪設2條滴灌帶,滴頭間距35 cm,施肥時將肥料準確稱量后溶于水中,通過滴灌管路隨水滴施到番茄根系附近,自第一穗果開花坐果時開始追肥,每隔5 d追施一次,植株拉秧前一周停止追肥。每次每株平均灌水量為1.5 L,平均施肥量為3.23 g(1.37 g硝酸鉀、0.34 g磷酸二氫銨、0.38 g硫酸鎂、0.90 g四水硝酸鈣和0.24 g尿素)。
采用LED燈在雙行植株中間進行補光,補光強度為100mol/(m2·s),補光燈高度距植株生長點下側15 cm,并根據植株生長高度進行調整。從植株定植后第25天(2018年12月19日)開始補光,第一穗果完全成熟時(2019年3月25日)結束補光。試驗共設置4個處理,分別是揭簾前補光5 h(T1)、蓋簾后補光5 h(T2)、揭簾前蓋簾后分別補光2.5 h(T3),以不補光作為對照(CK)。該日光溫室共種植番茄27槽,每個小區為一個處理,每處理種植3槽,每槽為一個重復,各處理間均設置3槽保護行,避免不同補光處理的干擾。各處理在補光結束后第2天取樣,取樣標準為果實完全紅熟、色澤一致且著紅面100%的第一穗果實,采摘后用周轉箱轉運至實驗室并貯藏于8 ℃冰箱中待測。
HY-115CM-36×3W-RB型LED光源(紅藍光R∶B= 7∶2,深圳厚屹節能技術有限公司);UV-1800紫外可見分光光度計(日本島津公司);DF-101S集熱式磁力攪拌器(鄭州市亞榮儀器有限公司);SPME進樣手柄、75m CAR/PDMS SPME萃取頭(美國Supelco公司);DB-WAX彈性石英毛細管柱(20 m×0.18 mm,0.18m,美國Agilent公司);ISQ氣相色譜-質譜聯用儀(美國Thermo Fisher Scientific公司);勻漿機(荷蘭Philips公司)。
1.3.1 番茄平均單株產量
自番茄第一穗果成熟開始至拉秧結束,每隔3 d采摘一次,采收標準為完全紅熟的番茄果實,所有番茄按不同處理分別測定產量,最后折算為平均單株產量。
1.3.2 番茄果實品質
可溶性糖含量采用蒽酮比色法測定,可溶性固形物含量采用手持折射儀法測定,有機酸含量采用堿液滴定法測定,糖酸比=可溶性固形物質量分數(%)/有機酸質量分數(%)。
1.3.3 番茄果實揮發性物質
參照常培培等[16]和蔡東升等[19]測定番茄果實揮發性物質的方法,并略作修改。
頂空固相微萃取(Headspace Solid Phase Microextraction,HS-SPME)取樣:各處理分別選取成熟度一致、大小均勻、無病蟲害的5個番茄果實,將果蒂去除并洗凈晾干,用勻漿機打成勻漿,稱取(9±0.1)g勻漿置于20 mL頂空樣品瓶中,加入1.5 g無水Na2SO4,同時加入10L 8.82 mg/L的2-辛醇標樣和磁力攪拌轉子,迅速旋緊瓶蓋,置于50 ℃恒溫磁力攪拌器,以500 r/min的速率攪拌均勻,平衡10 min。然后50 ℃條件下萃取吸附30 min,萃取完立即插入色譜氣化室,解析3 min,進行氣相色譜-質譜(Gas Chromatography-Mass Spectrometry,GC-MS)分析。每個處理進行3次重復,取其平均值。
GC條件:選用DB-WAX彈性石英毛細管柱(20 m× 0.18 mm,0.18m);進樣口溫度250 ℃;載氣:純度≥99.999%的高純氦氣,流速1.0 mL/min;進樣方式:不分流進樣;程序升溫:初始溫度40 ℃,以3.5 ℃/min升至190 ℃,維持3 min。MS條件:電子電離(electro nionzation,EI);電子能量70 eV;離子源溫度200 ℃;傳輸線溫度190 ℃;掃描方式:全掃描;掃描質量范圍:35~500 u。
定性分析:番茄果實揮發性物質經GC-MS分析鑒定后,通過計算機檢索并與圖譜庫(NIST 2014)對照分析,參考質譜的匹配度以及相關文獻報道的揮發性物質成分,僅鑒定正反匹配度均大于800(不超過1 000)的物質。
定量分析(內標法):計算公式為:揮發性物質質量分數(g/kg)=(1/2)·(1/2)·1 000,式中:1為待測物質峰面積;2為內標物峰面積;1為內標物質量,g;2為樣品質量,g。
使用Microsoft Excel 2010軟件分析數據和作圖;利用SPSS 20.0軟件Duncan新復極差法進行方差分析(<0.05)和顯著性檢驗分析。
不同時段補光對番茄平均單株產量影響不同,所有補光處理均可提高番茄產量(圖1)。其中T1處理平均單株產量最高,為3.45 kg/株,顯著高于CK、T2和T3處理16.9%、15.4%和6.5%(<0.05)。T3處理顯著低于T1處理(<0.05),但顯著高于CK和T2處理(<0.05),而T2與CK處理的平均單株產量并無顯著性差異(0.05)。
補光對番茄果實的品質有顯著影響。由圖2a可知,T1處理的可溶性固形物質量分數最高,為9.70%,顯著高于CK、T2和T3處理的19.3%、13.2%和11.5%(<0.05),而這3個處理無顯著性差異(>0.05)。各補光處理均使番茄果實有機酸含量下降(圖2b),其中T2和T3處理顯著低于CK處理(<0.05),說明補光會影響有機酸的合成。CK處理的糖酸比最低,為4.93,比T1、T2和T3處理顯著低31.8%、27.4%和24.5%(<0.05),而這3個補光處理的糖酸比無顯著性差異(>0.05)(圖2c)。T1處理的可溶性糖質量分數最高(圖2d),為4.56%,顯著高于CK和T3處理(<0.05),但與T2處理差異不顯著(>0.05)。

注:圖中不同小寫字母表示各處理間在P=0.05的水平上差異顯著,下同。揭簾前補光5 h(T1)、蓋簾后補光5 h(T2)、揭簾前蓋簾后分別補光2.5 h(T3),以不補光作為對照(CK),

圖2 不同時段補光對番茄果實品質的影響
2.3.1 不同時段補光對番茄果實揮發性物質成分和含量的影響
利用GC-MS技術在4個處理番茄果實中共檢測到83種揮發性物質(表1只列出主要揮發性物質),包括12種酮類、22種醛類、22種醇類、6種酯類、6種烴類和15種其他類物質,其他類主要是數量較少的呋喃類、酚類、噻唑類、酸類和腈類等物質。補光可使揮發性物質的總數量和總質量分數顯著增加,其中總數量由多到少為:T1(68種)、T3(65種)、T2(63種)、CK(59種)。4個處理共有揮發性物質為47種,占所有檢出物質的56.6%,其余36種獨立存在于各處理番茄中,CK、T1、T2和T3獨有物質分別為3種、9種、0種和5種。在總質量分數上,TI(3 107.98g/kg)、T2(2 438.96g/kg)和T3(2 610.74g/kg)均高于CK(2 086.03g/kg),分別是CK的1.49倍、1.17倍和1.25倍。4個處理含量最高的物質均是順-3-己烯-1-醇,但含量最低的物質卻不相同,分別是苯乙腈(CK)、-紫羅蘭酮(T1)、反-2-辛烯-1-醇(T2)和正十三烷(T3)。
2.3.2 不同時段補光對番茄果實各類揮發性物質數量和含量的影響
由圖3a和3b可得,各處理番茄果實共檢測到六大類物質,包括酮、醛、醇、酯、烴和其他類。從數量上來看,醛類(16~18種)和醇類(15~20種)較多,酯類(4~5種)和烴類(1~3種)較少。3種時段補光均可提高醛類和酯類數量,但效果并不顯著(>0.05),而酮類和醇類數量卻顯著提高(<0.05),其中醇類提高數量最多,T1、T2和T3處理分別較CK增加了5種、4種和4種。此外,補光會使烴類和其他類物質數量減少,但降低幅度并不顯著(>0.05)。
在含量上,醇類質量分數最高,4個處理范圍為1 109.341 875.51g/kg,占各處理總量的52.99%~60.34%。酯類和烴類質量分數最低,分別為20.8042.14g/kg和1.6880.31g/kg。補光可顯著提高番茄果實醛類、醇類和其他類物質的含量(<0.05),總體上T1處理在3類物質中含量均為最高。其中,醇類物質含量增加最多,T1、T2和T3處理分別較CK顯著增加69.1%、26.1%和24.7%。3種補光處理下的酮類物質含量雖比CK有所提高,但只有T1是顯著增加(<0.05),T2和T3處理效果不顯著(>0.05)。酯類物質含量在T1處理下比CK顯著增加79.1%,而T2和T3處理會使其含量下降,但與CK相比差異不顯著(>0.05)。烴類是唯一一類在3種補光時段處理下含量均下降的物質,T1、T2和T3處理分別較CK降低74.87、78.48和78.63g/kg。
2.3.3 不同時段補光對番茄果實特征香氣成分及含量的影響
本試驗4個處理共檢測出11種番茄特征香氣成分(表2),CK、T1和T2處理均含有10種,T3處理比上述3個處理多含有1種,為順-3-己烯醛(表1)。從總含量看,各補光處理均高于不補光處理,T2處理和CK相比差異不顯著(>0.05),但T1和T3處理分別較CK顯著增加41.67%和16.70%(<0.05)。
番茄果實的特征香氣物質分為刺激型、花香型、果香型和青香型4類,本試驗分別檢測出1、2、3和5種(表2)。其中,刺激型物質是指具有蒜香刺激性氣味的1-戊烯-3-酮,T1處理使該物質含量略有上升,T2和T3處理時顯著下降(<0.05)。花香型物質為-紫羅蘭酮和2-苯乙醇,主要呈現玫瑰香和桂花香氣味,是含量最低的一類特征香氣物質,3種補光處理差異不顯著(>0.05),但比CK分別顯著增加1.86倍(T1)、1.45倍(T2)和1.63倍(T3)(<0.05)。果香型物質為順-3-己烯醛、反-2-己烯醛和6-甲基-5-庚烯-2-酮,主要呈現蘋果香和柑橘香氣味,補光后含量也顯著提高,T1、T2和T3處理分別比CK顯著增加22.08%、16.40%和50.73%(<0.05)。青香型物質為己醛、反-2-庚烯醛、順-3-己烯-1-醇、水楊酸甲酯和2-異丁基噻唑,主要呈現青草香和青葉香氣味,是含量最高的一類特征香氣物質,T1處理比CK顯著增加57.84%(<0.05),而T2和T3處理相比CK卻略有下降,但差異不顯著(>0.05)。

表1 不同時段補光番茄果實主要揮發性物質成分及含量分析
注: — 未檢出。
Note: — undetected.

表2 不同時段補光番茄果實特征香氣成分及含量分析
注:表中不同小寫字母表示各處理間在=0.05的水平上差異顯著。
Note: Different lowercase letters in the table indicate significant differences at the level of=0.05 between treatments.
番茄果實中與風味品質相關的最初前體物質均是光合產物蔗糖,光照是影響光合作用的重要因素,然而冬春季自然光照時間較短,嚴重降低干物質向果實的分配效率[20],因此補光顯得尤為重要。本試驗選擇補光5 h,是因為Demers等[21]研究指出,光周期超過14 h番茄產量和果實品質增加效果不明顯,所以將光周期最長延長至14 h。試驗地日光溫室早上揭簾時間9:00,晚上蓋簾時間18:00,自然補光時間9 h,因此選定LED燈補光時間5 h。在延時補光方面, 適宜的補光時段存在爭議,程瑞鋒等[22]認為早晨補光時黃瓜葉片的光合啟動時間比晚上長,原因是早晨溫度較低延遲了光合作用進程,但最終穩定時的凈光合速率要比晚上大。馬艷等[23]研究發現,蓋簾后補光番茄葉片的光合速率、單株產量和果實番茄紅素較揭簾前補光略高。郭銳等[24]認為17:00-20:00番茄光合作用的暗呼吸速率和光補償點較6:00-9:00低,從光合生理特性上說晚上補光較好,本試驗與之得出的結果不一致可能是因為補光的時間點和時長不同。
研究表明,冬春季補光可有效提高番茄葉片光合性能和自身光保護能力,通過緩解氣孔限制因素,使番茄果實干物質積累能更有效地進行[25]。本試驗發現,補光可提高番茄果實產量,這與郝東川等[26]研究結果一致,揭簾前補光效果最顯著,推測可能是早上CO2濃度經過一夜后比晚上高,更有利于提高表觀量子效率,增加光合產物輸出[27]。番茄果實的口感品質主要用糖度和酸度評價,具體包括可溶性糖、可溶性固形物、有機酸和糖酸比[28]。本試驗3個補光處理的可溶性糖、可溶性固形物和糖酸比均高于不補光處理,這與李蔚等[12]研究結果一致。揭簾前補光效果要好于蓋簾后補光,推測對番茄早上補光更有利于提高果實蔗糖合酶(Sucrose Synthase,SS)和蔗糖磷酸合酶(Sucrose Phosphate Synthase,SPS)活性[27],進而增加葡萄糖、蔗糖和果糖等可溶性物質含量[29]。補光處理使有機酸含量下降,這與丁小濤等[30]研究結果一致,可能是補光后番茄果實中糖類與酸類(蘋果酸、檸檬酸和酒石酸)的共用底物競爭加劇。補光處理后果實中較高的可溶性固形物含量和較低的有機酸含量使糖酸比升高,果實口感更好[31]。
番茄風味很大程度上取決于果實揮發性物質含有情況[32]。研究表明,植物通過光合作用經卡爾文循環生成蔗糖,然后經過糖酵解、莽草酸途徑和甲羥戊酸途徑生成4類揮發性物質合成底物,分別是脂肪酸、類胡蘿卜素、苯丙氨酸和支鏈氨基酸[33],進一步轉化為酮類、醛類、醇類、酯類和烴類等物質。不同番茄果實中共檢測出400多種揮發性物質[34],本試驗共檢測出83種揮發性物質,而楊俊偉等[35]在不同光質處理下只檢測出53種,董飛等[11]在不同光質處理下只檢測到40種,這進一步證明了補光時段比光質對番茄果實揮發性物質的影響更大。補光處理后揮發性物質的總數量和總含量較不補光處理有所增加,這與岳釘伊等[36]研究結果一致。一方面,補光使合成揮發性物質的前體物質迅速增加[37];另一方面,補光后成熟期番茄的脂氧合酶(Lipoxygenase,LOX)、乙醇脫氫酶(Alcohol Dehydrogenase,ADH)、酰基轉移酶(Acyltransferase,AAT)和脂氫過氧化物裂解酶(Hydroperoxide Lyase,HPL)活性顯著提高并促進前體物質向揮發性物質轉化[11]。
有研究表明,自然光照下番茄果實各類揮發性物質中醛類含量最高,約占75%,烴類和醇類最低,約占3%[36]。而楊俊偉等[35]得出醛類相對含量最高為47.34%,其次為酮類,未檢測到烴類物質。本試驗的測定結果為醇類含量最高,醛類次之,酯類和烴類最低,與徐煒南等[38]測定結果基本一致。補光處理后醛類和醇類的含量顯著升高,可能是得益于補光后苯丙氨酸脫羧酶(Phenylalanine Decarboxylase,AADC)促進苯丙氨酸代謝、-葡萄糖苷酶(-glucosidase,bglB)促進苯丙烷合成、脂氧合酶(Linoleate 9s-lipoxygenase,LOX1-5)催化多元不飽和脂肪酸降解等一系列生化反應[11],最終提高己醛、反-2-己烯醛、反-2-辛烯醛、壬醛、辛醛、順-3-己烯醛、正己醇、順-3-己烯-1-醇和戊醇等物質含量。然而揭簾前補光這些物質含量增加更顯著,推測可能是番茄果實在揭簾前比蓋簾后補光積累了更多與之相關的催化酶。烴類物質含量在補光后出現下降,主要由于補光處理中4-甲基-1,3-戊二烯、順,順-2,4-己二烯和2,3,3-三甲基-1-己烯3種烴類物質含量較低。
番茄果實香味主要取決于特征香氣的成分和含量,已被鑒定的400多種揮發性物質對番茄風味起主要作用的不超過30種[39],對數閾值單位大于0的16種是番茄的主要特征香氣物質[40]。本試驗共鑒定出11種番茄特征香氣物質,未檢測到-大馬酮、2-甲基丁醛、1-硝基-2-乙基苯、2-苯乙醛和3-甲基丁醇,這可能與品種及栽培條件有關[41]。本試驗補光與不補光處理特征香氣成分的數量差異不大,說明補光對番茄果實特征香氣成分無明顯影響。各處理特征香氣物質總含量與揮發性物質總含量高低順序一致,這與蔡東升等[19]研究結果一致。本試驗檢測出的11種番茄特征香氣物質構成新鮮番茄的芳香味道,以花香、果香和青香型氣味為主,且青香型物質含量最高,與徐煒南等[42]報道的果香型物質含量最高略有差別,這主要是番茄品種和試驗處理不同所致。
己醛作為亞油酸代謝途徑的中間產物[43],被認為是與番茄香氣最相關的特征物質[44],揭簾前補光處理最高推測是脂氧合酶(LOX)和脂氫過氧化物裂解酶(HPL)活性提高。順-3-己烯醛是亞麻酸代謝途徑中與苦味相關的中間產物[30],只在揭簾前和蓋簾后都補光時才會少量積累,其他處理下可能在乙醇脫氫酶(ADH)和異構酶的作用下分別生成順-3-己烯-1-醇和反-2-己烯醛,且兩者之間存在底物競爭現象[43]。類胡蘿卜素代謝途徑中,主要前體物質為番茄紅素、-胡蘿卜素和-胡蘿卜素。其中,6-甲基-5-庚烯-2-酮來源于番茄紅素,-紫羅蘭酮來源于-胡蘿卜素[39],本試驗補光處理后6-甲基-5-庚烯-2-酮和-紫羅蘭酮含量較高,主要是因為補光可以誘導番茄果實中的光敏色素積累[45],同時加劇了類胡蘿卜素裂解雙加氧酶(Carotenoid Cleavage Dioxygenases,LeCCDs)對類胡蘿卜素化學鍵的斷裂作用[46]。苯丙氨酸代謝通路中,一方面可經氨基酸脫羧酶(Amino Acid Decarboxylases,LeAADCs)催化途徑最終生成2-苯乙醇;另一方面又可通過苯丙氨酸解氨酶(Phenylalanine Ammonia Lyase,PAL)代謝支路形成水楊酸甲酯[47]。2-苯乙醇在3種補光后均有顯著上升,而水楊酸甲酯除揭簾前補光含量上升外其余補光處理均下降,推測可能是只有揭簾前補光有利于PAL的積累。水楊酸甲酯除具有冬青葉香外,還可作為信號分子參與番茄果實的成熟和抗逆過程[48],本試驗揭簾前補光的含量是其余補光處理的3倍,由此也能間接說明揭簾前補光的番茄果實抗逆性強、產量高、品質優。2-異丁基噻唑以其獨特的番茄青香味深受人們的喜歡,在番茄特征香氣中占主導地位[49],其含量也是揭簾前補光處理最高。2-異丁基噻唑是本試驗唯一鑒定出的以支鏈氨基酸(異亮氨酸和亮氨酸)為前體的特征香味物質,其主要在支鏈氨基酸氨基轉移酶(Branched-chain Amino Acid Aminotransferases,SlBCATs)參與下,經過脫氨、脫羧和還原等反應形成[50]。此外,本試驗檢測到的檸檬醛、香葉基丙酮和愈創木酚等對數閾值單位為負值的揮發性物質也會作為背景信息影響番茄特征香氣[51]。接下來有必要對4種代謝途徑上的揮發性物質分別進行研究,進一步挖掘對番茄果實風味貢獻率較大的特征香氣成分,探究補光改善番茄果實整體風味的機理,從而建立起不同時段補光對番茄果實產量、品質和主要揮發性物質之間的關系,使日光溫室番茄種植真正達到優質高產的目的。
本文探討了日光溫室紅藍光(R∶B=7:2)LED補光燈對越冬茬“粉太郎”番茄進行不同時段補光(揭簾前補光5 h、蓋簾后補光5 h、揭簾前蓋簾后分別補光2.5 h)處理的影響,主要結論如下:
1)3種時段補光相比不補光均可提高番茄平均單株產量、可溶性糖含量、可溶性固形物含量、糖酸比,但會降低有機酸含量,其中揭簾前補光效果最顯著(<0.05)。
2)4個處理的番茄果實共檢測出83種揮發性物質,包括12種酮類、22種醛類、22種醇類、6種酯類、6種烴類和15種其他類物質,并且含量最高的物質均是順-3-己烯-1-醇。
3)3種時段補光均可提高番茄果實酮類、醛類、醇類和酯類數量,降低烴類和其他類物質數量;3種時段補光均可提高酮類、醛類、醇類和其他類物質含量,降低烴類含量,酯類物質含量在揭簾前補光增加,其余補光下降。每個處理在數量上,醛類和醇類較多,酯類和烴類較少;在含量上,醇類含量最多,酯類和烴類最少。
4)83種揮發性物質包含了11種番茄特征香氣物質,分別是:1-戊烯-3-酮、-紫羅蘭酮、2-苯乙醇、順-3-己烯醛、反-2-己烯醛、6-甲基-5-庚烯-2-酮、己醛、反-2-庚烯醛、順-3-己烯-1-醇、水楊酸甲酯和2-異丁基噻唑,這些物質主要分為花香、果香與青香3種類型,其中青香味物質含量最多。
[1] 馬樂樂,高寧,楊百良,等. 全有機營養模式下番茄綜合品質評價及其對有機肥水耦合的響應[J]. 西北農林科技大學學報:自然科學版,2019,47(6):63-72.
Ma Lele, Gao Ning, Yang Bailiang, et al. Comprehensive quality evaluation of tomato under the whole organic nutrition model and its response to organic fertilizer and water coupling[J]. Journal of Northwest A&F University: Natural Science Edition, 2019, 47(6): 63-72. (in Chinese with English abstract)
[2] Srivastava S, Srivastava A K. Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters[J]. Journal of Food Science and Technology, 2015, 52(1): 41-53.
[3] 余翔,張英,孟佳麗,等. 溫室番茄連作障礙生態修復技術[J]. 北方園藝,2014,79(5):49-50.
Yu Xiang, Zhang ying, Meng Jiali, et al. Ecological restoration technology of greenhouse tomato continuous cropping obstacles[J]. Northern Horticulture, 2014, 79(5): 49-50. (in Chinese with English abstract)
[4] 段青青,張祿祺,張自坤,等. 補光時間及光質對溫室甜椒生長及產量品質的影響[J]. 農業工程學報,2019,35(24):213-222.
Duan Qingqing, Zhang Luqi, Zhang Zikun, et al. Effects of spectrum and duration of supplemental illumination on growth, yield and fruit quality of greenhouse sweet pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 213-222. (in Chinese with English abstract)
[5] 王婷,高俊明,周瑩,等. 全封閉日光溫室降溫技術的研究[J]. 農機化研究,2018,40(3):264-268.
Wang Ting, Gan Junming, Zhou Ying, et al. Research on cooling technology of completely enclosed solar greenhouse[J]. Agricultural Mechanization Research, 2008, 40(3): 264-268. (in Chinese with English abstract)
[6] Liu T, Zhu W, Huang J, et al. Comparison of the nutritional as well as the volatile composition of in-season and off-season Hezuo 903 tomato at red stage[J]. European Food Research and Technology, 2017, 243(2): 1-12.
[7] Zhu G, Wang S, Huang Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1/2): 249-261.
[8] 楊明惠,陳海麗,唐曉偉,等. 不同栽培季節番茄果實芳香物質的比較[J]. 中國蔬菜,2009,1(18):8-13.
Yang Minghui, Chen Haili, Tang Xiaowei, et al. Comparison of aromatic substances in tomato fruits in different cultivation seasons[J]. Chinese Vegetable, 2009, 1(18): 8-13. (in Chinese with English abstract)
[9] 李恕艷,李吉進,張邦喜,等. 施用有機肥對番茄品質風味的影響[J]. 中國土壤與肥料,2017,13(2):114-119,135.
Li Shuyan, Li Jijin, Zhang Bangxi, et al. Effects of organic fertilizer on tomato quality and flavor[J]. Chinese Soil and Fertilizer, 2017, 13(2): 114-119, 135. (in Chinese with English abstract)
[10] 羅丹,梁蕓志,陳存坤,等. 臭氧處理對番茄果實貯藏品質和芳香物質的影響[J]. 食品安全質量檢測學報,2017,8(7):2749-2755.
Luo Dan, Liang Yunzhi, Chen Cunkun, et al. Effects of ozone treatment on storage quality and aromatic substances of tomato fruits[J]. Journal of Food Safety and Quality Inspection, 2017, 8(7): 2749-2755. (in Chinese with English abstract)
[11] 董飛,王傳增,孫秀東,等. 基于蛋白質組學研究光質對番茄果實揮發性物質的影響機理[J]. 園藝學報,2019,46(2):280-294.
Dong Fei, Wang Chuanzeng, Sun Xiudong, et al. Proteomics based study on the effect of light quality on volatile substances in tomato fruits[J]. Journal of Horticulture, 2019, 46(2): 280-294. (in Chinese with English abstract)
[12] 李蔚,李新旭,李紅岺,等. 植物生長燈不同補光時間對日光溫室番茄產量及品質的影響[J]. 安徽農業科學,2019,47(11):49-50,55.
Li Wei, Li Xinxu, Li Hongling, et al. Effects of different filling time of plant growth lamp on yield and quality of tomato in solar greenhouse[J]. Anhui Agricultural Sciences, 2019, 47(11): 49-50, 55. (in Chinese with English abstract)
[13] 李軍,劉鳳軍,徐君. 不同發光二極管(LED)光源補光對大棚秋番茄植株生長及果實產量和品質的影響[J]. 江蘇農業學報,2011,27(6):339-343.
Li Jun, Liu Fengjun, Xu Jun. Effects of different LED light sources on plant growth, fruit yield and quality of autumn tomato in greenhouse[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(6): 339-343. (in Chinese with English abstract)
[14] 崔曉輝,郭小鷗,孫天宇,等. LED補光對薄皮甜瓜幼苗生長及果實品質的影響[J]. 植物生理學報,2017,53(4):657-667.
Cui Xiaohui, Guo Xiaoou, Sun Tianyu, et al. Effects of LED light supplement on seedling growth and fruit quality of muskmelon[J]. Journal of Plant Physiology, 2017, 53(4): 657-667. (in Chinese with English abstract)
[15] Matsuda R, Yamano T, Murakami K, et al. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury[J]. Scientia Horticulturae, 2016, 198: 363-369.
[16] 常培培,梁燕,張靜,等. 5種不同果色櫻桃番茄品種果實揮發性物質及品質特性分析[J]. 食品科學,2014,35(22):215-221.
Chang Peipei, Liang Yan, Zhang Jing, et al. Analysis of volatile substances and quality characteristics of five cherry tomato varieties with different fruit colors[J] . Food Science, 2014, 35(22): 215-221. (in Chinese with English abstract)
[17] Du X, Song M, Baldwin E, et al. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars[J]. Food Chemistry, 2015, 171: 306-314.
[18] Zou J, Chen J, Tang N, et al. Transcriptome analysis of aroma volatile metabolism change in tomato () fruit under different storage temperatures and 1-MCP treatment[J]. Postharvest Biology and Technology, 2018, 135: 57-67.
[19] 蔡東升,李建明,李惠,等. 營養液供應量對番茄產量、品質和揮發性物質的影響[J]. 應用生態學報,2018,29(3):921-930.
Cai Dongsheng, Li Jianming, Li Hui, et al. Effects of nutrient solution supply on tomato yield, quality and volatile substances[J]. Journal of Applied Ecology, 2018, 29(3): 921-930. (in Chines with English abstract )
[20] 閆文凱,張雅婷,張玉琪,等. LED株間補光對日光溫室番茄產量及光合作用的影響[J]. 西北農林科技大學學報:自然科學版,2018,46(7):132-138,146.
Yan Wenkai, Zhang Yating, Zhang Yuqi, et al. Effects of supplemental light between LED plants on tomato yield and photosynthesis in solar greenhouse[J]. Journal of Northwest A&F University: Natural Science Edition, 2018, 46(7): 132-138, 146. (in Chines with English abstract)
[21] Demers D A, Gosselin A. Growing greenhouse tomato and sweet pepper under supplemental lighting: Optimal photoperiod,negative effects of long photoperiod and their causes[J]. International ISHS Symposium on Artificial Lighting, 2000, 580: 83-88.
[22] 程瑞鋒,鄒志榮,王軍. 外源補光狀態下溫室黃瓜光合作用的研究[J]. 陜西農業科學,2004(3):17-18.
Cheng Ruifeng, Zou Zhirong, Wang Jun. Study on photosynthesis of cucumber in greenhouse under exogenous supplementary light[J]. Shaanxi Agricultural Science, 2004(3): 17-18. (in Chinese with English abstract)
[23] 馬艷,喻晨,王瑞,等. 不同LED補光時間對日光溫室番茄生長發育及光合特性的影響[J]. 新疆農業科學,2019,56(8):1469-1475.
Ma Yan, Yu Chen, Wang Rui, et al. Effects of different LED supplementary light time on growth and photosynthetic characteristics of tomato in solar greenhouse[J]. Xinjiang Agricultural Science, 2019, 56(8): 1469-1475. (in Chinese with English abstract)
[24] 郭銳,華明艷,仝雅娜,等. 基于葉位和時段光合特性的番茄補光技術研究[J]. 北方園藝,2018,37(24):70-74.
Guo Rui, Hua Mingyan, Tong Yana, et al. Research on tomato supplementary light technology based on photosynthetic characteristics of leaf position and period[J]. North Horticulture, 2018, 37(24): 70-74. (in Chinese with English abstract)
[25] 蔣程瑤,宋羽,李玉姍. 不同葉背補光模式對戈壁溫室番茄葉片光合性能與固碳效應的影響[J]. 中國蔬菜,2019,1(10):32-38.
Jiang Chengyao, Song Yu, Li Yushan. Effects of different backfill light modes on photosynthetic performance and carbon sequestration of tomato leaves in gobi greenhouse[J]. China Vegetables, 2019, 1(10): 32-38. (in Chinese with English abstract)
[26] 郝東川,司雨. LED燈對設施栽培瓜果類蔬菜產量的影響[J]. 長江蔬菜,2012,17(18):58-60.
Hao Dongchuan, Si Yu. Effect of LED light on the yield of vegetables and fruits in protected cultivation[J]. Changjiang Vegetables, 2012, 17(18): 58-60. (in Chinese with English abstract)
[27] Li Y, Xin G, Wei M, et al. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities[J]. Scientia Horticulturae, 2017, 225: 490-497.
[28] 孫麗麗,鄒志榮,韓麗蓉,等. 不同營養液滴灌量對設施番茄生長、產量及品質的影響[J]. 西北農林科技大學學報:自然科學版,2015,43(5):135-142.
Sun Lili, Zou Zhirong, Han Lirong, et al. Effects of different nutrient solution drip irrigation on the growth,yield and quality of tomato[J]. Journal of Northwest A&F University: Natural Science Edition, 2015, 43(5): 135-142. (in Chinese with English abstract)
[29] Dong F, Wang C, Sun X, et al. Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit[J]. Plant Growth Regulation, 2019, 88(3): 267-282.
[30] 丁小濤,姜玉萍,王虹,等. LED株間補光對番茄生長和果實品質的影響[J]. 上海農業學報,2016,32(6):48-51.
Ding Xiaotao, Jiang Yuping, Wang Hong, et al. Effect of LED supplementary light on tomato growth and fruit quality[J]. Acta Agric Sinica, 2016, 32(6): 48-51. (in Chinese with English abstract)
[31] Schouten R E, Woltering E J, Tijskens L M M. Sugar and acid interconversion in tomato fruits based on biopsy sampling of locule gel and pericarp tissue[J]. Postharvest Biology and Technology, 2016, 111: 83-92.
[32] Beckles D M, Hong N, Stamova L, et al. Biochemical factors contributing to tomato fruit sugar content: A review[J]. Fruits, 2012, 67(1): 49-64.
[33] Klee H J, Giovannoni J J. Genetics and control of tomato fruit ripening and quality attributes[J]. Annual Review of Genetics, 2011, 45: 41-59.
[34] Klee H J. Improving the flavor of fresh fruits: genomics,biochemistry,and biotechnology[J]. New Phytologist, 2010, 187(1): 44-56.
[35] 楊俊偉,梁婷婷,嚴露露,等. 光質對番茄果實品質及揮發性物質的影響[J]. 食品科學,2019,40(11):55-61.
Yang Junwei, Liang Tingting, Yan Lulu, et al. Effects of light quality on fruit quality and volatile substances of tomato[J]. Food Science, 2019, 40(11): 55-61. (in Chinese with English abstract)
[36] 岳釘伊,張靜,趙建濤,等.增施CO2與LED補光對番茄果實品質及揮發性物質的影響[J].食品科學,2018,39(1):124-130.
Yue Dingyi, Zhang Jing, Zhao Jiantao, et al. Effects of CO2and LED supplementation on tomato fruit quality and volatile substances[J]. Food Science, 2018, 39(1): 124-130. (in Chinese with English abstract)
[37] El Hadi M A M, Zhang F J, Wu F F, et al. Advances in fruit aroma volatile research[J]. Molecules, 2013, 18(7): 8200-8229.
[38] 徐煒南,蘇春杰,胡立盼,等. 外源亞精胺對鹽堿脅迫下番茄果實品質及揮發性成分的影響[J]. 食品科學,2017,38(15):82-88.
Xu Weinan, Su Chunjie, Hu Lipan, et al. Effects of exogenous spermine on the quality and volatile components of tomato fruits under saline-alkali stress[J]. Food Science, 2017, 38(15): 82-88. (in Chinese with English abstract)
[39] Zhang J, Zhao J, Xu Y, et al. Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor[J]. Frontiers in Plant Science, 2015, 6: 1042.
[40] 王利斌,李雪暉,石珍源,等. 番茄果實的芳香物質組成及其影響因素研究進展[J]. 食品科學,2017,38(17):291-300.
Wang Libin, Li Xuehui, Shi Zhenyuan, et al. Research progress on the aroma composition of tomato fruits and its influencing factors[J]. Food Science, 2017, 38(17): 291-300. (in Chinese with English abstract)
[41] 杜天浩,周小婷,朱蘭英,等. 褪黑素處理對鹽脅迫下番茄果實品質及揮發性物質的影響[J]. 食品科學,2016,37(15):69-76.
Du Tianhao, Zhou Xiaoting, Zhu Lanying, et al. Effects of melatonin treatment on tomato fruit quality and volatile substances under salt stress[J]. Food Science, 2016, 37(15): 69-76. (in Chinese with English abstract)
[42] 徐煒南,張鑫,張靜,等. 硼對“金棚1號”番茄果實揮發性成分的影響[J]. 食品科學,2016,37(16):149-155.
Xu Weinan, Zhang Xin, Zhang Jing, et al. Effects of boron on the volatile components of tomato fruit of “Jinpeng No.1”[J]. Food Science, 2016, 37(16): 149-155. (in Chinese with English abstract)
[43] 劉明池,郝靜,唐曉偉. 番茄果實芳香物質的研究進展[J].中國農業科學,2008,41(5):1444-1451.
Liu Mingchi, Hao Jing, Tang Xiaowei. Research progress on aromatic substances in tomato fruits[J]. Chinese Agricultural Science, 2008, 41(5): 1444-1451. (in Chinese with English abstract)
[44] Jose L R, Yury M T, Antonio J M, et al. The expanded tomato fruit volatile landscape[J]. Journal of Experimental Botany, 2014, 65(16): 4613-4623.
[45] George B, Kaur C, Khurdiya D S, et al. Antioxidants in tomato () as a function of genotype[J]. Food Chemistry, 2004, 84(1): 45-51.
[46] Socaci S A, Socaciu C, Mure?an C, et al. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content[J]. Phytochemical analysis, 2014, 25(2): 161-169.
[47] Rambla J L, Tikunov Y M, Monforte A J, et al. The expanded tomato fruit volatile landscape[J]. Journal of Experimental Botany, 2013, 65(16): 4613-4623.
[48] Wang L, Baldwin E A, Plotto A, et al. Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature[J]. Postharvest Biology and Technology, 2015, 108: 28-38.
[49] Piombino P, Sinesio F, Moneta E, et al. Investigating physicochemical, volatile and sensory parameters playing a positive or a negative role on tomato liking[J]. Food Research International, 2013, 50(1): 409-419.
[50] Mathieu S, Cin V D, Fei Z, et al. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition[J]. Journal of Experimental Botany, 2009, 60(1): 325-337.
[51] Wang L, Baldwin E A, Bai J. Recent advance in aromatic volatile research in tomato fruit: the metabolisms and regulations[J]. Food & Bioprocess Technology, 2016, 9(2): 203-216.
Effects of supplemental illumination in different periods on the quality and volatile compounds of tomato fruit in solar greenhouse
Wei Shouhui1, Xiao Xuemei1※, Zhong Yuan2, Yu Jihua1,2, Lyu Jian1, Hu Linli1, Tang Zhongqi1, Liu Fanhong1, Wang Shuya1, Jian Naidan2
(1.730070;2.730070)
The objective of this paper is to find the optimal periods of supplemental illumination that improves the yield and quality of tomato in solar greenhouse. The tomato cultivar of ‘Fentailan’ was selected as the target material, and LED was set as the light source. The tomato plants began to be supplemented with illumination 25 d after planting, and the supplement of illumination was completed when the first spike fruits were fully ripe. Three supplemental light periods in this study: 5 h before the curtain is opened (T1), 5 h after the curtain is covered (T2), 2.5 h before the curtain is opened and 2.5 h after the curtain is covered (T3); without supplemental light served as the control (CK). The flavor quality, volatile components and contents of the tomato were measured in each treatment. The results showed that the three supplemental illumination treatments can effectively increase tomato average yield per plant, soluble sugar, soluble solids, ratio of sugar to acid, and amount and content of volatile compounds, compared to that in the CK, but it would reduce the content of organic acid, all of which have the most significant effect under the T1 treatment (<0.05). A total of 83 volatile compounds were detected in the four treatments, including 12 ketones, 22 aldehydes, 22 alcohols, 6 esters, 6 hydrocarbons, and 15 other compounds. The total amount and content of volatile compounds in each treatment are as follows in order: T1 (68 types, 3 107.98g/kg) > T3 (65 types, 2 610.74g/kg) > T2 (63 types, 2 438.96g/kg) > CK (59 types, 2 086.03g/kg). In every treatment, the content of alcohols is the highest, whereas the content of hydrocarbons is the lowest, and the substance with the greatest concentration is-3-hexen-1-ol. Compared to those under the CK, the three supplemental illumination treatments can increase the concentration of ketones, aldehydes, alcohols and other compounds in tomato fruits, but significantly decrease the concentration of hydrocarbons (<0.05). The content of esters increased only under the T1 treatment, compared with that in CK. All the detected volatile compounds contain 11 kinds of characteristic aroma substances of tomato, which can be mainly divided into three categories: floral, fruity and green. Among them, the green aroma was the most abundant. Therefore, the T1 treatment (5 h before the curtain is opened) can effectively increase tomato yield, and improve the flavor quality of fruits, indicating the optimum supplemental illumination period for tomato cultivation in the local solar greenhouse. The finding can provide a sound scientific potential on supplementary lighting technology for tomato planting environment in protected cultivation.
greenhouse; light quality; tomato; periods of supplemental illumination; yield; fruit quality; volatile compounds; Headspace Solid Phase Microextraction (HS-SPME); Gas Chromatography-Mass Spectrometry (GC-MS)
魏守輝,肖雪梅,鐘源,等. 日光溫室不同時段補光對番茄果實品質及揮發性物質影響[J]. 農業工程學報,2020,36(8):188-196.doi:10.11975/j.issn.1002-6819.2020.08.023 http://www.tcsae.org
Wei Shouhui, Xiao Xuemei, Zhong Yuan, et al. Effects of supplemental illumination in different periods on the quality and volatile compounds of tomato fruit in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 188-196. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.023 http://www.tcsae.org
2019-12-21
2020-03-21
人才專項經費(GAU-KYQD-2018-12);甘肅省科技重大專項計劃(17ZD2NA015);國家大宗蔬菜產業技術體系(CARS-23-C-073);國家重點研發計劃項目(2018YFD0201205);甘肅省自然科學基金項目(17JR5RA139);高等學校創新能力提升項目(2019A-054)
魏守輝,主要從事蔬菜栽培生理及品質調控方面的研究。Email:1653043091@qq.com
肖雪梅,講師,博士,主要從事設施環境調控及蔬菜栽培生理方面的研究。Email:617649594@qq.com
10.11975/j.issn.1002-6819.2020.08.023
S641.2
A
1002-6819(2020)-08-0188-09