999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

正戊醇-柴油混合燃料發(fā)動機顆粒物的形貌結構與氧化活性研究

2020-06-04 01:33:12王小琛
農業(yè)工程學報 2020年8期
關鍵詞:顆粒物結構

汪 映,王 鵬,王小琛

正戊醇-柴油混合燃料發(fā)動機顆粒物的形貌結構與氧化活性研究

汪 映,王 鵬,王小琛

(西安交通大學能源與動力工程學院,西安 710049)

摻混正戊醇能夠降低柴油機顆粒物排放,但摻混正戊醇對柴油混合燃料顆粒物的形貌結構和氧化活性的影響規(guī)律尚不明確。該研究采用高分辨率透射電子顯微鏡、拉曼光譜儀和同步熱分析儀研究了柴油機中分別燃用不同摻混比的正戊醇/柴油混合燃料時生成顆粒物的形貌、納觀結構和氧化活性。結果表明,正戊醇摻混體積比分別為0、15%和30%的3種混合燃料燃燒顆粒物的微觀形貌相似,低倍率時表現(xiàn)為由基本碳粒子聚合而成的團聚形貌,高倍率時呈現(xiàn)出典型的“外殼-內核”結構;隨著正戊醇摻混比例的增加,顆粒物的基本碳粒子直徑減小,微晶長度減小而微晶曲率增加,D1峰與G峰的峰面積比增加。說明顆粒物結構更為無序,石墨化程度降低。同時,隨著正戊醇摻混比例的增加,3種燃料燃燒顆粒物的氧化溫度逐漸降低,依次為:616.9、609.9和583.6 ℃,說明其對應的氧化活性逐漸升高。分析表明,正戊醇/柴油混合燃料燃燒生成的顆粒物高氧化活性與其更為無序的納觀結構相關。

柴油機;正戊醇;顆粒物;納觀結構;氧化活性

0 引 言

大氣顆粒污染是目前人類面臨的主要環(huán)境污染問題之一,而柴油機排氣顆粒物是大氣顆粒物污染的主要來源之一。研究表明,柴油混合含氧醇類燃料可以有效降低柴油機顆粒物排放[1-3]。正戊醇是一種新型生物質燃料,可以通過纖維素和糖類制取。相較于甲醇、乙醇等低碳醇而言,正戊醇具有較高的低熱值、十六烷值和黏度,較低的汽化潛熱,且與柴油的互溶性很好,更適用于壓燃發(fā)動機的燃燒模式[2]。基于此,柴油摻混正戊醇受到越來越多的關注。

Campos-Fernandez等[4-5]的研究表明,盡管正戊醇的低熱值較柴油低,但正戊醇含氧的特性使得其燃燒過程更為充分,因此,混合燃料的發(fā)動機動力性與燃用柴油時相差不大。Wei等[6]對柴油摻混正戊醇的顆粒物排放進行了試驗研究,研究表明,正戊醇的摻混可以降低顆粒物質量濃度和總數(shù)量濃度。這是因為,正戊醇本身含氧,且正戊醇的摻混延長了滯燃期,使得缸內混合氣工質更為均勻。Huang等[7]的數(shù)值模擬研究表明,正戊醇可降低芘(A4,碳煙前驅物),主要就是因為正戊醇十六烷值低、汽化潛熱高及分子結構中含C-O鍵。

近年來,顆粒物的納觀結構、化學組成和氧化活性受到廣泛關注。研究柴油機排氣顆粒物的納觀結構、化學組成和氧化活性不僅可以加深對于顆粒物生成與演變機理的認識,還能進一步指導柴油顆粒捕捉器(Diesel Particulate Filter,DPF)的設計,具有重要意義[8-9]。Zhang等[10]對柴油/正戊醇混合燃料的化學組成開展了試驗研究。結果表明,混合燃料可以明顯降低元素碳(Elemental Carbon,EC)排放,略微降低有機碳(Organic Carbon,OC)排放。Zhu等[11]研究表明,隨著正戊醇摻混比例的增加,生物柴油顆粒物的基本碳粒子直徑減小,且對應碳煙微粒的氧化活性降低。但是,目前關于柴油/正戊醇混合燃料發(fā)動機顆粒物的形貌結構和氧化活性的研究報道較少。為此,本文擬采用高分辨率透射電子顯微鏡、拉曼光譜儀和同步熱分析儀對柴油/正戊醇混合燃料發(fā)動機顆粒物的形貌結構和氧化活性進行試驗研究與參數(shù)表征,為深入認識正戊醇摻混對柴油機顆粒物生成特性的影響提供基礎理論參考。

1 試驗裝置與方法

1.1 試驗臺架及試驗燃料

試驗發(fā)動機為車用高壓共軌柴油機,其參數(shù)如表1所示。測控系統(tǒng)由GW160型電渦流測功機和Powerlink FC2000控制柜組成。試驗工況為2 000 r/min和0.59 MPa。待發(fā)動機暖機后,冷卻水溫和機油溫度分別保持在(80±5)和(85±2)℃時開始采樣。采樣時,由真空泵直接從發(fā)動機排氣管采樣,真空泵流量為30 L/min。采樣濾紙為Whatman公司的47 mm石英纖維濾膜,采樣前將濾膜放馬弗爐中以600 ℃焙燒4 h,以去除水分和雜質。

表1 發(fā)動機參數(shù)

以中石化生產的0#柴油(D100)為對比燃料,在柴油中分別摻混體積比為15%和30%的正戊醇,記為DP15、DP30。試驗柴油和正戊醇的物理化學性質如表2所示。試驗過程中,僅改變試驗燃料,發(fā)動機噴油策略和其他控制參數(shù)(如Exhaust Gas Recirculation, EGR)未做任何改變。

表2 試驗柴油和正戊醇的理化特性

1.2 測試方法

采用透射電子顯微鏡(JEM-2100Plus)觀察顆粒物不同放大倍數(shù)下的形貌,并結合圖片處理軟件Image Pro Plus 6.0獲得顆粒物結構參數(shù),包括基本碳粒子直徑(D)、微晶長度(L)和微晶曲率(T)。參數(shù)表征具體方法見論文[13],統(tǒng)計中將長度小于0.483 nm的微晶忽略不計[14]。

采用拉曼光譜儀(LabRAM HR Evaluation)分析顆粒物樣品的石墨化程度。選擇波長為532 nm的He-Ne激光源,激光功率為3.2 mW,物鏡為50倍,掃描時間為30 s。采用4L1G的方法對拉曼光譜進行分峰擬合,其中G峰和D1峰分別位于1 580和1 360 cm-1附近,5個峰分別代表石墨晶體的特定結構特征,詳見論文[15]。

利用同步熱分析儀(STA 449F5 Jupiter)研究顆粒物的氧化活性。測試從室溫以10 ℃/min的速率升溫至800 ℃,反應氣氛圍為空氣,流量為100 L/min。選取DSC曲線中最大放熱率對應溫度為氧化溫度,對柴油顆粒物樣品進行3次重復試驗,該儀器測量氧化溫度的重復性誤差為±1.05 ℃。

2 試驗結果及分析

2.1 顆粒物的微觀結構

圖1給出了不同燃料排氣顆粒物的形貌圖。如圖1所示,低倍率(40 000×)下,不同燃料排氣顆粒物的整體微觀形貌差別不大,均呈現(xiàn)出由大量近似球狀的基本碳粒子團聚而成的簇狀結構。

注:D100、DP15和DP30分別為0#柴油,摻混體積比為15%和30%的正戊醇,下同。

圖2給出了燃用不同燃料時顆粒物的基本碳粒子直徑統(tǒng)計結果。圖中箱體上下端分別代表統(tǒng)計數(shù)據(jù)的75%位數(shù)和25%位數(shù),箱體中橫線表示統(tǒng)計數(shù)據(jù)的中間值,箱體中實心點表示平均數(shù),箱體延伸出的長度代表統(tǒng)計數(shù)據(jù)的標準方差。

圖2 不同燃料燃燒顆粒物的基本碳粒子直徑

由圖2可知,基本碳粒子的平均直徑隨正戊醇摻混比例增加而下降(從21.813下降至20.030)。分析認為,基本碳粒子的平均直徑主要受碳煙生成過程中表面生長和氧化所決定[9]。由于正戊醇含氧,促進了碳煙的氧化過程;與此同時,正戊醇的摻混減少了碳煙前驅物如芘的生成[7],進而減少了碳煙的表面生長。因此,柴油摻混正戊醇后,顆粒物的基本碳粒子平均直徑降低。

2.2 顆粒物的納觀結構

高倍率(800 000×)透射電子顯微鏡下,燃用不同燃料時顆粒物的基本碳粒子均呈現(xiàn)出典型的“外殼-內核”結構,如圖3所示。圖中,用短線條勾勒出基本碳粒子的“外殼”輪廓及微晶分布,用圓圈標識出“內核”位置。具體而言,“外殼”部分主要表現(xiàn)為相互平行的微晶,代表著基本碳粒子的有序性;“內核”部分則表現(xiàn)為不規(guī)則分布的微晶,代表著基本碳粒子的無序性。由圖3可知,燃用不同燃料時顆粒物的基本碳粒子均存在部分石墨化和部分無序性。在高分辨率下,同樣可以看出燃用純柴油時的基本碳粒子直徑大于燃用混合燃料時的基本碳粒子直徑。對比可知,燃用純柴油時,“外殼”的微晶層狀分布較為明顯,且與“內核”不定型結構間界限清晰。但隨著正戊醇摻混比的增大,基本碳粒子納觀結構的殼核界限逐漸模糊,微晶分布更趨于無序化。

圖3 不同燃料燃燒顆粒物的基本碳粒子納觀形貌

圖4給出了燃用不同燃料時顆粒物的微晶長度圖4a和微晶曲率圖4b的統(tǒng)計結果。由圖4可知,隨著正戊醇摻混比例的增加,基本碳粒子的微晶長度減小而微晶曲率增加。具體地,當正戊醇摻混比例為15%和30%時,微晶平均長度分別減小了0.025和0.051 nm。顆粒物基本碳粒子微晶長度的減少,說明微晶中位于碳層內部的碳原子減少而位于碳層邊緣的碳原子增多[16]。同時,當正戊醇摻混比例為15%和30%時,基本碳粒子的微晶曲率平均值分別增加了2.35%和2.73%。與微晶長度類似,微晶曲率的增加,表明微晶中位于碳層內部的碳原子缺失程度增加[17]。

圖4 不同燃料燃燒顆粒物的納觀結構參數(shù)

綜合以上納觀結構參數(shù)的分析結果,發(fā)現(xiàn)柴油摻混正戊醇后,顆粒物基本碳粒子的微晶長度減少,伴隨著微晶曲率增加,表明顆粒物的納觀結構更加無序,且無序化程度隨正戊醇摻混比例的增加而增加。類似地,Lapuerta等[18]也發(fā)現(xiàn),柴油摻混正丁醇后,顆粒物基本碳粒子的微晶長度減少而曲率增加。分析認為,由于正戊醇的十六烷值較柴油低且蒸發(fā)潛熱較柴油大,導致混合燃料的著火滯燃期延長且擴散燃燒持續(xù)時間縮短[5]。一方面,較長的著火滯燃期為燃料和空氣提供更長的混合時間,同時結合其含氧特性的作用改善了缸內局部富油區(qū);另一方面,混合燃料的擴散燃燒持續(xù)期縮短減少了顆粒物生成的持續(xù)時間。兩方面因素降低了顆粒物的生成和碳化速率,使得顆粒物的微觀結構更趨于無序化分布。

2.3 顆粒物的石墨化程度

圖5分別給出了不同燃料燃燒顆粒物的一階拉曼光譜及其分峰擬合曲線。

由圖5可知,3種燃料的原始一階光譜曲線趨勢一致。本文采用分峰后A1/A的比值,表征排氣顆粒物的石墨化程度[19],如圖6所示。A1與A分別源于石墨層活性位點和有序石墨碳,因此A1/A代表石墨碳層的有序化程度。

注:AD1和AG分別表示圖5中拉曼分峰曲線D1和G與直線y=0圍成的面積,下同。

由圖6可知,柴油燃燒顆粒物的A1/A最小,即微粒中位于活性位點的碳原子比例最小,說明柴油碳煙微粒更趨于石墨化。這與HRTEM結果中,柴油碳煙微粒的納觀結構更趨于有序化分布一致。反之,DP30顆粒物的A1/A最大,對應結構更趨于無序。正如2.2小節(jié)中所述,摻混正戊醇后燃燒顆粒物的結構更趨于無序,這主要歸因于正戊醇摻混后對混合燃料中多環(huán)芳香烴的稀釋效應和正戊醇含氧特性對顆粒物生成過程的影響。

2.4 顆粒物的氧化活性

圖7給出了顆粒物質量損失隨溫度升高的變化曲線。由圖7可以看出,D100、DP15和DP30 3種樣品在150 ℃之前幾乎都沒有質量下降;而在200~300和450~600 ℃之間有2個很明顯的失質量區(qū),分別對應揮發(fā)性有機成分的氧化與揮發(fā),以及碳煙的氧化;當所有樣品超過650 ℃時,質量基本不再變化。由圖7還可知,D100和DP15的揮發(fā)性有機成分差別不大,而DP30的揮發(fā)性有機成分明顯較前二者多。

為表征顆粒物的氧化活性,圖8給出了不同燃料燃燒顆粒物的氧化溫度。由圖8可知,隨著正戊醇摻混比例的增加,D100、DP15和DP30顆粒物的氧化溫度逐漸降低,依次為:616.9、609.9和583.6 ℃,對應的氧化活性逐漸升高。

圖7 不同燃料燃燒顆粒物的熱重曲線

圖8 不同燃料燃燒顆粒物的氧化溫度

大量研究表明,顆粒物的氧化活性取決于顆粒物的納觀結構、化學組成等性質[13,17,20]。圖9給出了D100、DP15和DP30 3種顆粒物樣品氧化活性與形貌、納觀結構之間的關系。由圖9 a可知,隨著摻混比例增加,基本碳粒子直徑減小,氧化溫度降低,對應氧化活性升高。由圖9 b可知,隨著摻混比例增加,微晶長度減小且微晶曲率升高,即基本碳粒子納觀結構無序化程度增加,對應氧化溫度降低,氧化活性升高。分析認為,微晶長度減小,即小尺寸碳層增加,增加了碳層邊緣碳原子數(shù)量;由于位于碳層邊緣的碳原子的活性較碳層內部的碳原子活性高[21],因而增加了顆粒物的氧化活性。同時,混合燃料微晶曲率的增加也表明碳層內奇數(shù)環(huán)增多且sp2/sp3雜化率增加,而奇數(shù)環(huán)和sp3雜化碳原子結構的增加則表示該結構氧化活性增加[22]。圖9 c也表明,隨著正戊醇摻混比例的增加,A1/A比逐漸升高,對應顆粒物石墨化程度降低,氧化活性升高。

圖9 顆粒物氧化溫度與形貌結構的相關性

3 結 論

本文在車用高壓共軌柴油機上,研究了正戊醇摻混比對柴油機燃燒微粒氧化活性與微觀形貌結構的影響,得到以下結論:

1)隨著正戊醇摻混比例的增加,混合燃料燃燒生成的顆粒物的基本碳粒子直徑減小,微晶長度減小但微晶曲率增加,這表明顆粒物的納觀結構更趨于無序。

2)通過拉曼光譜分析得出,隨著正戊醇摻混比的增加,混合燃料燃燒顆粒物A1/A增加,表明顆粒物的石墨化程度降低

3)隨著正戊醇摻混比例的增加,混合燃料燃燒顆粒物的氧化溫度降低,對應氧化活性增加。這與其更為無序的納觀結構相關。因此燃用柴油/正戊醇混合燃料可以影響柴油機DPF的再生性能,且燃用混合燃料時,DPF需要的再生溫度降低。

[1] Celebi Y, Aydin H. An overview on the light alcohol fuels in diesel engines[J]. Fuel, 2019, 236: 890-911.

[2] Kumar B R, Saravanan S. Use of higher alcohol biofuels in diesel engines: A review[J]. Renew. Sust. Energ. Rev, 2016, 60: 84-115.

[3] Krmar S, Cho J H, Park J, et al. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines[J]. Renew. Sust. Energ. Rev, 2013, 22: 46-72.

[4] Campos-Fernandz J, Arnal J M, Gomez J, et al. A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine[J]. Appl. Energ., 2012, 95: 267-275.

[5] Campos-Fernandz J, Arnal J M, Gomez J, et al. Performance tests of a diesel engine fueled with pentanol/diesel fuel blends[J]. Fuel, 2013, 107: 866-872.

[6] Wei L, Cheung C S, Huang Z. Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine[J]. Energy, 2014, 70: 172-180.

[7] Huang H, Lv D, Zhu J, et al. Development and validation of a new reduced diesel/n-pentanol mechanism for diesel engine applications[J]. Energy Fuels, 2018, 32(9): 9934-9948.

[8] Wang X, Wang Y, Bai Y, et al. An overview of physical and chemical features of diesel exhaust particles[J]. Journal of the Energy Institute, 2019, 92: 1864-1888.

[9] Li Z, Song C, Song J, et al. Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process[J]. Combust Flame, 2011, 158(8): 1624-1630.

[10] Zhang Z H, Chua S M, Balasubramanian R. Comparative evaluation of the effect of butanol–diesel and pentanol–diesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine[J]. Fuel, 2016, 176: 40-47.

[11] Zhu L, Xiao Y, Cheung C S, et al. Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel[J]. Appl. Therm. Eng., 2016, 102: 73-79.

[12] Wei L, Cheung C S, Huang Z. Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine[J]. Energy 2014, 70: 172-180.

[13] Wang X, Wang Y, Bai Y, et al. Effects of 2,5-dimethylfuran addition on morphology, nanostructure and oxidation reactivity of diesel exhaust particles[J]. Fuel, 2019, 253: 731-740.

[14] Botero M L, Chen D, Gonzalez-calera S, et al. HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels[J]. Carbon, 2016, 96: 459-473.

[15] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43: 1731-1742.

[16] Vander Wal R L, Tomasek A J. Soot nanostructure: dependence upon synthesis conditions[J]. Combust Flame, 2004, 136(1/2): 129-140.

[17] 郝斌. 不同燃料對柴油機排氣顆粒物的影響研究[D]. 天津:天津大學,2014.

Hao Bin. Effect of Fuel Identity on the Exhaust Particles from Diesel Engine[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)

[18] Lapuerta M, Sanchez-valdepenas J, Barba J, et al. Analysis of soot from the use of butanol blends in a Euro 6 diesel engine[J]. Energy Fuels, 2019, 33(3): 2265-2277.

[19] Zhu J, Lee K O, Yozgatligil A, et al. Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2781-2789.

[20] Muhlbauer W, Zollner C, Lehmann S, et al. Correlations between physicochemical properties of emitted diesel particulate matter and its reactivity[J]. Combust Flame, 2016, 167: 39-51.

[21] Singh M, Vander Wal R L. Nanostructure quantification of carbon blacks[J]. Journal of Carbon Research, 2019, 5(1): 2.

[22] Vander Wal R L. Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine[J]. Energy Fuels, 2006, 20(6): 2364-2369.

Morphology and oxidation reactivity of exhaust particles from diesel engine fueled by N-pentanol-diesel blend

Wang Ying, Wang Peng, Wang Xiaochen

(,710049,)

The exhaust particles from diesel engine can be reduced by mixing diesel with n-pentanol, however, the effect of n-pentanol blending fuels on the oxidation reactivity and morphology of diesel exhaust particulates has not been well understood. Therefore, this paper aims to design an experiment and then solve this problem. Experiments were conducted in a high pressure common-rail diesel engine, and three fuels were selected, including pure diesel, DP15 (15% n-pentanol +85% diesel, by vol.), and DP30 (30% n-pentanol +70% diesel, by vol.). In this work, the engine speed and torque were set at 2000 r/min and 0.59MPa, respectively. Tests were performed without any engine modification, but only with fuels change. In the test, the particulate samples were collected from the exhaust pipe of the engine through a vacuum pump, then the particulate matter (PM) characteristics were analyzed by transmission electron microscope (TEM), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). Results showed that the morphologies of soot particles from three fuels were similar. Soot aggregates with numbers of primary particles were observed at low magnification, while a typical “shell-core” nanostructure was presented at high magnification. The “shell” part is mainly composed of parallel microcrystals, representing the order of basic carbon particles, while the “core” part consists of irregular microcrystals, indicating the disorder of basic carbon particles. With the increase in n-pentanol blending ratio, the oxidation process of soot was promoted due to the oxygen content of n-pentanol, while the mixing of n-pentanol reduced the generation of soot precursor, such as pyrene, and thereby the surface growth of soot decreases. Therefore, the primary particle diameters of soot samples slightly decreased from 21.813 nm to 20.030 nm. Meanwhile, as the n-pentanol blending ratio increased, the fringe length of soot samples decreased 0.025 and 0.051 nm, while the fringe tortuosity increased slightly. The decrease of fringe length and the increase of fringe tortuosity indicated that the nanostructure of particles was much more disordered. Results from TEM images demonstrated that there was less graphitic structure in soot samples emitted from blended fuels. Similar to the results obtained from TEM, a higher AD1/AGwas also observed for blended fuels than others. Since the AD1/AGis an important parameter to characterize the graphitization degree of exhaust particles, the graphitization degree of particles is higher when the value ofA1/Ais smaller. Therefore, the soot samples from diesel/n-pentanol mixtures showed smaller primary particles in size, and more disorder nanostructure. Meanwhile, the oxidation temperature of the particulate samples (616.9 ℃ in pure diesel, 609.9 ℃ in DP15, and 583.6 ℃ in DP30) decreased with the increase of n-pentanol ratio. There was much higher oxidation reactivity in the exhaust particles from blended fuels than others. The correlation analysis between the oxidation activity and morphology showed that the high oxidation activity of particulate samples in the mixed fuel was related to the disordered nanostructure. Finally, the oxidation activity and diesel fuel increased in the exhaust particles that formed by the mixtures of n-pentanol. This finding demonstrates that the blended fuels in the engine can be used to improve the regeneration performance of DPF, and further reduce the required regeneration temperature.

diesel engine; n-pentanol; particulates; nanostructure; oxidation reactivity

汪映,王鵬,王小琛. 正戊醇-柴油混合燃料發(fā)動機顆粒物的形貌結構與氧化活性研究[J]. 農業(yè)工程學報,2020,36(8):48-53.doi:10.11975/j.issn.1002-6819.2020.08.006 http://www.tcsae.org

Wang Ying, Wang Peng, Wang Xiaochen. Morphology and oxidation reactivity of exhaust particles from diesel engine fueled by N-pentanol-diesel blend[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 48-53. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.006 http://www.tcsae.org

2019-12-12

2020-03-05

國家自然科學基金資助項目(51776162);陜西省自然科學基礎研究計劃(2020JM-044)

汪映,教授,主要從事內燃機清潔燃燒與排放控制研究。Email:yingw@mail.xjtu.edu.cn

10.11975/j.issn.1002-6819.2020.08.006

TK464

A

1002-6819(2020)-08-0048-06

猜你喜歡
顆粒物結構
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
南平市細顆粒物潛在來源分析
論《日出》的結構
固定源細顆粒物監(jiān)測技術現(xiàn)狀分析與思考
錯流旋轉填料床脫除細顆粒物研究
化工進展(2015年3期)2015-11-11 09:18:15
多層介質阻擋放電處理柴油機尾氣顆粒物
創(chuàng)新治理結構促進中小企業(yè)持續(xù)成長
基于BIM的結構出圖
主站蜘蛛池模板: 久久夜色精品国产嚕嚕亚洲av| 国产在线无码av完整版在线观看| 亚洲人成电影在线播放| 国产手机在线观看| 日韩 欧美 小说 综合网 另类| 亚洲人成人无码www| 2021天堂在线亚洲精品专区| 国产jizz| 国产免费久久精品99re丫丫一| 天堂中文在线资源| 国产一区免费在线观看| 国内熟女少妇一线天| 亚洲日韩在线满18点击进入| 国产精品夜夜嗨视频免费视频 | 久久亚洲日本不卡一区二区| 国产精品久久久久鬼色| 日韩欧美成人高清在线观看| 久热这里只有精品6| 欧美在线视频a| 亚洲欧美自拍中文| 精品久久蜜桃| 全午夜免费一级毛片| 网友自拍视频精品区| 亚洲欧美不卡视频| 亚洲高清免费在线观看| 色欲不卡无码一区二区| 一级一级特黄女人精品毛片| 国产经典在线观看一区| 伊人网址在线| 国产资源免费观看| 国产91精品最新在线播放| 亚洲国产成人精品无码区性色| 亚洲人成网站观看在线观看| 91精品国产麻豆国产自产在线| 成人在线亚洲| a亚洲天堂| 精品视频在线观看你懂的一区| 国产91丝袜| 国产99在线观看| 亚洲视频影院| 国产真实乱子伦视频播放| 国产呦视频免费视频在线观看| 午夜成人在线视频| 色哟哟国产精品| 又大又硬又爽免费视频| 九九久久精品国产av片囯产区| 欧美日韩第三页| 亚洲浓毛av| 性69交片免费看| 亚洲成a人片在线观看88| 亚洲天堂网在线播放| 性欧美在线| 亚洲无限乱码一二三四区| 久久久久亚洲精品成人网 | 亚洲免费播放| 国产精品va| 精品亚洲国产成人AV| 无码高清专区| 亚洲国产成人综合精品2020| 全午夜免费一级毛片| 国产成+人+综合+亚洲欧美| 人妻免费无码不卡视频| 色婷婷亚洲综合五月| 免费毛片视频| 国产精品亚洲专区一区| 欧洲高清无码在线| 一级毛片无毒不卡直接观看 | 国产成人AV综合久久| 精品日韩亚洲欧美高清a| 国产一级毛片yw| 日本成人不卡视频| 亚洲欧美另类日本| 99久久国产精品无码| 嫩草在线视频| 在线看片免费人成视久网下载| 国产麻豆精品在线观看| 全部免费特黄特色大片视频| 超级碰免费视频91| 亚洲午夜福利精品无码不卡| 国产亚洲精品97在线观看| 日韩美女福利视频| 国产剧情伊人|