999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于VMD-Hilbert邊際譜能量熵和SVM的高壓斷路器機械故障診斷

2020-04-22 06:00:44楊秋玉阮江軍黃道春邱志斌莊志堅
電機與控制學報 2020年3期

楊秋玉 阮江軍 黃道春 邱志斌 莊志堅

摘 要:針對高壓斷路器分、合閘動作過程中產生的振動信號持續時間短暫及強烈的非線性非平穩性,導致的特征提取困難問題,提出一種變分模態分解(VMD)-希爾伯特(Hilbert)邊際譜能量熵,及支持向量機(SVM)的高壓斷路器振動信號組合特征提取和機械故障診斷方法。采用VMD對高壓斷路器振動信號進行分解,得到一系列反映振動信號局部特性的本征模態函數(IMF);對IMF進行Hilbert變換,并求取對高壓斷路器機械狀態變化敏感的Hilbert邊際譜能量熵作為特征向量;將特征向量輸入到SVM分類器,實現高壓斷路器機械故障的智能診斷。試驗結果表明:該方法能夠準確識別高壓斷路器的常見機械故障類型,具有一定的工程應用價值。

關鍵詞:高壓斷路器;變分模態分解;希爾伯特邊際譜;能量熵;支持向量機;機械故障識別

DOI:10.15938/j.emc.2020.03.002

中圖分類號:TM 561文獻標志碼:A文章編號:1007-449X(2020)03-0011-09

Abstract:In this paper, a feature extraction method and fault diagnosis for high voltage circuit breakers (HVCBs) is presented and discussed. The vibration signals are nonlinear and timevarying since the complicated structure and extremely fast operation of HVCBs, which makes the extraction and selection of sensitive features for fault diagnosis difficult. Therefore, it is of vital importance to explore a new vibration feature extraction algorithm to improve the accuracy of fault diagnosis for HVCBs. A combination feature extraction method based on variational mode decomposition (VMD) and Hilbert marginal spectrum energy entropy, and support vector machine (SVM) for the diagnosis of HVCBs mechanical condition is presented and clearly discussed. Vibration signals were decomposed into several intrinsic mode functions (IMFs) by using VMD. Marginal spectral energy entropies of IMFs (which vary with different fault types of HVCB) were obtained and served as feature vectors for the SVM classifier for the diagnosis of HVCB. Experimental results indicate that the proposed method can accurately identify the common mechanical faults of HVCB and has potential of practical application.

Keywords:high voltage circuit breakers; variational mode decomposition; Hilbert marginal spectrum; energy entropy; support vector machine; mechanical fault detection

0 引 言

高壓斷路器的可靠性對于保障電力系統的安全穩定運行具有重要的作用。運行實踐表明,機械故障是導致高壓斷路器故障的主要原因。近年來,對高壓斷路器機械故障診斷的研究越來越多,一些研究成果也已用于實際工程,其中,基于振動信號的高壓斷路器機械故障診斷技術越來越受到人們的關注[1-3]。

高壓斷路器分、合閘動作時產生的振動信號蘊含著豐富、重要的高壓斷路器狀態信息[4-6]。由于高壓斷路器動作時間極短(常常是幾十毫秒)、各運動件之間強烈碰撞沖擊等特點質,使得其振動信號具有時域時間短、頻域分布寬、強烈的非線性非平穩性。所以,一方面,對傳感器的性能提出了更高的要求:傳感器必須具有足夠高的采樣精確度,且頻響范圍及量程應足夠大;另一方面,對振動信號的處理也提出了更高的要求,傳統的信號處理方法不能有效提取高壓斷路器這種具有強沖擊時變特性振動信號的關鍵信息。

針對高壓斷路器振動信號的特殊性,時頻分析方法無疑是較適合的,因此,越來越多的時頻分析方法被用于分析高壓斷路器的振動信號。如小波變換[7-9]、經驗模態分解[10-12](empirical mode decomposition,EMD)。實際上,小波變換的本質還是一種傅里葉變換,存在信號能量泄漏、基函數選擇等問題,且不具備自適應性。EMD是一種可以根據信號自身特點進行自適應多分辨率分解的信號分析方法,但其在分解過程中容易產生模態混疊、本征模態函數(intrinsic mode function,IMF)篩分停止條件和端點效應等問題[13-14]。而變分模態分解[15-17](variational mode decomposition,VMD)通過尋找約束變分模型最優解實現信號的分解,各IMF分量中心頻率和帶寬不斷交替迭代更新,實現信號頻帶的自適應分解。VMD方法克服了EMD方法的諸多缺陷(如模態混疊等),大大提高信號分解的準確性。振動信號經VMD處理得到一系列反映振動信號局部特性的本征模態函數(IMF);IMF通過希爾伯特(Hilbert)變換可更有效、更真實地獲得振動信號中所含的重要信息,即Hilbert譜(Hilbert譜可精確地描述信號幅值在整個頻段上隨時間和頻率的變化規律)。

[6] RUNDE M, OTTESEN G E, SKYBERG B,et al. Vibration analysis for diagnostic testing of circuitbreakers[J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1816.

[7] LEE D S S, LITHGOW B J, MORRISON R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 454.

[8] CHARBKAEW N, SUWANASR T, BUNYAGUL T, et al. Vibration signal analysis for condition monitoring of puffertype highvoltage circuit breakers using wavelet transform[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7(1):13.

[9] LIU Mingliang, WANG Keqi, SUN Laijun, et al. Fault diagnosis method of HV circuit breaker based on wavelets neural network[J]. The Open Automation and Control Systems Journal, 2015, 7:126.

[10] HUANG Jian, HU Xiaoguang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multiclass support vector machine[J]. Electric Power Systems Research, 2011, 81: 400.

[11] 張麗萍, 石敦義, 繆希仁. 低壓斷路器振動特性分析及其故障診斷研究[J]. 電機與控制學報, 2016, 20(10):82.

ZHANGLiping, SHI Dunyi, MIAO Xiren. Research on vibration signal feature analysis and its fault diagnosis[J]. Electric Machines and Control, 2016, 20(10): 82.

[12] 李建鵬, 趙書濤, 夏燕青. 基于雙譜和希爾伯特-黃變換的斷路器故障診斷方法[J]. 電力自動化設備, 2013, 33(2):115.

LI Jianpeng, ZHAO Shu Tao, XIA Yanqing. Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Electric Power Automation Equipment, 2013, 33(2):115.

[13] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[C]//Proc. Roy. Soc. London Ser. A, 1998, 454: 903-995.

[14] 任宜春, 翁璞. 基于改進HilbertHuang變換的結構損傷識別方法研究[J]. 振動與沖擊, 2015, 34(18): 195.

REN Yichun, WENG Pu. Structural damage detection based on improved HilbertHuang transform[J]. Journal of Vibration and Shock, 2015, 34(18): 195.

[15] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531.

[16] 徐元博, 蔡宗琰, 胡永彪, 等. 強噪聲背景下頻率加權能量算子和變分模態分解在軸承故障提取中的應用[J]. 振動工程學報, 2018, 31(3): 513.

XU Yuanbo,CAI Zongyan,HU Yongbiao,et al.A frequencyweighted energy operator and variational mode decomposition for bearing fault detection[J].Journal of Vibration Engineering,2018,31(3):513.

[17] 趙巖, 朱均超, 張寶峰, 等. 基于VMD與Hilbert譜的旋轉機械碰摩故障診斷方法[J]. 振動、測試與診斷, 2018, 38(2): 381.

ZHAO Yan, ZHUYunchao, ZHANG Baofeng, et al. Runimpact fault diagnosis of rotating machinety based on VMD and Hilbert spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 381.

[18] 艾延廷, 費成巍. 轉子振動故障的小波能譜熵SVM診斷方法[J]. 航空動力學報, 2011, 26(8):1830.

AI Yanting, FEI Chenwei. Rotor vibration fault diagnosis method based on wavelet energy spectrum entropy and SVM[J]. Journal of Aerospace Power, 2011, 26(8): 1830.

[19] 徐建源, 張彬, 林莘, 等. 能譜熵向量法及粒子群優化的RBF神經網絡在高壓斷路器機械故障診斷中的應用[J]. 高電壓技術, 2012, 38(6): 1299.

XU Jianyuan, ZHANG Bin, LIN Xin, et al. Application of energy spectrum entropy vector method and RBF neural networks optimized by the particla swarm in highvoltage circuit breaker mechanical fault diagnosis[J]. High Voltage Engineering, 2012, 38(6): 1299.

[20] LIU Mingliang, WANG Keqi, SUN Laijun, et al. Applying energyequal entropy of wavelet packet to diagnose circuit breaker faults[J]. The Open Electrical & Electronic Engineering Journal, 2014, 8: 445.

[21] 張彬, 徐建源, 陳江波, 等. 基于電力變壓器振動信息的繞組形變診斷方法[J]. 高電壓技術, 2015, 41(7): 2341.

ZHANG Bin, XU Jianyuan, CHEN Jiangbo, et al. Diagnosis method of winding deformation based on transformer vibration information[J]. High Voltage Engineering, 2015, 41(7): 2341.

[22] VAPNIK V N. Statistical Learning Theory[M]. Hoboken, NJ, USA: Wiley, 1998.

[23] REN Likun, L Weimin, JIANG Shiwei, et al. Fault diagnosis using a joint model based on sparse representation and SVM[J]. IEEE Transactions on Instrumentations and Measurement, 2016, 65(10): 2313.

[24] 劉學藝, 宋春躍, 李平. 基于VapnikChervonenkis泛化界的極限學習機模型復雜性控制[J]. 控制理論與應用, 2014, 31(5): 644.

LIU Xueyi, SONG Chunyue, LI Ping. Model complexity control of extreme learning machine using VapnikChervonenkis generalization bounds[J]. Control Theory & Applications, 2014, 31(5): 644.

[25] ANGUITA D, GHIO A, ONETO L, et al. Insample and outofsample model selection and error estimation for support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1390.

(編輯:賈志超)

主站蜘蛛池模板: 黄片一区二区三区| 在线综合亚洲欧美网站| 丁香五月亚洲综合在线| 国产精品亚洲片在线va| 日日拍夜夜操| 国产精品jizz在线观看软件| 伊人久久婷婷| 中国成人在线视频| 国产h视频在线观看视频| 91人妻在线视频| 青青青国产在线播放| 婷婷色中文网| 午夜国产精品视频黄| 午夜视频免费一区二区在线看| 亚洲精品无码久久毛片波多野吉| 免费一级成人毛片| 国产福利小视频高清在线观看| 天天综合网亚洲网站| 亚洲一区国色天香| 喷潮白浆直流在线播放| 免费播放毛片| 亚洲欧州色色免费AV| 亚洲欧美日韩精品专区| 在线欧美a| 黑人巨大精品欧美一区二区区| 久久网欧美| 91小视频版在线观看www| 日韩欧美综合在线制服| 成人国产一区二区三区| 91青青草视频| 亚洲熟女中文字幕男人总站| 久久频这里精品99香蕉久网址| 国产三级a| 99无码中文字幕视频| 久久久久无码精品| 新SSS无码手机在线观看| 国产一区在线观看无码| 2020国产精品视频| 国产喷水视频| 国产丰满大乳无码免费播放| 国产高潮视频在线观看| 亚洲综合在线最大成人| 国产精品欧美亚洲韩国日本不卡| 国产精品久久精品| 国产人在线成免费视频| 亚洲侵犯无码网址在线观看| 婷婷亚洲天堂| 亚洲天堂免费在线视频| 亚洲一区无码在线| 91av成人日本不卡三区| 97成人在线视频| 欧美啪啪视频免码| 欧美精品导航| 国内精品手机在线观看视频| 亚洲91在线精品| 色悠久久久久久久综合网伊人| 国产麻豆va精品视频| 香蕉国产精品视频| 国产在线观看高清不卡| 一区二区三区国产精品视频| 亚洲无码免费黄色网址| 伊人蕉久影院| 无码专区国产精品一区| 国产浮力第一页永久地址| 91青草视频| 国产精品9| 国产正在播放| 午夜视频日本| 福利一区三区| 久久国产热| 在线网站18禁| 国产成人永久免费视频| lhav亚洲精品| 波多野结衣中文字幕一区二区| 国产 在线视频无码| 亚洲福利视频网址| 青青久久91| 国产精选小视频在线观看| 国产成人a在线观看视频| 欧美中文一区| 四虎国产永久在线观看| 久久午夜夜伦鲁鲁片不卡|