任 靜,劉小勇※,韓富軍,李建明,彭 海
供氮水平與地面覆沙對(duì)蘋果幼樹15N-尿素吸收分配及利用的影響
任 靜1,劉小勇1※,韓富軍1,李建明2,彭 海1
(1. 甘肅省農(nóng)業(yè)科學(xué)院林果花卉研究所,蘭州 730070;2. 靜寧縣果樹所,靜寧 743400)
探究地面覆沙與供氮水平對(duì)隴東旱塬蘋果幼樹氮素吸收、分配及利用的影響,為實(shí)現(xiàn)半干旱區(qū)蘋果園合理施氮、提高氮素利用率提供科學(xué)依據(jù)。該研究以3 a生富士蘋果幼樹為材料,采用二因素裂區(qū)設(shè)計(jì),田間設(shè)置主區(qū)為地面管理措施,清耕(對(duì)照CK)和覆沙(SM),副區(qū)為2個(gè)供氮水平,5 g15N-尿素(N1),5 g15N-尿素+75.5 g普通尿素(N2)。利用15N同位素示蹤技術(shù),分別于6月(果實(shí)膨大期)、8月(新梢停止生長(zhǎng)期)和10月(落葉前)3個(gè)生育期對(duì)植株各器官15N豐度和全氮量進(jìn)行測(cè)定分析。結(jié)果表明:1)地面覆沙增加了幼樹地上部生物量累積,覆沙條件下供氮有利于生育后期地上部和總生物量累積;清耕條件下高供氮量(CKN2)可有效增加地下部干物質(zhì)量,但SMN1處理于落葉前(10月)地下部生長(zhǎng)極快,與CKN2差異不顯著(>0.05)。地面覆沙和供氮水平及二因素互作顯著影響果實(shí)和多年生枝的Ndff值(氮素含量來自肥料氮的百分比)(<0.05),二因素互作對(duì)果實(shí)Ndff值累積作用較多年生枝更大。6月和8月,地面覆沙條件下SMN1處理多年生枝和細(xì)根Ndff值最高,分別為2.26%、3.21%和3.67%、5.89%。當(dāng)年生育周期內(nèi),二因素及二因素協(xié)同作用對(duì)果實(shí)15N分配率有極顯著影響(<0.01),對(duì)其他器官存在部分顯著(<0.05)或極顯著(<0.01)影響,貯藏器官是樹體最大的15N利用器官,其次為營(yíng)養(yǎng)器官、生殖器官。整個(gè)生育期內(nèi),植株15N利用率為3.38%~38.00%,表現(xiàn)為地面覆沙SM > CK,地面覆沙顯著提高蘋果幼樹的15N利用率(<0.05),而供氮水平的升高對(duì)樹體15N利用率的影響大多情況下并不顯著(>0.05)。綜合分析認(rèn)為,該試驗(yàn)條件下較低的供氮水平(N1)及有效的地面覆沙措施(SM)既可促進(jìn)幼樹總生物量累積,又能提高氮素利用效率,從而優(yōu)化農(nóng)業(yè)生態(tài)系統(tǒng)中氮肥投入。
氮;果園;生物量;氮素利用率;氮素分配率;蘋果;地面覆沙
氮素作為果樹生長(zhǎng)發(fā)育的核心營(yíng)養(yǎng)元素,是植株器官分化、生化過程、物質(zhì)代謝及果實(shí)品質(zhì)形成的重要物質(zhì)基礎(chǔ),具有不可替代性[1]。土壤中的氮素根本無法滿足果樹需求,需通過外源氮素施入來補(bǔ)充和調(diào)節(jié)。氮素過量或缺乏均可影響果樹營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng),而過量施氮?jiǎng)t會(huì)進(jìn)一步造成氮肥利用率的降低并引發(fā)一系列的環(huán)境污染問題[2-4]。氮素的吸收分配因果樹種類不同而存在很大差異,15N同位素示蹤技術(shù)在研究果樹體內(nèi)氮素運(yùn)轉(zhuǎn)與分配方面是比較成熟的,彭玲等[5]在平邑甜茶上利用15N示蹤對(duì)幼苗生長(zhǎng)和15N吸收、分配和利用特性進(jìn)行了研究;在矮化蘋果樹上[6-7]研究了不同施氮水平對(duì)15N-尿素吸收和利用特性的影響,這些研究均為果樹合理施肥提供了理論依據(jù)。
全球新增活性氮的極大部分于工業(yè)革命之后進(jìn)入農(nóng)業(yè)生態(tài)系統(tǒng),當(dāng)然,這其中也包括中國(guó)蘋果園不斷增加的氮肥施用量,其單位面積氮肥消費(fèi)量遠(yuǎn)超出世界水平[4]。由于大多數(shù)果園采用清耕管理措施,使得地面裸露,又加之施肥時(shí)期集中,導(dǎo)致氮肥損失較嚴(yán)重。強(qiáng)化氮肥管理和提高氮肥利用效率是蘋果園提質(zhì)增效的重要途徑。多數(shù)研究表明,果園地面覆蓋管理是促進(jìn)果樹氮素利用和減弱土壤氮素?fù)p失的有效途徑[5],覆蓋物的存在可在很大程度上影響果樹生長(zhǎng)發(fā)育和土壤肥料利用效率[8-10]。如與清耕相比,地面覆蓋干草土壤可利用氮含量顯著增加23.3%,包括地膜覆蓋在內(nèi)的土壤氮含量也都高于清耕[8]。Singh等[11]和Treder等[12]對(duì)干旱地區(qū)蘋果園進(jìn)行覆蓋處理后發(fā)現(xiàn),地面覆蓋有益于蘋果樹的生長(zhǎng)。前人對(duì)果園地面覆蓋研究則更多的集中在蘋果園產(chǎn)量和果實(shí)品質(zhì)方面,結(jié)果表明長(zhǎng)期覆蓋能增加蘋果產(chǎn)量[13-14]、果實(shí)大小[15]及果實(shí)內(nèi)在品質(zhì)[16-17]。
甘肅隴東地區(qū)具有海拔高、晝夜溫差大及光熱資源豐富等特點(diǎn),成為中國(guó)優(yōu)質(zhì)蘋果()生產(chǎn)基地之一。該區(qū)為雨養(yǎng)農(nóng)業(yè)區(qū),春季和初夏季易出現(xiàn)干旱。因此,水分成為限制果樹生長(zhǎng)與果實(shí)產(chǎn)量的關(guān)鍵因素。覆沙是具有甘肅地方特色的果園土壤管理方式,可對(duì)果園土壤起到增溫保墑作用[18],減緩因水分虧缺誘發(fā)的生理干旱,從而增加樹體生長(zhǎng)、提高果實(shí)產(chǎn)量和改善果品質(zhì)量。本文以隴東旱塬地表覆沙蘋果園果樹為研究對(duì)象,利用15N同位素示蹤技術(shù),研究了不同氮素水平下蘋果樹氮肥吸收、利用和分配情況,為進(jìn)一步優(yōu)化旱塬覆沙果園氮素管理提供理論依據(jù)。
試驗(yàn)于2018年4—10月在甘肅靜寧縣威戎鎮(zhèn)梁馬村靜寧縣蘋果良種繁育基地(105°73′E,35°41′N)進(jìn)行。試驗(yàn)地屬暖溫帶半濕潤(rùn)半干旱氣候,海拔1 600 m,年均氣溫7.1 ℃,年均降雨量450.8 mm,降水主要集中在7—9月,無霜期159 d。供試土壤為黃綿土,土質(zhì)疏松,地表0~20 cm土層有機(jī)質(zhì)含量為1.25%,全氮0.90 g/kg,全磷1.00 g/kg,全鉀20.08 g/kg,速效氮73.25 mg/kg,速效磷29.04 mg/kg,速效鉀123.11 mg/kg,pH值8.48。試驗(yàn)用蘋果幼樹為正常管理的5a生‘煙富3號(hào)’(‘Yanfu3’)/山定子(),株行距為1 m×2 m,本年度為果樹第一年掛果。
選取生長(zhǎng)勢(shì)基本一致且無病蟲害的蘋果樹作為供試材料。采用裂區(qū)設(shè)計(jì),主區(qū)為地面覆沙措施,清耕(對(duì)照CK)和覆沙(SM),副區(qū)為氮肥施用量,設(shè)2個(gè)水平,每株施用量分別為5 g15N-尿素(上海化工研究院生產(chǎn),豐度10.10%)+ 0 g普通尿素(N1),5 g15N-尿素 + 75.5 g普通尿素(含純氮46.6%,N2),每個(gè)處理3次重復(fù),3株為一次重復(fù)。同時(shí)每株施入過磷酸鈣110.83 g(含P2O512%),硫酸鉀15.69 g(含K2O 51%),其他田間栽培管理一致。施肥方法是距樹干30 cm處挖環(huán)狀溝(寬和深均為20 cm),溝內(nèi)均勻施入上述各肥料。
當(dāng)年5月2日(開花后)進(jìn)行施肥處理,分別于6月10日(果實(shí)膨大期)、8月15日(新梢停止生長(zhǎng)期)和10月10日(落葉前)對(duì)整株進(jìn)行破壞性取樣,整株分為細(xì)根(≤0.2 cm)、粗根(>0.2 cm)、主干、中心干、多年生枝、新梢、葉片和果實(shí)。稱地上各部分樣品鮮物質(zhì)量,根鮮物質(zhì)量于實(shí)驗(yàn)室清洗后稱質(zhì)量。105 ℃殺青30 min,隨后80 ℃烘干至恒質(zhì)量,冷卻后稱量各部分干物質(zhì)量。取部分干樣進(jìn)行粉碎并過0.25 mm篩,混勻后裝袋備用。
采用凱氏定氮法測(cè)定樣品全氮。15N豐度用穩(wěn)定同位素質(zhì)譜儀(IsoPrime100,英國(guó)IsoPrime公司)測(cè)定。計(jì)算公式如下:
Ndff (%) = [植株樣品中的15N豐度
-自然豐度(0.3663%)]/[肥料中的15N 豐度
-自然豐度(0.3663%)]×100 (1)
總氮量(g) = 干物質(zhì)量(g) ×N% (2)
15N吸收量(mg) = 總氮量(g) ×Ndff%×1 000 (3)
氮肥分配率(%) = 各器官吸收的15N量(mg)/
15N吸收總量(mg) ×100 (4)
氮肥利用率(%) =15N吸收量(g)/15N施用量(g) ×100 (5)
所有試驗(yàn)數(shù)據(jù)均采用SPSS23.0進(jìn)行統(tǒng)計(jì)分析,雙因素方差分析采用LSD法,Microsoft Excel 2016進(jìn)行圖表繪制。
地面管理措施和供氮水平對(duì)樹體生長(zhǎng)影響較大,隨生育期推移,各處理幼樹植株總生物量逐漸增加(表1)。6月份,SMN1處理地上部干物質(zhì)量最高,其次為CKN2處理,但兩個(gè)處理間無顯著差異(>0.05)。8月份,SMN2處理地上部干物質(zhì)量最大,CKN2處理次之,且兩個(gè)處理間差異也不顯著(>0.05)。至10月份時(shí),除CKN1處理外,其余3個(gè)處理地上部干物質(zhì)量迅速增加,達(dá)到整個(gè)生育期的最大值,分別比6月份增加171.33%、159.12%和193.08%,其中SMN1處理地上部干物質(zhì)量最高,但3個(gè)處理間無顯著差異性(>0.05)。

表1 地面覆沙及供氮水平對(duì)蘋果樹生物量的影響
注:同列不同小寫字母表示各處理間差異顯著(<0.05)。CKN1、CKN2、SMN1和SMN2分別表示清耕條件下施用5 g15N-尿素+ 0 g普通尿素,清耕條件下施用5 g15N-尿素+ 75.5 g普通尿素,覆沙條件下施用5 g15N-尿素+ 0 g普通尿素,覆沙條件下施用5 g15N-尿素+ 75.5 g普通尿素。下同。
Note: Different lowercase letters mean significant differences in the same column(<0.05).CKN1, CKN2, SMN1 and SMN2 indicate that application of 5 g15N-urea+ 0 g urea under conventional tillage, application of 5 g15N-urea+ 75.5 g urea under conventional tillage, application of 5 g15N-urea+ 0 g urea under sand mulching, and application of 5 g15N-urea+ 75.5 g urea under sand mulching. The same as below.
同樣,隨著生育期延長(zhǎng),不同處理對(duì)地下部根系生長(zhǎng)的影響逐漸顯現(xiàn)。6月份,CKN2和SMN2處理根系干物質(zhì)量顯著高于CKN1和SMN1(<0.05)。8月份時(shí),CKN2處理顯著高于其余3個(gè)處理(<0.05)。至10月份,SMN1處理根系生長(zhǎng)極快,其根系干物質(zhì)量是6月份的2.39倍,較CKN2處理無顯著差異(>0.05)。從總干物質(zhì)量來看,整個(gè)生育期內(nèi)CKN2、SMN1和SMN2處理均高于CKN1,于10月份時(shí)差異顯著(<0.05),且SMN1處理總干物質(zhì)量最大,達(dá)到每株5.07 kg;而8月份SMN1處理與CKN1差異不顯著(>0.05)。
植株器官?gòu)姆柿现形辗峙涞降?5N量對(duì)該器官全氮量的貢獻(xiàn)率(Ndff)反映了植株器官對(duì)肥料15N的吸收征調(diào)能力[19]。從雙因素方差分析結(jié)果可知(表2),整個(gè)生育期內(nèi),地面覆沙對(duì)果實(shí)、新梢、多年生枝、中心干和細(xì)根Ndff值的影響均達(dá)到極顯著水平(<0.01),對(duì)粗根的影響達(dá)到顯著(<0.05)或極顯著水平(<0.01);除6月份對(duì)葉片的影響未達(dá)顯著水平(>0.05),其余兩個(gè)時(shí)期均達(dá)極顯著水平(<0.01)。供氮水平除對(duì)主干(8月份)和細(xì)根(10月份)Ndff值的影響未達(dá)到顯著水平(>0.05),對(duì)樹體各器官Ndff值的影響均達(dá)到極顯著水平(<0.01)。地面覆沙×供氮水平的交互作用對(duì)葉片、果實(shí)、多年生枝及細(xì)根Ndff值的影響達(dá)到顯著(<0.05)或極顯著水平(<0.01)。

表2 地面管理及供氮水平對(duì)植株各器官Ndff值的方差分析
注:Ndff為各器官氮素含量來自肥料氮的百分比。下同。
Note: Ndff mean percentage of nitrogen content of every organisms come from fertilizer nitrogen. The same as below.
在整個(gè)生育期內(nèi),4個(gè)處理的植株多年生枝Ndff值呈先升后降趨勢(shì),中心干Ndff值明顯增加,而其余器官則表現(xiàn)出不同的變化趨勢(shì),除粗根與中心干基本相同外,大多數(shù)則是與多年生枝相同的。6月份,SMN1處理多年生枝、主干和細(xì)根Ndff值最高,分別為2.26%、3.65%和3.21%。8月份,SMN1處理葉片、新梢、多年生枝、中心干、細(xì)根和粗根Ndff值最高,且除葉片外,均與其他處理差異顯著(<0.05)。10月份,SMN2處理葉片、新梢、多年生枝和細(xì)根Ndff值最高,而SMN1處理僅中心干和粗根Ndff值高于其他處理,且差異顯著(<0.05)。
植株各器官中15N占全株15N總量的百分率反映了肥料氮在樹體內(nèi)的分布及其在各器官間遷移的規(guī)律[20]。檢驗(yàn)表明(表3),6月份和8月份,除8月份多年生枝,地面覆沙措施對(duì)樹體各器官15N分配率均有顯著(<0.05)或極顯著影響(<0.01)。供氮水平對(duì)8月份時(shí)樹體各器官均有極顯著影響(<0.01),對(duì)6月份和10月份的葉片無顯著影響(>0.05)。地面覆沙×供氮水平的交互作用對(duì)樹體絕大部分器官有極顯著影響(<0.01)。
從圖1可看出,在整個(gè)生育時(shí)期,不同處理同一器官的15N平均分配率趨勢(shì)存在較大差異。4個(gè)處理的生殖器官(果實(shí))15N平均分配率隨生育進(jìn)程推進(jìn)呈上升趨勢(shì),于果實(shí)成熟期時(shí)達(dá)到最大,為1.80%。營(yíng)養(yǎng)器官(新梢和葉片)的15N平均分配率在6月份達(dá)到最大值29.40%,隨后降低,至10月份略微升高,且6月份與生育后兩時(shí)期15N平均分配率差異顯著(<0.05)。與之相反,貯藏器官(多年生枝、主干、中心干、細(xì)根和粗根)15N平均分配率則隨生育期呈先升后降趨勢(shì),8月份出現(xiàn)最大值91.15%,10月份為89.72,且兩時(shí)期15N平均分配率差異不顯著(>0.05)。表明在地面覆沙與供氮水平兩個(gè)因素的影響下,當(dāng)年生育周期內(nèi)貯藏器官是樹體最大的15N利用器官。

表3 地面管理及供氮水平對(duì)植株各器官15N分配率的方差分析

圖1 不同生育期15N在蘋果樹體各器官平均分配率
圖2表明,地面覆沙措施和不同供氮水平條件下樹體15N利用率均隨生育期延長(zhǎng)不斷提高,CKN1、CKN2、SMN1和SMN2于10月份時(shí)達(dá)到15N利用率的最大值28.90%、24.77%、36.24%和38.00%,與6月份相比,CKN1、CKN2、SMN1和SMN2處理分別提高了25.52個(gè)百分點(diǎn)、20.27個(gè)百分點(diǎn)、26.95個(gè)百分點(diǎn)和26.24個(gè)百分點(diǎn)。在當(dāng)年生育期內(nèi),SMN2處理15N利用率始終最高,其次為SMN1處理,但是除6月份外,兩個(gè)處理間差異并不顯著(>0.05)。隨著生育期推進(jìn),植株15N利用率始終表現(xiàn)出地面覆沙措施SM > CK,且地面覆沙措施處理間差異顯著(<0.05);而從供氮水平來看,僅6月份SM兩個(gè)處理間和8月份CK兩個(gè)處理間的供氮水平表現(xiàn)出顯著的N2 > N1(<0.05),其余大部分供氮水平處理間均無顯著差異性(>0.05),表明地面覆沙措施可顯著影響蘋果幼樹的15N利用率(<0.05),而供氮水平則不能。

圖2 地面覆沙及供氮水平對(duì)蘋果樹15N利用率的影響
幼齡果樹的管理主要是以營(yíng)養(yǎng)生長(zhǎng)和生物量累積為主要目標(biāo),而植物根系則是幼齡果樹吸收養(yǎng)分和水分的主要器官,根系的健康生長(zhǎng)直接影響到樹體對(duì)土壤中氮素的吸收,因此氮肥的合理使用至關(guān)重要。張馨月等[21]研究表明適宜的水氮措施可優(yōu)化玉米苗期根系形態(tài)與空間分布,增加氮素吸收利用和植株干物質(zhì)量。王益明等[22]認(rèn)為施氮量的增加可降低美國(guó)山核桃根系形態(tài)指標(biāo),適宜的施氮量有利于美國(guó)山核桃幼苗根系生長(zhǎng)。鄭永美等[23]也表明合理的施氮量能促進(jìn)花生根系生長(zhǎng)發(fā)育,如根系長(zhǎng)度、根系表面積及根系體積等。在本研究中,覆沙條件下較高供氮量(SMN2)并未使生育后期蘋果根系與總生物量顯著增加(0.05),而SMN1處理根系生長(zhǎng)極快,其當(dāng)年生育期結(jié)束時(shí)的根系干物質(zhì)量是初期干物質(zhì)量的2.39倍,與CKN2處理并無顯著差異(>0.05),這表明單一地提高供氮水平并非促進(jìn)蘋果幼樹生物量累積的唯一途徑,而較低供氮水平可促使植株通過發(fā)展較大根系和擴(kuò)大吸收面積的方式于更大的土壤空間內(nèi)尋找氮素,從而實(shí)現(xiàn)氮素的高效獲取[24]。更多地,地面覆蓋能顯著增加“局部養(yǎng)根”作用,使植株根系更好地發(fā)揮其生理生態(tài)功能[25]。因此,適宜供氮水平及地面覆蓋條件可有效地促進(jìn)樹體生長(zhǎng)。
蘋果幼樹生長(zhǎng)可受較多因素影響,根據(jù)本試驗(yàn)結(jié)果分析可知,地面覆沙、供氮水平對(duì)果實(shí)、新梢、多年生枝、中心干和粗根Ndff值有顯著影響(<0.05),地面管理×供氮水平交互作用對(duì)葉片、果實(shí)、多年生枝及細(xì)根Ndff值也有顯著影響(<0.05)。這可能與地面覆沙實(shí)現(xiàn)了土壤保水、增溫及提高酶活性等多因素正效應(yīng)的互作與耦合,使蘋果樹克服了清耕條件下不利于生長(zhǎng)的自然條件,從而改善樹體對(duì)氮素吸收征調(diào)能力,滿足各器官發(fā)育需求[18,26]。同樣地,地面覆沙措施、供氮水平及地面覆沙×供氮水平交互作用對(duì)整個(gè)生育期內(nèi)各處理的果實(shí)(生殖器官)15N分配率存在極顯著影響(<0.01)。表明在蘋果樹生長(zhǎng)期內(nèi),供氮水平的變化與地面土壤是否有覆蓋物對(duì)整個(gè)生育期內(nèi)植株生殖器官的氮肥需求量和氮調(diào)動(dòng)能力存在極顯著影響(<0.01),而對(duì)營(yíng)養(yǎng)器官和貯藏器官的影響不大,這與前人在蘋果上進(jìn)行研究的結(jié)果相一致[27]。本研究還發(fā)現(xiàn),貯藏器官15N平均分配率于整株器官中所占比例極大,說明在地面覆沙與供氮水平兩個(gè)因素的影響下,增加了樹體當(dāng)年?duì)I養(yǎng)的貯藏,益于來年新生器官的構(gòu)建、協(xié)調(diào)營(yíng)養(yǎng)器官與生殖器官間的養(yǎng)分平衡,進(jìn)而提高果實(shí)產(chǎn)量和品質(zhì)。
本研究表明,整個(gè)生育期內(nèi),4個(gè)處理植株大部分器官的Ndff值基本呈先升后降趨勢(shì),中心干Ndff值則持續(xù)增加,根粗基本同中心干。這可能是由于果樹生長(zhǎng)初期所消耗的氮素主要來源于貯藏器官,對(duì)外界氮素吸收較少,施入的15N對(duì)樹體各器官的貢獻(xiàn)率較低,而隨著生育期的推進(jìn),根系從土壤中吸收氮素,各器官的Ndff值也隨之升高,至當(dāng)年生育周期結(jié)束前,樹體養(yǎng)分回流,貯藏器官的Ndff值自然高于其他營(yíng)養(yǎng)器官[28]。
在蘋果生產(chǎn)中,土壤施用氮肥的利用率較低,平均為25%~35%[29],而氨揮發(fā)、硝化和反硝化、地面徑流及滲漏等是氮肥損失的主要途徑[30-31]。本試驗(yàn)中,15N利用率最低為3.38%,最高為38.00%。整個(gè)生育中,SM處理的15N利用率顯著高于CK(<0.05),其原因在于地面覆蓋可抑制硝酸鹽淋溶,減緩硝態(tài)氮向土壤深層入滲速度,阻止雨水對(duì)土壤直接沖刷造成的氮素流失以及降低土壤氨揮發(fā)量[32-34],從提高氮素利用效率。對(duì)于本試驗(yàn)中供氮水平的比較,僅為6月份的SM處理(SMN1和SMN2)和8月份的CK處理(CKN1和CKN2)表現(xiàn)出15N利用率隨著供氮水平的增加而升高,且處理間差異顯著(<0.05),這與王海寧等[35]的研究結(jié)果相同。但試驗(yàn)更多的結(jié)果顯示,不同供氮水平處理間的差異是不顯著的(>0.05)。究其原因,樹體對(duì)15N利用率與根系總表面積相關(guān),較低施氮量能促進(jìn)植株根系中生長(zhǎng)素合成,增加根系生長(zhǎng)量,擴(kuò)大根表面積,與此同時(shí)增加與土壤的接觸面積,提高根系被動(dòng)吸收能力,有效提升根系對(duì)土壤中氮素的吸收和利用[36-38]。
1)整個(gè)生育期,覆沙條件下幼樹地上部生物量高于清耕條件。6月和10月份,覆沙條件下施用5 g15N-尿素(SMN1)高于清耕條件下施用5 g15N-尿素+ 75.5 g普通尿素(CKN2),8月份,覆沙條件下施用5 g15N-尿素+ 75.5 g普通尿素(SMN2)高于清耕條件下施用5 g15N-尿素+ 75.5 g普通尿素,但均與其差異不顯著(>0.05)。6月份,供氮水平對(duì)地下部生物量的影響顯著大于地面覆沙(<0.05);而至10月份,SMN1處理地下部干物質(zhì)量與CKN2處理無顯著差異(>0.05)。于生育后期,SMN1處理總干物質(zhì)量達(dá)到最大值每株5.07 kg。
2)地面覆沙措施和土壤供氮水平均可顯著影響果實(shí)、新梢、多年生枝、中心干和粗根的Ndff值(氮素含量來自肥料氮的百分比)(<0.05),其兩因素的互作效應(yīng)顯著影響葉片、果實(shí)、多年生枝及細(xì)根的Ndff值(<0.05);整個(gè)生育期內(nèi),兩因素及兩因素協(xié)同作用對(duì)果實(shí)15N分配率有極顯著影響(<0.01),對(duì)其他器官存在部分顯著(<0.05)或極顯著(<0.01)影響,并且15N平均分配率表現(xiàn)為貯藏器官>營(yíng)養(yǎng)器官>生殖器官。
3)當(dāng)年生育期內(nèi),植株15N利用率表現(xiàn)為地面覆沙> 清耕,地面覆沙措施可顯著影響蘋果幼樹的15N利用率(<0.05),而供氮水平的升高對(duì)樹體15N利用率的影響大多情況下并不顯著(>0.05)。
4)將樹體生長(zhǎng)與氮素利用兩因素的綜合考慮后可得,較低的供氮水平及有效的地面覆沙措施有利于果樹生長(zhǎng)及氮素吸收利用。控制生產(chǎn)中氮肥的投入并加強(qiáng)地面覆沙,既可降低生產(chǎn)成本,又可促進(jìn)幼樹生物量累積和氮素利用效率。
[1] Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[2] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystesms, 2002, 63(2/3): 117-127.
[3] 谷曉博,李援農(nóng),黃鵬,等. 種植方式和施氮量對(duì)冬油菜產(chǎn)量與水氮利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):113-123. Gu Xiaobo, Li Yuannong, Huang Peng, et al. Effects of planting patterns and nitrogen application rates on yield, water and nitrogen use efficiencies of winter oilseed rape (L. )[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 113-123. (in Chinese with English abstract)
[4] 王敬國(guó),林杉,李保國(guó). 氮循環(huán)與中國(guó)農(nóng)業(yè)氮管理[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(3):503-517. Wang Jingguo, Lin Shan, Li Baoguo. Nitrogen cycling and management strategies in Chinese agriculture[J]. Scientia Agricultura Sinica, 2016, 49(3): 503-517. (in Chinese with English abstract)
[5] 彭玲,文昭,安欣,等. 果園生草對(duì)15N利用及土壤累積的影響[J]. 土壤學(xué)報(bào),2015,52(4):950-956. Peng Ling, Wen Zhao, An Xin, et al. Effects of interplanting grass on utilization, loss and accumulation of15N apple orchard[J]. Acta Pedologica Sinica, 2015, 52(4): 950-956. (in Chinese with English abstract)
[6] 鄭朝霞,王穎,鞏慶利,等. 矮化自根砧紅富士幼樹對(duì)土施15N-尿素的吸收、分配和利用[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):237-244. Zheng Zhaoxia, Wang Ying, Gong Qingli, et al. Absorption, distribution and utilization of soil applied15N-urea in young dwarf rootstock ‘Fuji’ apple trees[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 237-244. (in Chinese with English abstract)
[7] 陳倩,丁寧,彭玲,等. 供氮水平對(duì)矮化蘋果15N-尿素吸收、利用、損失及產(chǎn)量和品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(7):2247-2253. Chen Qian, Ding Ning, Peng Ling, et al. Effects of different nitrogen application rates on15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2247-2253. (in Chinese with English abstract)
[8] 高登濤,郭景南,魏志峰,等. 果園地面覆蓋對(duì)土壤質(zhì)量和蘋果生長(zhǎng)發(fā)育的影響[J]. 果樹學(xué)報(bào),2010,27(5):770-777. Gan Dengtao, Guo Jingnan, Wei Zhifeng, et al. Effect of orchard mulch on soil quality, growth and development of apple trees[J]. Journal of Fruit Science, 2010, 27(5): 770-777. (in Chinese with English abstract)
[9] 郭偉,王延平,韓明玉,等. 起壟覆膜壟溝覆草對(duì)山地果樹氮肥吸收利用的影響[J]. 節(jié)水灌溉,2018(2):19-25. Guo Wei, Wang Yanping, Han Mingyu, et al. Effect of ridge film mulching combined with straw mulching technology on N absorption and utilization of apple in Loess Hilly area of Northern Shaanxi province[J]. Water Saving Irrigation, 2018(2): 19-25. (in Chinese with English abstract)
[10] Go′mez J A, Romero P, Gira′ldez J V, et al. Experimental assessment of runoff and soil erosion in an olive grove on a Vertic soil in southern Spain as affected by soil management[J]. Soil Use and Management, 2010, 20(4): 426-431.
[11] Singh S R, Sharma A K, Srivastava K K. Response of mulches and antitranspirants on moisture conservation, yield and quality of apple () cv Red Delicious under rain fed conditions of Kashmir Valley[J]. Environment and Ecology, 2005, 23(3): 572-576
[12] Treder W, Klamkowski K, Mika A, et al. Response of young apple trees to different orchard floor management systems[J]. Journal of Fruit and Ornamental Plant Research, 2004, 12(Suppl. ): 113-123.
[13] Pande K K, Dimri D C, Kamboj Prashant. Effect of various mulches on growth, yield and quality attributes of apple[J]. Indian Journal of Horticulture, 2005, 62(2): 145-147.
[14] Neilsen G H, Hogue E J, Forge T, et al. Mulches and biosolids affect vigor, yield and leaf nutrition of fertigated high density apple[J]. Hortscience, 2003, 38(1): 41-45.
[15] Tahir I I, Johansson E, Olsson M E. Groundcover materials improve quality and storability of 'Aroma' apples[J]. HortScience, 2005, 40(5): 1416-1420.
[16] Vangdal E, Meland M, Hjeltnes S H. Reflective mulch (Extenday) in fruit orchard – preliminary results [J]. Acta Horticulturae, 2007(732): 665-668.
[17] Solomakhin A A, Blanke M M. Overcoming adverse effects of hailnets on fruit quality and microclimate in an apple orchard[J]. Journal of the Science of Food and Agriculture, 2007, 87(14): 2625-2637.
[18] 任靜,劉小勇,韓富軍,等. 施氮水平對(duì)旱塬覆沙蘋果園土壤酶活性及果實(shí)品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):206-213. Ren Jing, Liu Xiaoyong, Han Fujun, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gausu[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 206-213. (in Chinese with English abstract)
[19] 顧曼如.15N在蘋果氮素營(yíng)養(yǎng)研究中的應(yīng)用[J]. 中國(guó)果樹,1990(2):46-48.
[20] 徐季娥,林裕益,呂瑞江,等. 鴨梨秋施15N-尿素的吸收與分配[J]. 園藝學(xué)報(bào),1993,20(2):145-149. Xu Ji’e, Lin Yuyi, Lv Ruijiang, et al. Studies on the absorption and the distribution of15N-labelled urea to ‘Yali’ pear trees following autumn application[J]. Acta Horticulturae Sinica, 1993, 20(2): 145-149. (in Chinese with English abstract)
[21] 張馨月,王寅,陳健,等. 水分和氮素對(duì)玉米苗期生長(zhǎng)、根系形態(tài)及分布的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(1):39-49. Zhang Xinyue, Wang Yan, Chen Jian, et al. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage[J]. Scientia Agricultura Sinica, 2019, 52(1): 39-49. (in Chinese with English abstract)
[22] 王益明,萬福緒,胡菲,等. 指數(shù)施肥對(duì)美國(guó)山核桃幼苗根系形態(tài)的影響[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2018,46(3):29-32. Wang Yiming, Wan Fuxu, Hu Fei, et al. Effects of exponential fertilization on root morphology of pecan seedlings[J]. Journal of Northeast Forestry University, 2018, 46(3): 29-32. (in Chinese with English abstract)
[23] 鄭永美,王春曉,劉岐茂,等. 氮肥對(duì)花生根系生長(zhǎng)和結(jié)瘤能力的調(diào)控效應(yīng)[J]. 核農(nóng)學(xué)報(bào),2017,31(12):2418-2425. Zheng Yongmei, Wang Chunxiao, Liu Qimao, et al. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2418-2425. (in Chinese with English abstract)
[24] 李晶. 供氮水平等對(duì)中間砧蘋果碳氮營(yíng)養(yǎng)利用、分配特性影響的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2013. Li Jing. Effects of Different Nitrogen Levels on Carbon and Nitrogen Nutrition Utilization and Allocation on Interstock Apple Tree[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[25] 許海港. 施肥位置對(duì)蘋果生長(zhǎng)及氮素吸收利用的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2015. Xu Haigang. Effects of Root Layer Fertilization on Growth and the Nitrogen Uptake in Apple[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract)
[26] 張坤,尹小寧,劉小勇,等. 隴東旱地果園覆沙對(duì)蘋果樹蒸騰耗水及果實(shí)品質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(11):2755-2762. Zhang Kun, Yin Xiaoning, Liu Xiaoyong, et al. Effects of sand-covering on apple trees transpiration and fruit quality in dry land orchards of Longdong, Gansu[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2755-2762. (in Chinese with English abstract)
[27] 許海港,季萌萌,葛順峰,等. 不同水平位置施肥對(duì)‘嘎啦’蘋果15 N吸收、分配與利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(5):1366-1372. Xu Haigang, Ji Mengmeng, Ge Shunfeng, et al. Effect of different horizontal fertilizer placements on the characteristics of absorption, distribution and utilization of 15N by Gala/[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1366-1372. (in Chinese with English abstract)
[28] 韓明玉,張芳芳,張立新,等. 矮化中間砧富士蘋果初夏土施15N-尿素的吸收分配特性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2011,44(23):4841-4847. Han Mingyu, Zhang Fangfang, Zhang Lixin, et al. The absorption capacity and partitioning of15N to the major organs of ‘Fuji’ apple trees on M26 interstock using15N-labelled urea in early summer[J]. Scientia Agricultura Sinica, 2011, 44(23): 4841-4847. (in Chinese with English abstract)
[29] 趙林,姜遠(yuǎn)茂,彭福田,等. 蘋果園春季土施尿素的利用及其在土壤中的累積[J]. 園藝學(xué)報(bào),2009,36(12):1805-1809. Zhao Lin, Jiang Yuanmao, Peng Futian, et al. Studies on utilization and accumulation dynamics of spring soil15N-urea application in apple orchard[J]. Acta Horticulturae Sinica, 2009, 36(12): 1805-1809. (in Chinese with English abstract)
[30] 范亞寧,李世清,李生秀. 半濕潤(rùn)地區(qū)農(nóng)田夏玉米氮肥利用率及土壤硝態(tài)氮?jiǎng)討B(tài)變化[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008, 19(4):107-114. Fan Yaning, Li Shiqing, Li Shengxiu. Utilization rate of fertilizer N and dynamic changes of soil NO3--N in summer maize field in semi-humid area of Northwest China[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 107-114. (in Chinese with English abstract)
[31] 李世清,李生秀. 半干旱地區(qū)農(nóng)田生態(tài)系統(tǒng)中硝態(tài)氮的淋失[J]. 應(yīng)用生態(tài)學(xué)報(bào),2000, 11(2):240-242. Li Shiqing Li Shengxiu. Leaching loss of nitrate from semiarid area agroecosystem[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 240-242. (in Chinese with English abstract)
[32] Romic D, Romic M, Borosic J, et al. Mulching decreases nitrate leaching in bell pepper (L.) cultivation[J]. Agricultural Water Management, 2003, 60(2): 87-97.
[33] 蔣銳,郭升,馬德帝. 旱地雨養(yǎng)農(nóng)業(yè)覆膜體系及其土壤生態(tài)環(huán)境效應(yīng)[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018,26(3):317-328. Jiang Rui, Guo Sheng, Ma Dedi. Review of plastic film mulching system and its impact on soil ecological environment in China’s rainfed drylands[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 317-328. (in Chinese with English abstract)
[34] 上官宇先,師日鵬,李娜,等. 壟作覆膜條件下田間氨揮發(fā)及影響因素[J]. 環(huán)境科學(xué),2012,33(6):213-219. Shangguan Yuxian, Shi Ripeng, Li Na, et al. Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows[J]. Environmental Science, 2012, 33(6): 213-219. (in Chinese with English abstract)
[35] 王海寧,葛順峰,姜遠(yuǎn)茂,等. 施氮水平對(duì)五種蘋果砧木生長(zhǎng)以及氮素吸收、分配和利用特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(5): 1272-1277. Wang Haining, Ge Shunfeng, Jiang Yuanmao, et al. Effects of nitrogen fertilization on growth characteristics and absorption, distribution and utilization of NH415NO3of five apple rootstocks[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1272-1277. (in Chinese with English abstract)
[36] Kiba T, Kudo T, Kojima M, et al. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2010, 62(4): 1399-1409
[37] Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanism are the key to understanding production systems[J]. Journal of Experimental Botany, 2002, 53(370): 773-787.
[38] 王應(yīng)祥,廖紅,嚴(yán)小龍. 大豆適應(yīng)低磷脅迫的機(jī)理初探[J]. 大豆科學(xué),2003,22(3):208-211. Wang Yingxiang, Liao Hong, Yan Xiaolong. Preliminary studies on the mechanism of soybean in adaptation to low P stress[J]. Soybean Science, 2003, 22(3): 208-211. (in Chinese with English abstract)
Effects of nitrogen application level and sand mulching on15N-urea absorption, allocation and utilization of apple trees
Ren Jing1, Liu Xiaoyong1※, Han Fujun1, Li Jianming2, Peng Hai1
(1.,730070,; 2.,743400,)
In order toexplore the effect of groundcover management and nitrogen application level on15N-urea absorption, allocation and utilization of apple trees in Loess Plateau, and establish scientific basis for realizing reasonable nitrogen application, enhance utilization of nitrogen in semi-arid area, this research conducted a series of field experiments at apple breeding base in Jingning County, Gausu Province. Three-year-old ‘Fuji’ apple trees were used as materials. A split plot design was applied for this experiment, the main factors included conventional tillage (CK) and sand mulching (SM), and the sub-factors with two different nitrogen application levels of 5g15N-urea (N1) and 5g15N-urea + 75.5g urea (N2). Using15N isotope tracing technique, the15N abundance and total nitrogen of different plant organs were tested during June (fruit enlargement), August (new shoot stop growing), and October (before defoliation). The results indicated that groundcover management and nitrogen application levels improved the aboveground and underground biomass of apple trees to different extents, and nitrogen application was beneficial to the accumulation of aboveground and underground biomass under sand mulching condition in the late growth stage of apple tree. Groundcover management could enhance biomass accumulation of apple tree. Higher nitrogen application level (CKN2) could effectively increase the dry weight of root under conventional tillage, but the root growth rate of SMN1 was very rapidly before defoliation, and there was no significant difference between SMN1 and CKN2 (>0.05). The Ndff (percentage of nitrogen content of every organisms come from fertilizer nitrogen) of fruit, shoot, perennial branch, central trunk and coarse root were significantly affected by groundcover management and nitrogen application levels (<0.05), and the effect of their interactions significantly affected the Ndff of leaf, fruit, perennial branch, and fine root (<0.05). The accumulation effect of two factors interaction on Ndff of fruit was greater than perennial branch. In June and August, the Ndff of perennial branch and fine root which was the highest under sand mulching (SMN1), and there were 2.26%, 3.21% and 3.67%, 5.89%, respectively. The effect of two factors and their interactions extremely significantly affected the15N allocation rate of fruit (<0.01), and partially behaved significant (<0.05) or extremely significant effects (<0.01) on other organs. The storage organ was the largest15N utilization organ of apple tree, followed by vegetative organ and reproductive organ. During the whole growth stage, the utilization rate of15N was 3.38%-38.00%, which showed that sand mulching was greater than conventional tillage in groundcover management, and except October, high nitrogen application level was greater than low nitrogen level. Groundcover management significantly increased15N the utilization rate of apple trees (<0.05). However, the effect of increasing nitrogen application level on5N the utilization rate was not significant in most cases (>0.05). After comprehensive analysis, the low nitrogen application level (N1) and effective groundcover management (SM) under the experimental conditions which could not only promote the accumulation of shoot and total biomass of young trees, but also improve the efficiency of nitrogen utilization, thus optimizing the input of nitrogen fertilizer in agricultural ecosystems.
nitrogen; orchards; biomass; nitrogen utilization rate; nitrogen distribution rate; apple; groundcover management
任 靜,劉小勇,韓富軍,李建明,彭 海. 供氮水平與地面覆沙對(duì)蘋果幼樹15N-尿素吸收分配及利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):135-142. doi:10.11975/j.issn.1002-6819.2020.04.016 http://www.tcsae.org
Ren Jing, Liu Xiaoyong, Han Fujun, Li Jianming, Peng Hai. Effects of nitrogen application level and sand mulching on15N-urea absorption, allocation and utilization of apple trees[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 135-142. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.04.016 http://www.tcsae.org
2019-07-26
2019-11-22
國(guó)家自然科學(xué)基金(31560540,31860204);甘肅省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新專項(xiàng)(2019GAAS33);甘肅省水果產(chǎn)業(yè)技術(shù)體系和農(nóng)業(yè)部西北地區(qū)果樹科學(xué)觀測(cè)實(shí)驗(yàn)站(S-10-18)資助
任 靜,副研究員,博士,主要從事果樹營(yíng)養(yǎng)與生理生態(tài)研究。Email:mailrenjing@163.com
劉小勇,研究員,主要從事果樹營(yíng)養(yǎng)與生理生態(tài)研究。Email:liuxy6607@163.com
10.11975/j.issn.1002-6819.2020.04.016
S661.1
A
1002-6819(2020)-04-0135-08