999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于WT和STFT車輛啟動抖動特性時頻分析

2020-04-09 10:05:38王偉東
應用技術學報 2020年1期
關鍵詞:振動信號分析

王偉東

(泛亞汽車技術中心有限公司,上海 201206)

當前汽車市場競爭異常激烈,客戶對品牌認同度非常關鍵,其振動噪聲水平對品牌影響很大。如何提升整車噪聲、振動與聲振粗糙度(noise、vibration、harshness,NVH)性能,避免非預期的振動與噪聲問題一直是NVH工程師面臨的巨大挑戰。另一方面,為響應國家節能減排需求,汽車油耗與排放持續下降。為了滿足更加嚴苛的排放與油耗指標,不斷引入新的節油技術,也對NVH提出越來越多挑戰。自動起停系統作為一項節油技術,應用廣泛。然而自動起停過程中,由于車輛的熄火和重新啟動過程由程序控制,客戶會在非預期的情況下感受到發動機啟動引起的振動,控制不當容易給乘員帶來很強的不舒適感。

針對這一問題,豐田工程師分析了自動起停機理并采用高轉速啟動機和優化燃燒的方式降低振動[1]。夏罡臻等[2]對車輛啟動工況下的橫擺振動問題進行了解析,文中應用FFT變換對啟動過程中座椅導軌的橫向振動加速度曲線進行了分析,識別出了振動峰值頻率。石巖等[3]研究了動力總成懸置布置形式對啟動振動的影響,建立了仿真模型,比較了不同懸置布置對座椅導軌時域振動信號的影響。王道勇等[4]研究了發動機啟停時動力總成懸置系統的設計方法,比較了懸置沖擊度的時域曲線。從以上研究可以看出,啟停加速度信號分析主要使用時域分析和FFT對信號進行轉換后的頻域分析2種方法。然而從以上文章中的振動信號也可以看出,啟停工況的振動加速度隨時間快速變化,用時域分析和FFT并不能同時捕捉到信號的幅值和頻率特性。

本文提出一種全新的分析方法,同時應用WT和SFFT對啟停加速度信號進行分析,能夠準確提取抖動的幅值與發生時刻,這是信號處理和分析的有效工具[5],王峰等[6]已經在解決高速摩擦制動問題中進行了研究。應用該方法,在汽車早期開發中能夠快速識別出啟停抖動的NVH特性,以便能夠對軟硬件進行設計優化,提升啟動抖動性能。

1 啟停抖動過程動力學建模

根據發動機啟停過程的分析,建立發動機啟停過程系統的動力學模型:

[K]{u(t)}={P(t)}

(1)

式中:[M]為質量矩陣;[B]為另一質量矩陣;[K]為剛度矩陣;{u(t)}為位移向量;P(t)為隨時間變化的載荷。

因為啟停系統振動主要接受點為座椅導軌,本文重點分析其振動特性,其振動幅值隨時間變化,為瞬態過程。某車型啟動過程座椅導軌加速度測試輸出結果如圖1所示。

圖1 啟動過程座椅導軌加速度測試輸出結果

從測試結果可知,振動信號峰值發生在0.8 s,整個啟動過程加速度隨時間變化,為典型的非平穩信號。為了進一步分析需要,將該信號分析轉換到頻域,在頻域內結合模態信息來診斷問題。由于振動在整個時間歷程里幅值與周期會發生變化,傳統的傅里葉變換對信號的分析已不適用,本文應用短時傅里葉變換和小波變換相結合的方法,對振動信號進行分析。

2 短時傅里葉變換與小波變換分析

2.1 短時傅里葉變換

通常傅里葉變換要求信號是穩定的周期性信號。對于幅值隨時間變化的信號,需要對數據進行分割,通過連續變化窗函數來調整函數位置,進而得到信號的離散頻率空間值,看作近似的頻率變化。用短時傅里葉變換對結果進行轉換得到頻率值[7]。短時傅里葉變換基本公式如下:

(2)

式中:g(t-τ)e-jωt為積分核函數;e-jωt為限頻函數;g(t-τ)為限時函數;Gx(ω,τ)為t時間段,頻率為ω的信號頻率成分。通過連續變化窗函數來調整函數位置,得到一系列變化的時頻分析結果。

圖2 某信號的短時傅里葉變換分析結果

2.2 小波變換

小波變換廣泛應用于非穩態信號分析,則將信號分解為不同小波集合。小波變換過程為將一個實際信號,經過平移與縮放,變換為一個標準小波信號[8]。變換函數如下所示:

(3)

式中,m、n決定了諧波小波變換的尺度。對于啟停過程的振動信號x(t)相對尺度j進行各層分解,得到各層下的小波信號為:

(4)

w(m,n,τ)=X(ω)Wm,n(ω)

(5)

信號x(t)相對尺度j下的諧波小波變換過程如圖3所示。

圖3 小波變換過程

用小波變換對以上信號進行分析,信號轉換設置帶寬為256 Hz,最低頻率3.2 Hz,最高頻率50 Hz,小波分解為6層。圖4所示為同一信號采用小波分析的結果。

圖4 某信號小波分析結果

圖7 不同頻率短時傅里葉變換分析結果

3 應用實例分析

根據上述分析內容,驗證本文提出方法的有效性,應用振動信號采集平臺,對振動信號進行系列測試和分析。該振動采集系統采用西門子公司的8通道采集卡,配合Test.Lab采集軟件,PCB壓電式力傳感器,該傳感器有效工作頻率范圍為0~5 000 Hz,且有良好的低頻響應特性。由于啟停工況需要準確測量到5 Hz以上頻率,該傳感器低頻(5~20 Hz)特性能有效保證采集精度,如圖5所示。

圖5 采集測試系統及測點

以某款車為例,測量座椅抖動。加速度傳感器布置在座椅導軌處,信號采樣率1 kHz。測得座椅導軌處加速度如圖6所示;用不同參數對上述加速度信號進行短時傅里葉變換,比較不同參數對變換結果的影響中,如圖7所示。

圖6 座椅導軌處加速度測試結果

由圖6可知,座椅最大振動發生在重啟階段,最大振動時刻發生在3.5 s。該階段主觀評估有明顯抖動。

選用漢寧窗函數,移動步長為0.2 s,分辨率分別選擇0.2、0.5和1 Hz。從圖7分析結果可知,最大振動分別發生在3.29、3.23和3.01 s,采用步長0.2分析出的時刻與實際值最為接近。

最大振動時刻的頻譜圖如8所示,最大振動頻率為10 Hz,其中采用分辨率0.2 Hz和0.5 Hz提取的振動峰值接近,采用1 Hz帶寬提取幅值偏低。對相同加速度信號進行小波變換得到的頻譜圖如圖9所示。

圖8 振動信號分析結果

圖9 振動加速度頻譜圖

從中提取10 Hz小波圖,得到如圖10所示曲線。曲線峰值出現時刻為3.5 s,與時域曲線一致性保持良好。

圖10 振動3.5 s時刻頻譜圖

從上述分析結果可知,雖然時刻上有所偏差,應用短時傅里葉變換能夠有效提取峰值的振幅和頻率, 用小波分析可準確分析最大振動時刻。

4 結語

本文提出的用小波變換和短時傅里葉變換來識別啟動抖動問題的方法,可以有效分離出抖動的時刻、頻率和最大振幅。對某款車型啟動抖動進行了試驗測試,并對測試結果分別進行了小波變換和短時傅里葉變換,有效識別了該抖動信號的頻率和振幅及最大振動時刻,為進一步優化啟停振動過程提供了分析基礎。

猜你喜歡
振動信號分析
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
隱蔽失效適航要求符合性驗證分析
完形填空二則
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
電力系統不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
中立型Emden-Fowler微分方程的振動性
電力系統及其自動化發展趨勢分析
基于LabVIEW的力加載信號采集與PID控制
主站蜘蛛池模板: 亚洲国产欧美中日韩成人综合视频| 一级毛片在线免费视频| 国禁国产you女视频网站| 亚洲高清中文字幕在线看不卡| 美女被操91视频| 国产激情无码一区二区三区免费| 国产一国产一有一级毛片视频| 美女一级毛片无遮挡内谢| 91国语视频| 国产99久久亚洲综合精品西瓜tv| a级免费视频| 国产精品久久久久鬼色| 中文字幕波多野不卡一区| 日本免费高清一区| 欧美日在线观看| 在线免费观看AV| 中文字幕在线不卡视频| 亚洲国产成人精品一二区| 好吊妞欧美视频免费| 成年人午夜免费视频| www亚洲精品| 亚洲AV人人澡人人双人| 国产激情影院| 精品久久香蕉国产线看观看gif| 欧美一级一级做性视频| 一区二区三区毛片无码| 国产特一级毛片| 午夜人性色福利无码视频在线观看| 丰满人妻一区二区三区视频| 欧美不卡二区| 成AV人片一区二区三区久久| 国产亚洲欧美日韩在线观看一区二区| 婷婷综合色| 国产在线视频欧美亚综合| 蜜桃臀无码内射一区二区三区 | 国产一级妓女av网站| 欧美日韩精品在线播放| 亚洲国产成人超福利久久精品| vvvv98国产成人综合青青| 色综合久久综合网| 日韩二区三区| 久操线在视频在线观看| 四虎永久在线精品国产免费| 亚洲综合激情另类专区| 国产成人凹凸视频在线| 国产精品福利一区二区久久| 国产麻豆精品在线观看| 丁香六月综合网| 国禁国产you女视频网站| 国产伦精品一区二区三区视频优播 | 国产午夜一级毛片| 99在线国产| 国产二级毛片| jijzzizz老师出水喷水喷出| 九九视频免费看| 99re在线免费视频| 国产成人精品视频一区二区电影 | 久久大香伊蕉在人线观看热2| 丝袜美女被出水视频一区| 国产精品一区二区久久精品无码| 中国毛片网| 国产真实自在自线免费精品| 亚洲美女视频一区| 婷五月综合| 99热最新网址| 日韩在线播放中文字幕| 超清无码熟妇人妻AV在线绿巨人| 久久久精品无码一区二区三区| 国产在线精彩视频二区| 亚洲欧美精品一中文字幕| 欧美区一区二区三| 精品伊人久久久久7777人| 国产一二三区视频| 91人妻日韩人妻无码专区精品| 国产精品久久精品| 亚洲精选无码久久久| 亚洲精品日产AⅤ| 久久综合亚洲色一区二区三区| 国产精品偷伦视频免费观看国产| 亚洲第一成网站| 久久久久人妻一区精品色奶水| 四虎精品免费久久|