999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

寬皮柑橘貯藏用薄膜包裝機的設計與試驗

2020-03-03 01:08:14馬露暢史義闖
農業工程學報 2020年23期

陳 紅,馬露暢,萬 琛,鄭 杰,史義闖,周 健

寬皮柑橘貯藏用薄膜包裝機的設計與試驗

陳 紅,馬露暢,萬 琛,鄭 杰,史義闖,周 健

(1.華中農業大學工學院,武漢 430070;2.農業農村部長江中下游農業裝備重點實驗室,武漢 430070;3. 國家柑橘保鮮技術研發專業中心,武漢 430070)

寬皮柑橘在入庫貯藏前需要用薄膜袋包裝以延長貨架期,為了代替人工操作實現自動包裝,該研究打破傳統的套袋包裝模式,采用上、下雙層膜,結合熱封切機構,設計了一種新型的4邊封口制袋包裝機。該機主要由雙排進料裝置、送膜裝置、封切升降裝置、組合封切裝置組成。利用封合后的前膜帶動后膜的方式送膜,避免了薄膜撕裂;采用半球形結構承載寬皮柑橘,可實現多排多列果實的連續制袋包裝;通過ADAMS軟件對以曲柄滑塊機構為主體的升降裝置進行運動學分析,配合內置彈簧刀架中彈簧的壓縮與放松,在升降裝置不停止的情況下,研究電機轉速與熱封時間的關系,確定電機轉速為20 r/min。以溫州蜜柑為對象進行試驗,結果表明,寬皮柑橘薄膜包裝機的包裝率為98.6%,優質率為93.3%,包裝效率為97.6個/min,實現了貯藏用果實的自動套袋包裝。研究結果可為寬皮柑橘貯藏用薄膜包裝機的研制與優化提供參考。

貯藏;包裝;熱封;薄膜;柑橘

0 引 言

中國的寬皮柑橘產量和栽培面積均居世界第一位[1],寬皮柑橘產業是國內南方農村經濟支柱產業。近年全國寬皮柑橘種植面積和產量持續增加,2018年種植面積和產量分別為260萬hm2和4 000萬t[2-3]。寬皮柑橘套袋包裝貯藏可以降低呼吸強度、減少失重,同時避免腐爛果的交叉感染,有效延長寬皮柑橘的貯藏期[4-9]。目前,市場上的薄膜包裝機多用于果蔬銷售環節的商品化包裝,技術及裝備相對成熟[10-12]。現有的包裝機使用的包裝材料大多為具有較高阻隔性的雙向拉伸聚丙烯(Biaxially Oriented Polypropylene,BOPP)薄膜和聚氯乙烯(Polyvinyl Chloride,PVC)薄膜,厚度一般為0.07~0.20 mm,用于食品[13-16]和果蔬[17-22]貨架期的保鮮。寬皮柑橘長期處于這種包裝中會因缺氧造成無氧呼吸,加速腐爛,不利于貯藏保鮮,不能用于貯藏包裝。

貯藏用包裝袋常用0.01 mm或0.02 mm厚的聚乙烯(Polyethylene,PE)膜,質地較軟,抗拉強度低,采用通用包裝機包裝會因拉力過大造成薄膜撕裂。馬義東等[23]研制了一款水培生菜自動縱向包裝裝置,實現水培生菜的自動定向、裝盒、封膜,但其單次包裝時間為10.5 s,效率較低,并依賴現有的包裝盒。鄭兆啟等[24-26]設計了一種負壓式生鮮食品包裝機,該包裝機由橫封裝置、切斷機構、送膜機構和縱封裝置等構成,采用0.01 mm的保鮮膜作為包裝材料,能夠一次性完成物料的輸送、封膜包裝作業,可適用多種規格生鮮食品的包裝,缺陷是包裝效率較低,難以滿足寬皮柑橘貯藏包裝的要求。薄膜材料易撕裂的特點使得寬皮柑橘貯藏自動包裝難以實現。目前,寬皮柑橘的包裝主要依賴人工,勞動強度大,效率低,不能滿足現代農業的需求。

為了解決薄膜在包裝過程中易撕裂的問題,本文采用上、下雙層膜,結合熱封熱切裝置,以0.02 mm的PE薄膜為包裝材料,設計了一種薄膜制袋包裝機,該機使用2條橫封刀與5條縱封刀,采用4邊封口的方式,同時對2排4列寬皮柑橘進行薄膜包裝,增大送膜時薄膜的受力面積,可實現自動制袋包裝。

1 整機結構和工作原理

寬皮柑橘薄膜包裝機由多排進料裝置、送膜裝置、封切升降裝置、封切裝置、寬皮柑橘輸送裝置、殘膜收集裝置和控制柜等組成,可一次性完成寬皮柑橘的進料、均布、包裝等工作,具體結構如圖1所示。

寬皮柑橘包裝工藝路線如圖2所示,包裝機工作時,寬皮柑橘放置于儲料斗內,通過帶隔板的上料傳送帶將寬皮柑橘送到多排進料裝置,進料裝置的出口處于上下2層包裝薄膜之間,活動板翻轉,使得寬皮柑橘滑落到輸送裝置上的載料碗內,完成進料。寬皮柑橘落下時,同時將下薄膜一起壓入載料碗內,此時寬皮柑橘處于2層膜之間。輸送裝置將被上下2層薄膜包裹的寬皮柑橘輸送到縱封工位后停止運動,隨后升降裝置驅使封切裝置的縱封部分向下運動進行縱向封切,當寬皮柑橘運動到橫封工位時,橫封部分進行橫向封切,完成單果4邊成型包裝。

1.儲料斗 2.上料輸送帶 3.多排進料裝置 4.送膜裝置 5.封切升降裝置 6.封切裝置 7.寬皮柑橘輸送裝置 8.控制柜 9.殘膜收集裝置

圖2 包裝工藝流程圖

2 關鍵部件設計

2.1 雙排進料裝置

雙排進料裝置的作用是為輸送裝置同時提供2排4列寬皮柑橘以提高效率。該裝置由底板、隔板、活動板、直流電機及傳感器組成(圖3),設有2個出口,出口大小為120 mm×100 mm,活動板打開狀態下與底板呈60°夾角,形成出口2,此時底板與活動板的最小間隙min為109.92 mm,可滿足寬皮柑橘通行。

初始狀態下,活動板閉合,從傳送帶來的第一排寬皮柑橘從出口1落入輸送裝置的載料碗中,傳感器檢測到寬皮柑橘通過后,延遲0.5 s,打開活動板,由傳送帶來的第二排寬皮柑橘從出口2落入輸送裝置的載料碗中,傳感器檢測到第二排寬皮柑橘通過,活動板閉合,裝置回歸初始狀態,完成1次2排進料。其中,活動板需在第一個寬皮柑橘通過出口2后才能打開,傳感器在感應到寬皮柑橘后需延遲打開活動板,忽略摩擦力的作用,則傳感器感應到時寬皮柑橘的速度

式中1為傳感器感應到時寬皮柑橘的速度,m/s;為重力加速度,m/s2;為傳感器與進料裝置最高點的垂直距離,m。

寬皮柑橘經感應后至通過出口1的時間滿足

式中為寬皮柑橘滾落的加速度,m/s2;為寬皮柑橘滾入進料裝置到被傳感器感應到的時間,s。

根據上式解得為0.3 s,考慮柑橘通過的時間,取延遲啟動設置為0.5 s。

1.出口1 2.隔板 3.出口2 4.傳感器 5.活動板 6.固定板 7.底板

2.2 送膜裝置和輸送裝置的設計

送膜裝置的主要功能是為寬皮柑橘包裝持續提供薄膜材料。主要由上下2層薄膜和牽引輥組成。送膜裝置依靠寬皮柑橘對下層薄膜的壓力和封合后上下2層薄膜粘在一起的牽引力提供動力,隨著輸送裝置移動完成薄膜牽引(圖4)。

1.上膜 2.下膜 3.載料板 4.回型槽 5.載料碗

如圖5所示,輸送裝置的主要功能是將載料碗中的寬皮柑橘輸送到封切工位,最后將完成包裝的成品輸出。輸送裝置主要由輸送鏈條、鏈輪、軸、載料板、載料碗和鏈托等組成。載料板與輸送鏈通過螺釘連接,載料碗安裝在載料板上。寬皮柑橘果徑一般為60~90 mm,為防止寬皮柑橘在輸送過程中發生碰撞擠壓,2個載料碗之間的距離為110 mm。載料碗為半圓弧型,可將寬皮柑橘限制在一定范圍之內。寬皮柑橘落入載料碗內,下層薄膜隨寬皮柑橘下落凹陷在載料碗內,若載料碗深度過深,薄膜褶皺過大,在熱切刀切斷薄膜時,下層薄膜會產生較大位移,導致封口不完整,故載料碗深度取寬皮柑橘平均果徑75 mm的35%。在載料板的四周,加工有回形槽,用于安裝回形發泡硅膠,回形發泡硅膠與載料板上的槽位采用過盈配合,以保證在鏈條轉動過程中不會滑出。鏈托采用冷軋鋼條制成,具有較強的剛性,不易變形,鏈托支撐在鏈條的套筒處,用來確保輸送鏈條的水平。

1.回型槽 2.載料碗

如圖6所示,完成縱、橫4邊封切后的薄膜與其他薄膜分離,包裹著寬皮柑橘隨輸送裝置一起運動,不受拉力的作用;而完成縱切即將橫切的薄膜在隨寬皮柑橘輸送裝置向前運動的同時,拉動未封切的薄膜一起運動,在薄膜與寬皮柑橘接觸的邊界產生最大拉力,最大拉力以近似均布載荷的方式作用在薄膜上

式中F為作用在薄膜上拉力的總力,N;q為作用在薄膜上的均布載荷,N/m;l為薄膜寬度,m。

作用于薄膜上的力由輸送裝置提供:

式中為轉軸扭矩,N·m;為鏈輪半徑,m。

轉軸扭矩由電機提供

式中為電機功率,kW;為電機轉速,r/min。

代入參數,為0.75 kW;為15 r/min;為0.137 m,得出最大拉力為68.3 N。

2.3 封切裝置的設計

封切裝置由組合刀組和彈簧刀架組成,其作用是對包裹寬皮柑橘的上下2層薄膜進行封合和切斷,完成寬皮柑橘的薄膜包裝。封切完成后,輸送裝置帶動寬皮柑橘向前運動,隨寬皮柑橘運動的前膜帶動后膜進行送膜,前膜與后膜之間產生的拉力作用于薄膜的橫截面上,薄膜易發生撕裂。前期試驗表明,薄膜寬度越大,薄膜越難撕裂,因此,對多列水果同時進行封切包裝以增大列向薄膜寬度,同時提高包裝效率。

2.3.1 組合刀組

組合刀組由多排多列熱切刀組成,可同時對多排多列的薄膜進行熱封切,為保證封切質量,避免薄膜撕裂,通過預試驗得到薄膜抗拉強度(N)與薄膜寬度(,mm)之間的關系

計算薄膜工作過程中受到的最大拉力,由此確定薄膜寬度以及組合刀組的列數。

將式(4)中求得的最大拉力68.3 N代入式(7),當薄膜寬度>410 mm時,薄膜不會出現撕裂情況,寬皮柑橘直徑與包裝所需薄膜的長度約為1:1.2,寬皮柑橘的直徑一般為60~90 mm,單個寬皮柑橘包裝所需薄膜長度不超過110 mm,考慮到樣機大小以及包裝余量,封切裝置采用2排橫封,5列縱封的設計,同時對2排4列的寬皮柑橘進行熱封切,薄膜寬度取450 mm。封切裝置主要由封切架、彈簧刀架、加熱片、橫封切刀及縱封切刀組成(圖7)。前2排熱切刀用于橫封,后5列熱切刀用于縱封,每一個工作循環可進行2排橫封,5列縱封,2個工作循環之后,便可以完成2排4列共8個寬皮柑橘的薄膜包裝。

1.封切架 2.彈簧刀架 3.加熱片 4.橫封切刀 5.縱封切刀

2.3.2 彈簧刀架

封切裝置的封切效果受封切溫度、封切時間以及封切壓力的影響。其中,封切溫度可通過溫控器控制。封切壓力的變化對封切效果影響較小,無需對封切壓力進行精準控制,但封切壓力不足時會造成熱切刀沿薄膜整個寬度貼合不均,貼合緊密處的薄膜局部溫度迅速升高,熔化的同時被熱切刀擠向兩側,冷卻后形成封口;貼合不良處的薄膜因環境溫度過高從中間向兩側熔化,冷卻后形成缺口[27]。

封切裝置由2排橫封和5列縱封組成,由于加工精度與安裝誤差,難以保證7條熱切刀的底部處于同一平面內,封切過程中,會出現熱切刀與薄膜貼合不良的情況。因此,為保證封切效果與封口強度,采用彈簧刀架,工作時通過壓縮彈簧變形來保證熱切刀與薄膜以及硅膠沿整行或整列保持均勻、一致的接觸,并提供熱封切過程需要的足夠的正壓力(圖8)。在封切過程中,封切裝置下降,熱切刀接觸薄膜后,封切裝置繼續下降,彈簧開始壓縮,封切裝置到達最低點后回升,彈簧放松,待完全放松后,熱切刀與薄膜分離,因此,熱切刀與薄膜接觸的時間(即熱封時間)為彈簧的壓縮時間。

1.固定架 2.壓縮彈簧 3.活動架 4.限位桿

2.4 封切升降裝置的設計

升降裝置的主要作用是帶動封切裝置做周期性的上下運動,作為包裝機的核心部件,影響包裝效率與包裝質量。為保證上下薄膜形成完整的封口,熱切刀需將薄膜壓至發泡硅膠上并保持0.5 s的接觸。由于彈簧的作用,熱切刀在升降裝置未降至最低點時便已接觸到薄膜,升降裝置帶動封切裝置繼續下行,壓縮彈簧,彈簧提供熱封切所需的正壓力,升降裝置降至最低點后回升,彈簧放松,待彈簧完全放松后,熱切刀與薄膜分離。為保證封切效率,升降裝置在整個升降過程中不停頓,熱切刀與薄膜接觸時間為從彈簧開始壓縮至彈簧完全放松的時間。封切時間決定著封切質量,過長會導致薄膜粘刀、拉絲等現象;過短會導致封切效果不穩定,切口不完整[28]。為保證封切質量,需對升降裝置進行運動學仿真,保證封切時間的精準。

封切時,只有2/3高度的寬皮柑橘高于輸送裝置的載料碗,考慮寬皮柑橘大小的差異,取升降裝置的提升高度為60 mm,即升降裝置的行程為60 mm。由于要求升降裝置行程短,響應快,故采用曲柄滑塊機構,取曲柄長度為30 mm。根據預仿真結果,彈簧壓縮時間段處于曲柄滑塊機構的回程點附近,速度較低,連桿長度對其影響較小,考慮整體機構大小,取連桿長度為100 mm。利用ADAMS建立曲柄滑塊機構的參數化模型[29-30],從而獲得不同結構參數下切刀運動曲線。選取封切裝置切刀最低點到輸送裝置上硅膠之間的切割距離(mm)為影響指標,其變化如圖9所示,切刀最低點到硅膠之間的切割距離在1.0 s達到最小值,出現負值說明切刀與硅膠接觸,彈簧最大壓縮量為5 mm,提供封切壓力的同時對加工誤差以及裝配誤差進行補償,曲線與0刻度線的2個交點之間的時間即為熱封時間。

注:t為熱封時間。

為保證熱封時間為0.5 s,改變升降裝置中電機轉速,其速度變化對熱封時間的影響如圖10所示。隨著電機轉速的增大,熱封時間呈線性降低,當電機轉速在20 r/min時,熱封時間為0.48 s,故取電機轉速為20 r/min。

圖10 電機轉速對熱封時間的影響

封切升降裝置運行時,帶動升降裝置上下運動,為保證設備穩定、安全的運行,需對該機構進行等效力學分析(圖11),選取合適的電機扭矩。

對簡化后的曲柄滑塊機構進行力學分析,已知曲柄長度(m),曲柄與豎直方向的夾角為(°),連桿長度為(m),連桿與豎直方向的夾角為(°),滑塊受力為(N),對加工裝配后的封切裝置進行實際稱量,封切裝置質量15 kg,即應為150 N。

對曲柄滑塊機構進行受力分析可知,連桿受到的軸向力P(N)為:

曲柄的扭矩1(N·m)為:

其中

由以上公式可得:

注:M1為電機扭矩;m1為電機力臂;α為曲柄與豎直方向的夾角;R為曲柄長度;PAB為連桿受到的壓力;L為連桿長度;β為連桿與豎直方向的夾角;P為滑塊受力。

通過建立等效力學模型,分析可得曲柄與OB垂直時,即當為90°時,傳動角最小,此時曲柄所需的轉矩最大,由式(15)可得,曲柄所需最大轉矩1為3.74 N·m。根據寬皮柑橘薄膜包裝一體機封切裝置的工作時間安排,選用24 V、轉速20 r/min和轉矩為4.5 N·m直流渦輪蝸桿減速電機。

3 樣機試制及試驗驗證

3.1 試驗條件

樣機試驗于2020年6月在華中農業大學機電工程訓練中心進行,選取5組每組150個果徑為60~90 mm且無機械損傷的溫州蜜柑(寬皮柑橘)為試驗材料,包裝材料為厚度為0.02 mm的PE薄膜。

3.3 試驗方法及試驗指標

將每組150個溫州蜜柑放入設備的儲料斗,采用寬皮柑橘薄膜包裝機進行單果包裝,熱封切溫度為150 ℃,熱封切時間為0.5 s,觀察并記錄設備的包裝情況。

包裝率、包裝效率以及包裝優質率是衡量包裝機質量的重要指標。包裝率是指包裝后能達到包裝要求(即寬皮柑橘的縱封和橫封都能順利完成,且熱封后封痕完整,封切處無明顯開口,封口抗拉強度較好)占總柑橘數的比例。包裝率(1,%)的計算公式為

包裝效率(2,個/min)體現包裝機的工作效率,計算公式為

優質率是指包裝后能達到優質包裝(即在達到包裝要求的基礎上,封痕清晰,與非封切薄膜邊界明顯,封口處無開口,封口抗拉強度高于薄膜抗拉強度)的柑橘占總柑橘的比重。優質率(3,%)的計算公式為

式中1為包裝機完成一組包裝試驗,寬皮柑橘包裝后達到包裝要求的數量;2為包裝機完成一組包裝試驗,寬皮柑橘包裝后包裝優良的數量;為包裝機完成一次組包裝試驗所用的寬皮柑橘數量;為完成一組試驗所需時間,min。

3.4 試驗結果及分析

試驗結果如表1所示,包裝機完成寬皮柑橘的包裝,包裝成功率平均為98.6%,優質率平均為93.3%,包裝效率平均為97.6個/min。在試驗的過程中,物料輸送流暢,執行機構運行平穩,各機構協調性良好,整機包裝作業效果良好,樣機包裝后的樣品效果如圖12所示。

表1 包裝機包裝試驗結果

圖12 樣機包裝效果

由試驗觀察,包裝失敗的情況主要為熱切刀將薄膜切開后,上下薄膜并未封合,大多發生在寬皮柑橘果徑較大的個體處。果徑較大的寬皮柑橘,需要較多的薄膜,產生與周圍寬皮柑橘爭搶薄膜的情況,導致寬皮柑橘出現懸空的情況,熱切刀將薄膜切開后,寬皮柑橘帶動下層薄膜向載料碗內收縮,使得封口錯位,出現未封合現象。為此,在寬皮柑橘收獲的條件允許的情況下,建議按果徑大小進行簡單分級,便于采用不同的薄膜寬度,保證達到較高的包裝率。

4 結 論

1)研制了一種能對寬皮柑橘進行快速薄膜包裝的機器,該機器采用上下雙層膜、4邊封口的方式,同時對2排4列水果進行包裝,實現連續包裝,包裝效果好。

2)設計了封切裝置的刀架,使得封切過程中熱切刀與薄膜以及硅膠充分接觸,并以彈簧保證其正壓力,確保封切效果的穩定。

3)樣機試驗表明,樣機運行穩定,包裝平均成功率為98.6%,優質率為93.3%,包裝速度為97.6個/min,滿足寬皮柑橘薄膜包裝要求。

[1]沈兆敏. 我國柑橘生產現狀及未來發展預測[J]. 果農之友,2019(2):1-4.

Shen Zhaomin. Current situation and future development forecast of citrus production in China[J]. Friends of Fruit Growers, 2019(2): 1-4. (in Chinese with English abstract)

[2]王劉坤,祁春節. 中國柑橘主產區的區域比較優勢及其影響因素研究:基于省級面板數據的實證分析[J]. 中國農業資源與區劃,2018,39(11):121-128.

Wang Liukun, Qi Chunjie. Regional comparative advantage of major citrus producing areas in China and its influencing factors: An empirical analysis based on provincial panel data[J]. China Agricultural Resources and Regionalization, 2018, 39(11): 121-128. (in Chinese with English abstract)

[3]郭文武,葉俊麗,鄧秀新. 新中國果樹科學研究70年:柑橘[J]. 果樹學報,2019,36(10):1264-1272.

Guo Wenwu, Ye Junli, Deng Xiuxin. Scientific research on fruit trees in new China: 70 years as citrus[J]. Journal of Fruit Trees, 2019, 36(10): 1264-1272. (in Chinese with English abstract)

[4]李富軍,張新華,孫希生,等. 包裝厚度對長把梨貨架期間CO2傷害的影響[J]. 農業工程學報,2009,25(2):290-293.

Li Fujun, Zhang Xinhua, Sun Xisheng, et al. Effects of different package thickness on carbon dioxide injury to pears(C.V.changba) during shelf life [J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2009, 25(2): 290-293. (in Chinese with English abstract)

[5]陳發河,吳光斌,李趁粉. 薄膜氣調包裝對枇杷果實冷藏期間呼吸和品質性狀的影響[J]. 農業工程學報,2003,19(5):147-151.

Chen Fahe, Wu Guangbin, Li Chenfen. Effects of modified atmosphere packaging on respiration and quality attributes of loquat fruits during cold storage[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2003, 19(5): 147-151. (in Chinese with English abstract)

[6]李家政,畢大鵬. 不同保鮮膜包裝對蜜柚冷藏效果和貨架品質的影響[J]. 農業工程學報,2010,26(增刊1):315-319.

Li Jiazheng, Bi Dapeng. Influence of different film packaging on storage and shelf-life quality of pumelo fruit[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.1): 315-319. (in Chinese with English abstract)

[7]陳守江,張慜. 單果真空袋包裝處理對冷藏酥梨品質的影響[J]. 農業工程學報,2010,26(6):363-367.

Chen Shoujiang, Zhang Min. Effects of individual packaging using vacuum bag on ‘Suli’ pear quality during cold storage[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2010, 26(6): 363-367. (in Chinese with English abstract)

[8]李寧,閻瑞香,王步江. 不同包裝方式對白靈菇低溫保鮮效果的影響[J]. 農業工程學報,2011,27(7):377-382.

Li Ning, Yan Ruixiang, Wang Bujiang. Effects of different package methods on quallity ofduring cold storage[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2011, 27(7): 377-382. (in Chinese with English abstract)

[9]Mahajan B V C, Singh N P, Mahesh Kumar. Effect of different packaging films on shelf life and quality of pear fruits under super market conditions[J]. Hortflora Research Spectrum, 2013, 70(2): 309-312.

[10]孔凡真. 我國食品包裝機械行業的差距與前景[J]. 中國包裝,2012,32(2):7-10.

Kong Fanzhen. The gap and prospect of food packaging machinery industry in China[J]. Chinese Packaging, 2012, 32(2): 7-10. (in Chinese with English abstract)

[11]吳超. 我國包裝機械現狀及發展趨勢[J]. 中國包裝工業,2015(7):58.

Wu Chao. Current situation and development trend of packaging machinery in China[J]. China Packaging Industry, 2015(7): 58. (in Chinese with English abstract)

[12]劉東紅,呂飛,葉興乾. 食品智能包裝體系的研究進展[J].農業工程學報,2007,23(8):286-290.

Liu Donghong, Lv Fei, Ye Xingqian. Overview on food intelligent packaging system[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2007, 23(8): 286-290. (in Chinese with English abstract)

[13]雷立雨. 盒式連續氣調包裝機的研究設計[D]. 北京:中國農業機械化科學研究院,2016.

Lei Liyu. Research and Design of Box-type Continuous Modified Atmosphere Packaging Machine[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2016. (in Chinesewith English abstract)

[14]陳麗敬. 全自動小顆粒狀物料高速小袋包裝的研究與設計[D]. 江蘇:江蘇大學,2012.

Chen Lijing. Research and Design of Automatic High-speed Small Bag Packaging for Small Granular Materials[D]. Jiangsu: Jiangsu University, 2012. (in Chinese with English abstract)

[15]徐勤超,陳紅,潘海兵,等. 球形水果塑料發泡網套包裝機設計與試驗[J]. 農業工程學報,2019,35(19):56-61.

Xu Qinchao, Chen Hong, Pan Haibing, et al. Design and test of foam net packing machine for spherical fruit[J]. Transactions of the Chinese Society ofAgricultural Engineering (Transactions of the CSAE), 2019, 35(19): 56-61. (in Chinese with English abstract)

[16]裘升東,俞祥木,謝成梁. 紗布片包裝機設計分析[J]. 機械設計與研究,2019,35(3):189-192.

Qiu Shengdong, Yu Xiangmu, Xie Chengliang. Design and research of gauze sheet packing machine[J]. Mechanical Design and Research, 2019, 35(3): 189-192. (in Chinese with English abstract)

[17]吳雙. 果蔬自動包裝機的設計與開發[D]. 浙江:浙江農林大學,2014.

Wu Shuang. Design and Development of Automatic Packaging Machine for Fruits and Vegetables[D]. Zhejiang: Zhejiang A&F University, 2014. (in Chinese with English abstract)

[18]Chang Kuo-hsing. Fruit-packaging machine 6185915[P]. 2001-02-13.

[19]Ishikawa Shinji. Packaging machine and packaging method 9957069[P]. 2018-05-01.

[20]Multivac seep haggenmueller gmbh & co, kg. Packing Machine 2010218792[P]. 2010-09-02.

[21]Mondo servizi s.r.l. Frame for a packaging machine[P]. US: 2015052856, 2015-02-26

[22]Ishida co, ltd. Packing machine 2016194100[P]. 2016-07-07.

[23]馬義東,王明輝,崔永杰,等. 水培生菜自動縱向包裝裝置設計與試驗[J]. 農業機械學報,2019,50(9):113-121.

Ma Yidong, Wang Minghui, Cui Yongjie, et al. Design and test of automatic machine for hydroponic lettuce longitudinal packing[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2019, 50(9): 113-121. (in Chinese with English abstract)

[24]鄭兆啟. 負壓式生鮮食品包裝機關鍵部件設計與試驗研究[D]. 北京:中國農業大學,2017.

Zheng Zhaoqi. Design and Experimental Study on Key Parts of Negative Pressure Fresh Food Packaging Machine[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[25]鄭兆啟,馬季威,杜志龍,等. 負壓式生鮮食品包裝機設計與試驗[J]. 農業機械學報,2018,49(1):344-351.

Zheng Zhaoqi, Ma Jiwei, Du Zhilong, et al. Design and experiment on fresh food packing machine with negative pressure[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2018, 49(1): 344-351. (in Chinese with English abstract)

[26]鄭兆啟,李樹君,王冰,等. 鮮切果蔬包裝機輸送機構仿真與試驗[J]. 農業機械學報,2016,47(7):252-258.

Zheng Zhaoqi, Li Shujun, Wang Bing, et al. Simulation and experiment on conveying mechanism of fresh-cut fruit and vegetable packaging machine[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2016, 47(7): 252-258. (in Chinese with English abstract)

[27]潘健,張燕飛,張和平. 復合包裝膜的熱封性能判定及影響因素分析[J]. 包裝與食品機械,2020,38(2):70-72.

Pan Jian, Zhang Yanfei, Zhang Heping. Determination of heat sealing performance of composite packaging film and analysis of influencing factors[J]. Packaging and Food Machinery, 2020, 38(2): 70-72. (in Chinese with English abstract)

[28]韓占華,郭飛. 自動化在包裝機械中的應用和展望[J]. 包裝與食品機械,2011,29(3):49-52.

Han Zhanhua, Guo Fei. Application and prospect of automation in packaging machinery[J]. Packaging and Food Machinery, 2011, 29(3): 49-52. (in Chinese with English abstract)

[29]鄭兆啟,李樹君,馬季威,等. 果蔬包裝機凸輪連桿式切斷機構運動分析與優化[J]. 農業機械學報,2016,47(S1):374-379.

Zheng Zhaoqi, Li Shujun, Ma Jiwei, et al. Motion analysis and optimization of cam-link cutting mechanism of fruit- vegetable packaging machine[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2016, 47(S1): 374-379. (in Chinese with English abstract)

[30]楊傳民,劉銘宇,汪浩,等. 給袋式包裝機取袋機構運動學分析[J]. 農業機械學報,2013,44(S2):161-166.

Yang Chuanmin, Liu Mingyu, Wang Hao, et al. Kinematics analysis of bag-taking mechanism in bag-delivering packaging machine[J]. Transactions of the Chinese Societyfor Agricultural Machinery, 2013, 44(S2): 161-166. (in Chinese with English abstract)

Design and experiment of film packaging machine for

Chen Hong, Ma Luchang, Wan Chen, Zheng Jie, Shi Yichuang, Zhou Jian

(1.,,430070,; 2.430070,; 3.,430070,)

Citrusneed to be packaged in the film bags before the storage, particularly on the type of. The water permeability of thin film is normally used to monitor the water evaporation and gas composition inside the package, aiming to extend the long shelf life of. In this study, a novel automatic packaging machine was proposed for the storage of, using the upper and lower double-layer films, combined with the heat sealing and edge cutting mechanism, in order to replace the traditional bagging packaging mode in the manual operation. A four-side sealing bag making/packaging machine was also designed for easy operation in the daily life. Six kinds of devices mainly included a multi-row feeding device, aconveying device, a sealing and cutting lifting device, a combined sealing and cutting device, a film feeding device, and a residual film collecting device. The sealed front film was used to drive the back film in the feeding of film. The relationship between the tensile strength of films and the film width was obtained in the pre-experimental analysis. The optimal value of film width was selected to avoid the film tearing during the working process. The hemispherical loading structure can be used to realize the continuous bag packaging in multiple rows and columns for. The multi-row feeding device was integrated with the various sensors and motors, thereby to implement the flip of movable plates. Two rows of citrus were operated in one feeding stage. The chain transmission and support were adopted in the citrus conveying device to transport the citrus among each station. The combined sealing and cutting devices were equipped with two cross-cutting knives and five longitudinal cutting knives, where simultaneously sealing and cutting two rows and four columns of citrus. Its built-in spring knife holder can ensure the tightness of hot cutting knife and the film during the sealing and cutting process. A connection device was set to provide the positive pressure that required for sealing and cutting, while to compensate the error of processing and assembly. A crank slider mechanism was selected for the sealing and cutting lifting device. An ADMAS software was used to carry out the kinematics analysis of lifting device, where the crank slider mechanism served as the main body, whereas the compression and relaxation of the spring in the built-in spring tool holder as the device without stopping. The relationship between the motor speed and the heat sealing time was also established in the two configurations. The motor speed was finally determined to be 20 r/min. Taking the Wenzhou mandarin orange as the test object, the case study demonstrated that the packaging rate of the citrus film packaging machine was 98.6%, the quality rate was 93.3%, and the packaging speed was 97.6 pieces/min, indicating the automatically mechanized bagging of fruits for storage. The findings can provide a sound reference for the development and optimization of the film packaging machine for the storage of.

storage; packing; heat seal; film;

陳紅,馬露暢,萬琛,等. 寬皮柑橘貯藏用薄膜包裝機的設計與試驗[J]. 農業工程學報,2020,36(23):317-323.doi:10.11975/j.issn.1002-6819.2020.23.037 http://www.tcsae.org

Chen Hong, Ma Luchang, Wan Chen, et al. Design and experiment of film packaging machine for[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 317-323. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.037 http://www.tcsae.org

2020-07-19

2020-11-01

中央高校基本科研業務費專項基金資助項目(2662019PY064);國家現代柑橘產業技術體系專項(CARS-27)

陳紅,博士,副教授,主要從事水果生產機械化技術與裝備研究。Email:chenhong@mail.hzau.edu.cn

10.11975/j.issn.1002-6819.2020.23.037

TP23

A

1002-6819(2020)-23-0317-07

主站蜘蛛池模板: 国产无码高清视频不卡| 国产免费久久精品99re不卡| 欧美成人免费午夜全| 欧美国产在线一区| 欧美国产日韩在线| 中文字幕在线看视频一区二区三区| 无码视频国产精品一区二区| 3D动漫精品啪啪一区二区下载| 91系列在线观看| 色综合天天综合中文网| 理论片一区| 四虎在线观看视频高清无码| 理论片一区| 日本黄色a视频| 国产在线日本| 国产成人8x视频一区二区| 中文字幕欧美日韩| 亚州AV秘 一区二区三区| 欧美三级自拍| 污网站在线观看视频| 免费在线看黄网址| 九月婷婷亚洲综合在线| 欧美性猛交一区二区三区| 毛片国产精品完整版| 真实国产乱子伦高清| 高清精品美女在线播放| 欧美日韩第三页| 欧美成人午夜在线全部免费| 国产簧片免费在线播放| 日本在线亚洲| 成人永久免费A∨一级在线播放| 亚洲福利视频一区二区| 日韩a级毛片| 亚洲av色吊丝无码| 国产无码网站在线观看| 亚洲国产成熟视频在线多多| 亚洲a级在线观看| 呦女亚洲一区精品| 亚洲天堂福利视频| 国产农村1级毛片| 国产亚洲精品91| 欧美日韩一区二区在线播放| 久久五月天国产自| 欧美高清三区| 直接黄91麻豆网站| 国产欧美日韩精品第二区| 久久精品国产精品青草app| 免费一级成人毛片| 国产一级裸网站| 久久精品一品道久久精品| 国产成人高清精品免费| 又爽又大又黄a级毛片在线视频 | 又黄又爽视频好爽视频| 亚洲第一成年网| 玖玖精品视频在线观看| 91欧洲国产日韩在线人成| 国产视频一区二区在线观看| 免费A级毛片无码免费视频| 国产精品亚洲精品爽爽| 日韩欧美国产中文| 国产欧美精品专区一区二区| 亚洲欧美日韩高清综合678| 中文字幕在线日本| 日韩成人在线网站| 国产极品美女在线观看| 97久久免费视频| 亚洲精品无码抽插日韩| 久久这里只有精品国产99| 国产成人凹凸视频在线| 欧美色丁香| 亚洲三级片在线看| 国产麻豆aⅴ精品无码| 色婷婷亚洲十月十月色天| 在线观看国产精品一区| 久久夜夜视频| 亚洲欧美极品| 狠狠做深爱婷婷综合一区| 国产a v无码专区亚洲av| 毛片大全免费观看| 国产又大又粗又猛又爽的视频| 精品国产99久久| 亚洲国产成人自拍|