王明磊,張 雁,殷瀟瀟,2
基于Menger海綿模型的煤矸石粉改良膨脹土微結構特征
王明磊1,張 雁1※,殷瀟瀟1,2
(1. 內蒙古農業大學能源與交通工程學院,呼和浩特 010018;2. 城發投資集團有限公司,青島 266555)
為解決膨脹土對工程結構以及農業生態環境的危害,進行煤矸石粉改良膨脹土的試驗研究。對煤矸石粉摻量為0、3%、6%、9%的膨脹土土樣進行壓汞試驗,測得微觀孔隙特征值;選取Menger海綿模型建立孔隙分形模型,計算土體孔隙分形維數,探究土體孔隙分形維數與孔隙特征參數以及煤矸石粉摻量變化的關系。結果表明:隨著煤矸石粉摻量增加,土中大孔隙所占的含量較素膨脹土減少61.5%,孔隙類型從團粒間孔隙轉化為顆粒間孔隙;煤矸石粉的摻入改變了土體的孔隙結構特征,煤矸石粉與膨脹土發生膠結反應,孔隙連通性降低,使得總孔隙體積、孔隙率、孔隙平均孔徑、孔隙臨界孔徑等孔隙特征參數呈減小趨勢;基于分形理論分析孔隙分形維數,分形維數隨煤矸石粉摻量的增加而增加,且與孔隙特征參數呈顯著相關性。孔隙分形維數反應了孔隙特征參數以及孔隙發育程度,為土的孔隙表征提供方法借鑒。
膨脹土;孔隙度;煤矸石;Menger海綿模型;分形;壓汞法
膨脹土具有顯著的脹縮性、裂隙性、超固結性等一系列工程特性[1],對工程結構以及生態環境的穩定性造成較大危害[2-3]。膨脹土的特性與其土粒的孔隙大小、形態、分布特征有著重要聯系,孔隙的大小與分布影響土體的眾多工程地質性質,因此膨脹土孔隙方面的研究對防治膨脹土有重要意義。目前對膨脹土微觀孔隙特性的研究主要有:張雁等[4]在干濕循環條件下,結合壓汞法研究膨脹土孔隙結構參數與干濕循環次數的關系,隨著干濕循環次數的增加,孔隙率、總孔隙體積、孔隙孔徑等參數都呈遞增趨勢[5]。Pedarla等[6]對膨脹土進行壓汞試驗,將試驗與模型相結合描述了在給定土壤中包含礦物學和孔隙結構細節的重要性。易遠[7]利用壓汞法和SEM電鏡掃描對膨脹土進行微觀結構研究,分析不同脫濕環境、壓實度等對使土體的孔隙分布、孔隙結構的影響。Ma等[8]利用壓汞試驗和核磁共振試驗對膨脹土在干濕循環過程中微觀結構的演變進行研究,并對大孔和微孔在潤濕過程中的變化進行分析。藺建國等[9]等利用壓汞法分析NaCl的濃度對膨脹土孔隙的影響,NaCl濃度的增加,土中微孔隙減少,孔隙比表面積減小,土中出現架空貫穿孔隙。大量研究表明,由形狀與大小各異的顆粒和孔隙組成的巖土多孔介質具有分形特性[10-14],分形理論已成為描述巖土多孔介質顆粒和孔隙分布特性的有效手段。土的結構具有自相似性,可用分形維數來描述[15]。謝和平[16]在傳統Koch島、Sicrpinski墊片和Menger海綿模型基礎上研究土體顆粒及孔隙分布。陶高梁等[17]和Zhang等[18]以理想的Sierpinski墊片和Menger海綿為基礎,提出了由孔隙顆粒體積分形模型及孔徑粒徑分布分形模型組成的兩大類巖土體分形模型,并在分析現有孔隙率模型不足的基礎上,提出了新的孔隙率演化模型。鮑碩超等[19]采用壓汞法對吉林延邊地區路基邊坡膨脹土進行測試,結合分形理論發現孔徑越大,孔隙分布分形維數越大,孔隙分布復雜而均勻。陳毅等[20]基于分形理論分析定西市遺址土內外部土樣的孔隙結構,結果表明隨著風化時間的增長,外部土體的孔隙總體積和表面分形維數逐漸減小。Sun等[21]采用ESEM和MIP試驗,研究不同干密度下膨潤土的孔隙分形維數,基于盒計算法、Menger分形維數和熱力學關系的方法,分析各分形維數對孔隙大小、干濕循環、吸壓力數等的影響。陶高梁等[22]研究黏土壓縮工程中孔隙的分形特征,根據壓汞法獲取的土體孔隙分布數據,結合分形維數,得出分形維數與大小孔隙的聯系。由上述分析可知,大多數學者對膨脹土孔隙的研究主要集中在土體孔隙的固有特征,基于分形理論分析孔隙特征,孔隙分形維數可以更直觀地描述孔隙結構的測定結果。孔隙結構是影響膨脹土穩定的重要因素,改變膨脹土孔隙的固有特征還可以采用添加固化劑的方法。選用煤矸石粉改良膨脹土,煤矸石粉的摻入對膨脹土孔隙的改變,以及從分形理論的角度上,不同煤矸石粉摻量對膨脹土孔隙的影響需要進一步探索。
本文在前人研究的基礎上,對不同煤矸石粉摻量下的膨脹土土樣進行壓汞試驗,基于其孔隙結構變化,建立孔隙分形模型,探究土體孔隙分形維數與孔隙特征參數以及煤矸石粉摻量變化的關系,對膨脹土多孔孔隙結構的分形量化進行表征,以掌握膨脹土孔隙的分形形貌結構特性,為獲得膨脹土孔隙控制與改進的措施奠定理論基礎。
本研究采用的原材料分別為膨脹土和煤矸石。膨脹土選自內蒙古興和縣,根據T0118-2007、T0124-1993、T0103-1993法[23]測得膨脹土的基本指標:液限為57.1%,塑限為22%,塑性指數為35.1,天然含水率為8.7%,自由膨脹率為46%,根據自由膨脹率(>40%)可判斷該膨脹土樣屬于弱膨土[24]。膨脹土的級配曲線如圖1所示。

圖1 膨脹土的級配曲線
由圖1膨脹土的級配計算得到土粒不均勻系數為6,曲率系數為0.7,故土顆粒及配不良[25]。
煤矸石產于烏海市神五煤礦公烏素煤礦4號采區,堅硬,灰黑色,呈片麻狀。采用X射線熒光光譜儀XFS(Axios Pw4400, PANalytical B.V, Almelo, Netherlands)按照ASTM: E 1621-05[26]檢測煤矸石化學成分如表1所示。

表1 煤矸石基本化學成分
由表1可知,煤矸石中SiO2、Al2O3和Fe2O3的含量總和為91.2%。再根據T0348-2005、T0307-2005、T0316-2005、T0314-2000、T0302-2005法[21]測得煤矸石的物理指標:吸水率為0.5%,自由膨脹率為14.3%、壓碎值為20.6%、燒失率為14.4%,不均勻系數為3.3,曲率系數為2,其中壓碎值<30%,燒失量<20%,煤矸石的化學成分和物理指標均滿足《公路路基設計規范》(JTG D30-2015)[27]的要求。
將煤矸石磨成粉后過0.5 mm篩[23],以摻量為0、3%、6%、9%摻入膨脹土中,根據T0118-2007、T0112-1993法[23]測量混合料的基本物理指標;并采用T0131-2007法[23]對混合料進行擊實試驗,計算其最佳含水率和最大干密度,結果如表2所示。隨著煤矸石粉摻量的增加,改良膨脹土的最佳含水率逐漸增大,最大干密度逐漸減小。

表2 混合料的基本物理指標
為了觀察煤矸石粉改良后的膨脹土微觀孔隙特征的變化情況,選取圖2所示壓汞儀(美國麥克公司制造,型號為Auto Pore9500)對土樣進行孔隙結構測定。

圖2 壓汞儀
首先冷凍干燥土樣試件,然后將水銀經過不同壓力壓入土體孔隙中,根據不同壓力和進汞量繪制關系圖,然后計算出不同大小孔隙所占孔隙總體積的比例關系。假設孔隙為圓柱體,孔徑為,進汞壓力與孔徑間的關系式采用Washnurn方程如式(1)[28]所示:

式中為進汞壓力,MPa;為汞液表面張力,N/m,取值0.48 N/m;為汞液與材料的接觸角,取值140°;為所測孔隙孔徑,m。
將制好的擊實試件抽氣飽和至真空飽和狀態,然后取出放在凍干機內進行24 h冷凍干燥處理,使土中冰升華,再切成體積為1 cm3小方塊,放入膨脹計中,用硅脂真空膏密封好,抽真空至0.3 MPa左右,使改良膨脹土土樣的孔隙氣體壓強近似為零,將膨脹計放入壓汞儀中;先對土樣進行低壓壓汞分析,分析結束后取出膨脹計放在天平上秤取質量,天平的精確度為萬分之一;再對土樣進行高壓壓汞分析,直至壓力逐漸降為大氣壓時,壓汞試驗分析完成。
壓汞試驗測得不同煤矸石粉摻量條件下土樣的累計進汞量曲線如圖3所示。

圖3 改良土的累計進汞量曲線
壓汞試驗分為進汞過程和退汞過程,進汞曲線即為大于某孔徑累計孔隙體積曲線。將圖3與公式(1)相結合,當壓力較小時,與對應的當量孔徑較大,汞只能進入土樣中較大的孔隙,累計進汞量較小。隨著壓力的增大,孔徑逐漸減小,汞能進入土體中較小的孔隙,累計進汞量則逐漸增大。在進汞曲線中,以孔徑10 nm和104nm為分界分為3個階段,當孔徑大于104nm時,累計進汞量較小,隨著汞液被壓入孔徑分布在10~104nm的孔隙中,累計進汞量迅速增長;當壓力持續增大,孔徑小于10 nm時,此階段的累計進汞量基本不再增加。而退汞過程中隨著壓力的減小,累計進汞量減小,相同外界壓力下,退汞過程中的累計進汞量明顯大于進汞過程中的累計進汞量。與煤矸石粉摻量相結合分析,在相同進汞壓力下,改良土的累計進汞量逐漸減小,表明隨著煤矸石粉摻量的增加膨脹土的孔隙逐漸減小。
對累計孔隙體積(即累計進汞量)進行求導可得到改良土的孔隙分布密度,如圖4。
由圖4可看出,在試驗開始階段,當孔徑大于104nm時,素膨脹土的峰值高于改良膨脹土,隨著孔徑的減小,改良土與素膨脹土孔隙分布密度沒有明顯區別;當孔徑分布在102~103nm之間,曲線再次呈現峰值狀態,且煤矸石粉摻量為6%和9%的土樣的峰值明顯高于素膨脹土;當孔徑小于102nm時,煤矸石粉摻量為9%的土樣呈雙峰狀態。隨著煤矸石粉摻量的增加,土中大孔隙逐漸減少,孔隙類型逐漸從團粒間孔隙轉化為顆粒間孔隙,煤矸石粉的摻入可明顯改善膨脹土的膨脹性。

圖4 孔隙孔徑與孔隙分布密度的關系
依據張平等[29]提出的孔隙劃分方法,可對膨脹土的孔隙分為5大類:團粒間的大孔隙(>30 000 nm);團粒內的中孔隙(2 500 nm<≤30 000 nm);顆粒間或者部分團粒內的小孔隙(350 nm<≤2 500 nm);顆粒間的微孔隙(100 nm<≤350 nm);顆粒內的超微孔隙(≤100 nm)。不同煤矸石粉摻量下土體孔隙大小的分布如圖5所示。

圖5 孔隙分布
從圖5可看出,隨著煤矸石粉摻量的增加大孔和中孔逐漸減少,煤矸石粉摻量為9%時,改良土的大孔較素膨脹土減少61.5%;小孔、微孔和超微孔逐漸增加,其中小孔和超微孔的增長幅度最為明顯,分別增加了8.51%和6.38%。由此表明在膨脹土中摻入煤矸石粉后,大孔隙和中孔隙都被煤矸石粉的填充,孔隙向小孔徑轉移,煤矸石粉的摻入對膨脹土小孔隙和超微孔隙的占比影響最大。
根據壓汞試驗得到土樣的總孔隙體積、孔隙率、孔隙平均孔徑和孔隙臨界孔徑等孔隙總體特征指標如表3所示。
由表3可以看出,隨著煤矸石粉摻量的增加,改良土的總孔隙體積較素膨脹土降低0.072 cm3/g、孔隙率減少10.5%、平均孔徑和臨界孔徑呈減小趨勢,煤矸石粉的摻入降低了孔隙的連通性,改變了土體的孔隙結構特征。而土樣經壓汞前后對比可以發現,無論理論計算的孔隙率或者壓汞后的土體孔隙率都隨著煤矸石粉摻量的增加而減小,壓汞試驗后的孔隙率明顯小于理論計算的孔隙率,由于膨脹土具有裂隙性,且土樣受尺寸效應以及壓汞儀測量范圍的影響,壓汞試驗并不能測出土中含有的部分宏觀裂隙所占的孔隙體積[30],因此試驗后的孔隙率小于理論孔隙率。

表3 改良膨脹土孔隙總體特征指標
分形理論在研究巖土體的孔隙分形模型有多種,包括空間填充模型[31]、Menger海綿模型[32]、基于熱力學關系[33]和孔軸線分形模型[34]等。由于Menger海綿模型模擬顆粒間孔隙結構各級孔徑并存的狀態,能對各個空間的尺度孔徑進行完整而連續的表征,故本研究采用Menger海綿模型研究煤矸石粉改良后膨脹土的孔隙分形維數。采用逐級生成海綿模型,第0級為選擇一邊長的正方體生成初始元(圖6a),以后各級逐級形成生成元。第1級將初始元27等分,去掉體心與面心處的7個小立方體,剩下20個小立方體為生成元(圖6b)。隨著重復次數的增加,逐級形成各級生成元,更小孔徑的孔隙生成,土顆粒尺寸越來越小,孔隙體積越來越大。將上述操作無限重復下去,就得到了Menger海綿,如圖6d所示。

a. 初始元(級數=0)a. Initialelement (Series=0)b. 生成元(級數=1)b. Generators (Series=1)c. 生成元(級數=2)c. Generators (Series=2)d. 生成元(級數=4)d. Generators (Series=4)
孔隙體積分形維數的計算如公式(2)[28]:

式中為進汞壓力,MPa;為進汞壓力的累計進汞體積,mL/g;為常數;為孔隙分形維數。
根據壓汞試驗數據可得lg(d/d)和lg,以lg為橫坐標,lg(d/d)為縱坐標構建散點圖并進行線性擬合(圖7)。

注:p為進汞壓力,MPa;V為進汞壓力p的累計進汞體積,( mL·g-1)。
煤矸石粉摻量為0、3%、6%和9%的4種土樣擬合直線方程如圖7所示,線性決定系數2分別為0.99、0.98、0.99、0.98;擬合直線的斜率分別為?1.41、?1.34、?1.27、?1.13;根據式(2)求得孔隙分形維數D分別為2.59、2.66、2.73、2.87。分形維數在2.59~2.87之間變化,土體的孔隙結構分形維數的合理范圍為2~3,改良膨脹土在分形理論角度上具有物理意義。由于4條曲線的相關系數均在0.9以上,具有較好的線性關系,表明4種土樣都具有良好的分形特性。
為研究孔隙分形維數與孔隙特征參數的關系,本文采用多元線性逐步回歸分析法進行分析。將孔隙分形維數記為;總孔隙體積、孔隙率、平均孔徑和臨界孔徑,分別記為1~4;采用逐步線性回歸的變量引入方式,獲得孔隙分形維數與孔隙參數的模型為

式中僅引入了孔隙率(2)和臨界孔徑(4),說明二者對孔隙分形維數影響最大。模型的參數估計及方差分析如表4和表5所示。

表4 模型參數估計

表5 模型方差分析
由表4可以看出,經過檢驗,各項回歸系數的相伴概率值都小于剔除因子標準值0.1,故以上因素不能從回歸方程中剔除,且對因變量影響顯著。表5中當=218.108時,相伴概率值小于顯著性水平,說明回歸方程通過了顯著檢驗(檢驗),所建立的線性回歸模型具有統計學意義。多元線性回歸模型代表應變量與自變量之間的依存規律,因此可較好的表征孔隙分形維數與孔隙特征參數之間的聯系。
不同煤矸石粉摻量條件下膨脹土樣的孔隙分形維數如圖8所示。

圖8 煤矸石粉摻量與孔隙分形維數的關系
由圖8可知,隨著煤矸石粉摻量逐漸增加,土體孔隙分形維數逐漸增大,且煤矸石粉摻量與土體孔隙分形維數之間的決定系數為0.96,表明土體孔隙分形維數與煤矸石粉的摻量有很強的相關性,孔隙分形維數越大孔隙結構分布形態越復雜[35],土的結構越密實,孔隙越少,則對膨脹土改良效果越好。
綜上所述,土體積孔隙分形維數是孔隙體積不規則性、粗糙性的度量值,反映了土體孔體積、孔徑、孔隙率等參數。分形維數越大,土顆粒之間的連接越緊密,孔隙結構越密實。分形維數可以更直觀地描述孔隙結構的測定結果,深化對孔隙結構的認識,可以一定程度上表征孔隙特征參數以及孔隙發育程度,反應土體的非均質性及復雜性。分形維數為改良土的研究上提供了新的指標,對孔隙中較復雜的問題提供新的依據。
本文通過壓汞試驗,分析改良膨脹土的孔隙特征,建立孔隙分形模型,獲得孔隙分形維數,揭示孔隙分形維數與孔隙特征參數的關系,得到如下結論:
1)在壓汞過程中,孔徑在102~103nm之間,煤矸石粉摻量對膨脹土的孔隙影響較大,摻量為6%和9%時變化最明顯。隨著煤矸石粉摻量的增加,土中大孔隙逐漸減少,大孔所占的含量較素膨脹減少61.5%;改良土總孔隙體積、孔隙率、孔隙平均孔徑、孔隙臨界孔徑等指標皆呈減小趨勢。
2)基于Menger海綿模型表征改良土的孔隙分形維數,通過回歸模型得到孔隙分形維數與孔隙特征參數之間的依存規律,孔隙率與臨界孔徑對分形維數的影響較為顯著。孔隙分形維數使孔隙結構特征參數從定性描述轉變為定量計算。
3)分形維數的大小可以表征不同煤矸石粉摻量下膨脹土的孔隙發育程度。孔隙分形維數隨著煤矸石粉摻量增加而增加,分形維數越大表明改良土的孔隙排列、形狀特征更加有序,進而實現通過分形特性來指導固化劑研制和膨脹土孔隙結構控制的目的。
[1]陸定杰,陳善雄,羅紅明,等. 南陽膨脹土渠道滑坡破壞特征與演化機制研究[J]. 巖土力學,2014,35(1):189-196.
Lu Dingjie, Chen Shanxiong, Luo Hongming, et al. Study of failure characteristics and evolution mechanism of canal slope of Nanyang expansive soil[J]. Rock and Soil Mechanics, 2014, 35(1): 189-196. (in Chinese with English abstract)
[2]楊振北,胡東旭,汪時機. 膨脹土脹縮裂隙演化及其擾動規律分析[J]. 農業工程學報,2019,35(17):169-177.
Yang Zhenbei, Hu Dongxu, Wang Shiji. Evolution law of expansion-shrinkage crack and its disturbance rule of expansive soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019, 35(17): 169-177. (in Chinese with English abstract)
[3]王曉燕,姚志華,黨發寧,等. 裂隙膨脹土細觀結構演化試驗[J]. 農業工程學報,2016,32(3):92-100.
Wang Xiaoyan, Yao Zhihua, Dang Faning, et al. Meso-structure evolution of cracked expansive soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 92-100. (in Chinese with English abstract)
[4]張雁,殷瀟瀟,劉通. 煤矸石改良膨脹土特性及其最佳摻量條件下的孔隙結構表征[J]. 農業工程學報,2018,34(22):267-274.
Zhang Yan, Yin Xiaoxiao, Liu Tong. Strength properties of solidified expansive soil with coal gangue and its pore structure characterization under condition of optimum dosage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 267-274. (in Chinese with English abstract)
[5]曾召田,呂海波,趙艷林,等. 膨脹土干濕循環過程孔徑分布試驗研究及其應用[J]. 巖土力學,2013,34(2):322-328.
Zeng Zhaotian, Lü Haibo, Zhao Yanlin, et al. Study of pore size distribution of expansive soil during wetting-drying cycle and its application[J]. Rock and Soil Mechanics, 2013, 34(2): 322-328. (in Chinese with English abstract)
[6]Pedarla A, Aravind A, Puppala, et al. Evaluation of swell behavior of expansive clays from internal specific surface and pore size distribution[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2):1943-5605.
[7]易遠. 基于分形理論的膨脹土微觀結構演變規律研究[D]. 武漢:武漢輕工大學,2018.
Yi Yuan. Study on the Evolution Law of Microstructure of Expansive Soil Based on Fractal Theory[D]. Wuhan: Wuhan Polytechnic University, 2018. (in Chinese with English abstract)
[8]Ma T, Wei C, Yao C, et al. Microstructural evolution of expansive clay during drying-wetting cycle[J]. Acta Geotechnica, 2020, 15(8): 2355-2366.
[9]藺建國,葉加兵,鄒維列. 孔隙溶液對膨脹土微觀結構的影響[J]. 華中科技大學學報:自然科學版,2020,48(4):12-17.
Lin Jianguo, Ye Jiabing, Zou Weilie. Effect of pore fluid on microstructure in expansive soil[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2020, 48(4): 12-17.(in Chinese with English abstract)
[10]Turcotte D. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.
[11]Zhang B, Li S. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Ind Eng Chem Res., 1995, 34(4): 1383-1386.
[12]Dathe A, Eins S, Niemeyer J, et al. The surface fractal dimension of the soil–pore interface as measured by image analysis[J]. Geoderma, 2001, 103(1/2): 203-229.
[13]Li Peng, Zheng Min, Bi He, et al. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674.
[14]Peng Lei, Chen Bing, Pan Yongjian. Evaluation and comparison of bentonite surface fractal dimension and prediction of swelling deformation: Synchrotron radiation SAXS and N2-adsorption isotherms method[J]. Construction and Building Materials, 2020. doi:10.1016/j.conbuildmat.2020.121331.
[15]Rieu M, Sposito G. Fractal fragmentation, soil porosity,and soil water properties: I Theory[J]. Soil Science Society of America Journal, 1991, 55(5): 1231-1238.
[16]謝和平. 巖土介質的分形孔隙和分形粒子[J]. 力學進展,1993,25(2):145-164.
Xie Heping. Fractal pores and fractal particles of rock and soil materials[J]. Advances in Mechanics, 1993, 25(2): 145-164. (in Chinese with English abstract)
[17]陶高梁,張季如. 表征孔隙及顆粒體積與尺度分布的兩類巖土體分形模型[J]. 科學通報,2009,54(6):838-846.
Tao Gaoliang, Zhang Jiru. Two categories of fractal models of rock and soil expressing volume and size-distribution of pores and grains[J]. Chinese Science Bulletin, 2009, 54(6): 838-846. (in Chinese with English abstract)
[18]Zhang J, Tao G, Huang L, et al. Porosity models for determining the pore-size distribution of rocks and oils and their applications[J]. Chinese Science Bulletin, 2010, 55(34): 3960-3970.
[19]鮑碩超,王清,陳劍平,等. 吉林省延邊地區路基邊坡膨脹土孔隙分布特性[J]. 東北大學學報:自然科學版,2017,38(1):132-137.
Bao Shuochao, Wang Qing, Chen Jianping, et al. Pore size distribution of expansive soil of the subgrade slope in Yanbian region, Jilin province[J]. Journal of Northeastern University: Natural Science Edition, 2017, 38(1): 132-137. (in Chinese with English abstract)
[20]陳毅,張虎元,楊龍. 遺址土劣化進程中微觀結構變化的類比研究[J]. 巖土力學,2018,39(11):4117-4124,4141.
Chen Yi, Zhang Huyuan, Yang Long. Analogy study on evolution of microstructure of earthen monument during natural weathering process[J]. Rock and Soil Mechanics, 2018, 39(11): 4117-4124, 4141. (in Chinese with English abstract)
[21]Sun H, Masin D, Najser J, et al. Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods[J]. Acta Geotechnica, 2019, 15(6): 1655-1671.
[22]陶高梁,朱學良,胡其志,等. 黏性土壓縮過程臨界孔徑現象及固有分形特征[J]. 巖土力學,2019,40(1):81-90.
Tao Gaoliang, Zhu Xueliang, Hu Qizhi, et al. Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression[J]. Rock and Soil Mechanics, 2019, 40(1): 81-90. (in Chinese with English abstract)
[23]中華人民共和國行業標準. 公路土工試驗規程:JTG E40-2007[S]. 北京:人民交通出版社,2007.
[24]中華人民共和國行業標準. 膨脹土地區建筑技術規范:GB 50112-2013[S]. 北京:中國建筑工業出版社,2013.
[25]中華人民共和國行業標準. 公路工程集料試驗規程:JTGE42-2005[J]. 北京:人民交通出版社,2005.
[26]Subcommittee: E01.20. Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry: ASTM E1621-13[S]. ASTM International: West Conshohocken, PA, USA, 2013.
[27]中華人民共和國行業標準. 公路路基設計規范:JTG D30-2015[S]. 北京:人民交通出版社,2015.
[28]León y León C A. New perspectives in mercury porosimetry[J]. Advances in Colloid and Interface Science, 1998, 76/77: 341-372.
[29]張平,房營光,閆小慶,等. 不同干燥方法對重塑膨潤土壓汞試驗用土樣的影響試驗研究[J]. 巖土力學,2011,32(增刊1):388-391.
Zhang Ping, Fang Yingguang, Yan Xiaoqing, et al. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. Rock and Soil Mechnics, 2011, 32(Supp.1): 388-391. (in Chinese with English abstract)
[30]孔元元,王清,張學飛,等. 鎮賚縣裂隙土孔隙分布特征試驗研究[J]. 工程地質學報,2016,24(S):1196-1202.
Kong Yuanyuan, Wang Qing, Zhang Xuefei, et al. Experimental study on pore distribution characteristics of fissure soil in Zhenlai County[J]. Journal of Engineering Geology, 2016, 24(S): 1196-1202. (in Chinese with English abstract)
[31]陳三強,劉永忠,程光旭,等. 用壓汞法計算凍干物料的表面分形維數[J]. 食品科學,2004(7):25-28.
Chen Sanqiang, Liu Yongzhong, Cheng Guangxu, et al. Computation on surface fractal dimension of freeze-dried product by mercury porosimetry[J]. FoodScience, 2004(7): 25-28. (in Chinese with English abstract)
[32]Ye Z, Hou E, Duan Z. Micrometer-scale pores and fractures in coals and the effects of tectonic deformation on permeability based on fractal theory[J]. AIP Advances, 2020, 10(2): 025118.
[33]Yan C, Tang Y, Liu Y. Study on fractal dimensions of the silty soil around the tunnel under the subway loading in Shanghai[J]. Environmental Earth Sciences, 2013, 69(5): 1529-1535.
[34]李克升,劉傳孝,李全新,等. 黃河三角洲鹽堿土微觀孔隙特征的分形研究[J]. 山東農業大學學報:自然科學版,2020,51(5):828-832,880.
Li Kesheng, Liu Chuanxiao, Li Quanxin, et al. Fractal study on microscopic pore features of saline-alkali soil in Yellow River Delta[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2020, 51(5): 828-832, 880. (in Chinese with English abstract)
[35]孫秀麗,宋碧穎,劉文化,等. 基于分形理論的疏浚淤泥固化土孔隙結構定量化研究[J]. 大連理工大學學報,2018,58(2):153-158.
Sun Xiuli, Song Biying, Liu Wenhua, et al. Quantitative study of pore structure of dredged silt solidified soil based on fractal theory[J]. Journal of Dalian University of Technology, 2018, 58(2): 153-158. (in Chinese with English abstract)
Microstructure characteristics of expansive soil with coal gangue based on Menger sponge model
Wang Minglei1, Zhang Yan1※, Yin Xiaoxiao1,2
(1. College of Energy and Transportation Engineering, Inner Mongolia Agricultural University,Hohhot 010018, China; 2. Chengfa Investment Group, Qingdao 266555, China)
Expansive soil is a type of highly plastic clay, where the volumetric expansion upon water absorption (hygroscopic expansion), while the shrinkage upon water loss. This property can be detrimental to the soil structure, resulting in a series of civil engineering problems, such as soil surface cracking, subgrade settlement, and road surface uplift. Alternatively, coal gangue is a kind of rock waste discharged from coal mining, washing, and processing during coal production. Serious influences have occurred in the social, environmental, and economic respects. An eco-friendly way to save energy is to effectively reuse the coal gangue as a substitute resource. This study aims to improve the properties of expansive soil using the coal gangue, in order to alleviate the damage of expansive soil in engineering, thereby to explore the porosity characters of improved expansive soil with coal gangue. A Menger sponge model was selected to characterize the fractal dimension of pores, in order to guide the development of curing agent, and thereby control the pore structure of expansive soil via the fractal characteristics. A mercury injection test was performed on the samples of expansive soil with the content of coal gangue of 0, 3%, 6% and 9%, respectively. Prior to the mercury injection test, compaction specimens were fabricated from the state of extraction saturation to vacuum saturation state. The gas pressure of pores was approximate to zero in the sample of improved expansive soil for the dilatometer in mercury injection apparatus. A low-pressure mercury injection was first used to analyze the soil samples. The dilatometer was then taken out to weigh the mass on a high precision balance. A mercury pressure analysis was carried out on the soil samples until the pressure gradually decreased to atmospheric pressure. The results show that the mercury injection can be divided into the process of mercury injection and removal. When the pressure was small, there was the large equivalent diameter of pores corresponding to the pressure, where mercury can only enter the large pores in the soil sample, resulting the small cumulative amount of mercury injection. The pore diameter gradually decreased as the pressure increased, where mercury can enter the smaller pores in the soil, and thereby the accumulated amount of mercury gradually increased. With the increase in the content of coal gangue powder, the accumulative content of mercury in the improved soil significantly decreased, where the most obvious content were 6% and 9%. Large micropores decreased by 61.5% in the expansion content of macropores. There was a trend of decrease in the total volume of pores, the critical aperture porosity, average pore diameter, and pore porosity index. Pore types were transformed from the pores between the aggregates to the pores between particles, indicating an obviously enhanced effect in the addition of coal gangue to the expansive soil. In order to study the relationship between the pore fractal dimension and pore characteristics, a Menger sponge model was used to characterize the fractal dimension of pores in the improved soil, where the values varied from 2.59-2.87. A dependent law was obtained between the fractal dimension of pores and the characteristic parameters of pores in multiple linear regressions. In “F” and “t” test of regression model, it was found that the porosity and critical pore size had a significant influence on the fractal dimension of pores. The fractal dimension of pores increased in the improved expansive soil with the increase in powder content of coal gangue. The large fractal dimension indicated that there was an orderly arrangement of pores and shape characteristics in the improved soil. The fractal dimension of pores can be used to visually represent the measurement data of pore structure, further to verify the pore characteristic parameters, and pore development degree, serving as an indirect indicator of the heterogeneity and complexity of soil.
expansive soils; porosity; coal gangue; MENGER sponge model; fractal; mercury intrusion
王明磊,張雁,殷瀟瀟. 基于Menger海綿模型的煤矸石粉改良膨脹土微結構特征[J]. 農業工程學報,2020,36(23):124-130.doi:10.11975/j.issn.1002-6819.2020.23.015 http://www.tcsae.org
Wang Minglei, Zhang Yan, Yin Xiaoxiao. Microstructure characteristics of expansive soil with coal gangue based on Menger sponge model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 124-130. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.015 http://www.tcsae.org
2020-09-25
2020-11-17
國家自然科學基金項目(51669025)
王明磊,主要研究方向為道路工程材料。Email:377968494@qq.com
張雁,博士,教授,博士生導師,主要從事路基材料性能方面的研究。Email:zhangyanli@imau.edu.cn
10.11975/j.issn.1002-6819.2020.23.015
TU411
A
1002-6819(2020)-23-0124-07