鄭琛,李發弟,李飛,周巨旺,段鵬偉,劉繪匯,樊海苗,朱威力,劉婷
代乳粉添加甘露寡糖對7—28日齡湖羊羔羊胃腸道發育的影響
鄭琛1,李發弟2,3,李飛2,周巨旺1,段鵬偉1,劉繪匯1,樊海苗1,朱威力1,劉婷1
(1甘肅農業大學動物科學技術學院,蘭州 730070;2蘭州大學草地農業科技學院,草地農業生態系統國家重點實驗室/ 農業農村部草牧業創新重點實驗室,蘭州 730020;3甘肅省肉羊繁育生物技術工程實驗室,甘肅民勤 733300)
【】探討代乳粉中添加甘露寡糖(mannan oligosaccharides,MOS)對7—28日齡湖羊羔羊胃腸道生長發育的影響。選擇同質性良好的7日齡湖羊公羔(雙羔)30只,隨機分為2組,每組15只,每只為1個重復,對照組羔羊飼喂不含MOS的代乳粉,試驗組羔羊飼喂含0.2 % MOS的代乳粉,試驗期21d。羔羊28日齡時,兩個試驗組各隨機選擇8只羔羊屠宰,取出消化道,稱量各胃室和腸段包含內容物的質量和凈質量,量取各腸段長度,用以計算各部位的相對質量和內容物分布,以及各腸段的相對長度。多聚甲醛固定皺胃胃底腺區及十二指腸、空腸和回腸中段的組織樣品,測定組織形態和小腸上皮細胞凋亡率。采集十二指腸、空腸和回腸的黏膜樣品,測定緊密連接蛋白1 (claudin 1)、閉鎖小帶1(zonula occludens-1,ZO-1)和閉鎖蛋白(occludin)的mRNA表達量。除空腸相對長度外(%全腸長度,=0.040),MOS對羔羊胃腸指數(%活體質量)、胃腸相對質量(%全胃質量、%全腸質量和%全胃腸質量)、腸道相對長度(%全腸長度)、內容物相對活體質量(%活體質量)、胃腸內容物相對總胃/腸內容物及總胃腸內容物相對質量(%總胃內容物、總腸內容物、總胃腸內容物)、小腸上皮細胞凋亡率和小腸黏膜claudin 1蛋白mRNA的表達量均沒有產生顯著影響(>0.05),但MOS顯著提高羔羊十二指腸絨毛高度和肌層厚度并顯著降低絨毛寬度(=0.033,=0.047,=0.015),顯著上調空腸ZO-1蛋白mRNA表達量(=0.028),此外,MOS有提高羔羊回腸絨毛高度、絨毛寬度和隱窩深度、皺胃肌層厚度及回腸occludin蛋白mRNA表達量的趨勢(=0.075,=0.078,=0.085,=0.084,=0.052)。MOS對7—28日齡湖羊羔羊胃腸道相對質量、長度和內容物分布基本無顯著影響,但可改善十二指腸和回腸絨毛及肌層的組織形態,維持小腸屏障功能,有利于提高養分消化率。
羔羊;甘露寡糖;代乳粉;胃腸道;發育
【研究意義】胃腸道的結構是保障消化功能的前提,當組織形態發育正常及功能完善時,胃腸道中的營養物質才會被充分消化吸收[1]。反芻動物胃腸道發育受多種因素影響和調節,如年齡[2]、斷奶[3-4]、飼糧類型[5-7]、腸營養素、激素和生長因子[8]等。飼喂幼畜時,除了需要提供高濃度的能量和養分以滿足幼畜快速生長發育和器官發育的需要[9-11],還需要強化一些微量營養性和非營養性飼料添加劑以提高幼畜成活率和機體免疫力,益生菌和化學益生素就是目前幼齡動物養殖中常用的免疫增強劑[12]。化學益生素被定義為營養活性物質(Nutricine),是一種非藥品類功能食品,雖然不具備直接營養功能,但可以維持腸道消化吸收功能,因而增強動物健康和生長發育[13]。【前人研究進展】甘露寡糖(mannan oligosaccharides, MOS)是化學益生素的一種,來自于酵母()細胞壁,富含甘露蛋白和β-葡聚糖等復雜碳水化合物等[14],廣泛應用于養殖業以提高動物機體免疫機能并消除腸道病原菌[15-16]。在單胃動物和水產動物養殖中,添加MOS具有提高生產性能和促進動物健康的作用[17-20],也促進腸道發育,如前期和后期飼糧中分別添加0.2 %和0.1 % MOS可提高肉仔雞小腸絨毛高度并降低隱窩深度[21],添加0.1 % MOS可顯著提高仔豬小腸黏膜絨毛高度/隱窩深度值(V/C)[22],添加0.1 %、0.15 %和0.2 % MOS均可顯著提高兔小腸絨毛高度[23]。【本研究切入點】MOS在反芻動物上的應用研究較少,主要是因為很多學者認為瘤胃微生物能夠降解MOS,從而消除其保健功能。然而,有限的資料仍然顯示MOS在反芻動物養殖中起到了一定的有益作用,如改善綿羊瘤胃健康[24]和提高抗氧化能力[25],提高羔羊血液免疫球蛋白水平[26]等,但MOS對幼齡反芻動物消化道生長發育的影響鮮見報道。鑒于MOS在單胃動物胃腸道發育中所表現出的積極作用,本研究提出假設,添加MOS對羔羊胃腸道發育也具有一定的影響,可為幼齡反芻動物的健康養殖提供幫助。【擬解決的關鍵問題】本試驗以7日齡湖羊公雙羔作為試驗對象,研究代乳粉中添加MOS對羔羊消化道生長發育的影響,為幼齡反芻動物養殖中化學益生素的使用提供基礎數據。
試驗選用同質性良好的30只7日齡湖羊公雙羔(選自甘肅省金昌中天羊業有限公司)作為試驗動物,采用對照試驗設計,將羔羊隨機分為2個處理組,每組15只,每只為1個重復。羔羊分別飼喂對照代乳粉(北京精準動物營養研究中心,營養物質濃度見表1)或添加0.2 % MOS(SCIPHAR?,陜西森弗天然制品有限公司,純度>90 %)的代乳粉。飼養試驗持續21 d。

表1 羔羊代乳粉營養物質濃度(風干基礎)
1)營養水平均為實測值The nutrient levels are measured values
羔羊出生的1—3 d內采食母乳,4日齡與母羊分離后奶瓶訓飼代乳粉。7日齡清晨空腹稱重,按組間體重無差異(對照組4.09 ± 0.66 kg,MOS組4.07 ± 0.61 kg)的原則將羔羊隨機分為2組。8日齡時按試驗設計飼喂羔羊,喂量為羔羊體重的2 %,每日飼喂4次,分別為6:00、12:00、18:00和24:00,代乳粉與水的比例為1:5。羔羊單籠飼養,自由飲水。
羔羊28日齡時屠宰,宰前不禁食禁水,稱量活重后立即頸靜脈放血致死。打開腹腔后按照馬仲華[27]的方法分離瘤胃、網胃、瓣胃、皺胃、十二指腸、空腸、回腸、盲腸、結腸和直腸。稱量胃腸道各部位凈質量和含內容物的質量,計算各部位的相對質量及其內容物分布。測量腸道各段的長度,計算相對長度。
采集皺胃胃底腺區以及十二指腸、空腸和回腸中部約1 cm2的組織樣品,轉入多聚甲醛固定液中,在成都里來生物科技有限公司用H.E染色法和Tunel法觀察胃腸道組織形態和測定小腸上皮細胞凋亡率。
采集十二指腸、空腸和回腸中段黏膜樣品測定緊密連接蛋白1(claudin 1)、閉鎖小帶1(zonula occludens-1,ZO-1)和小腸黏膜閉鎖蛋白(occludin)的mRNA表達量。提取樣品總RNA,檢測RNA濃度和純度合格后將各樣品RNA反轉錄為cDNA。使用Oligo 7.0設計引物,其中claudin 1和ZO-1參考LIU等[28]方法設計,引物長度分別為216和163 bp,occludin參考GenBank設計(NC_040267),引物長度為93 bp,以β-Actin為內參基因(NC_040362,長度97 bp)。RT-PCR使用20 μL擴增體系:10 μL 2×Biogold qPCR SuperMix(2×Biogold qPCR Mixture,浙江博而金科技股份有限公司),0.4 μL上下游引物,1 μL cDNA,8.2 μL ddH2O。RT-PCR在Roche LightCycler?480II進行,反應條件為:95 ℃預變性3 min,95 ℃變性10 s,60 ℃退火20 s,72 ℃延伸10 s,40個循環,72 ℃延伸10 min。目的基因的相對表達量用2-ΔΔCt法計算。
使用SPSS 22.0對試驗數據進行獨立樣本t檢驗,以≤0.05表示為差異顯著,以0.05<≤0.10表示差異具有顯著趨勢。
2.1.1 羔羊胃腸指數 從表2可以看出,MOS對羔羊胃腸指數(%活體質量)并未產生顯著影響(>0.05),僅有降低羔羊十二指腸指數的趨勢(=0.066)。
2.1.2 羔羊胃腸相對質量 從表3可以看出,MOS對羔羊胃腸相對質量(%全胃質量、%全腸質量和%全胃腸質量)均未產生顯著影響(>0.05),但飼喂含MOS代乳粉羔羊的大腸相對質量略高于對照組羔羊(>0.05)。
2.1.3 羔羊腸道相對長度 從表4可以看出,MOS顯著降低了羔羊空腸相對長度(%全腸長度,=0.040),此外,MOS有增加盲腸相對長度的趨勢(=0.094)。
2.2.1 羔羊胃腸內容物相對活體質量(%活體質量) 從表5可以看出,MOS對羔羊胃腸內容物相對活體質量(%活體質量)沒有產生顯著影響(>0.05)。
2.2.2 羔羊胃腸內容物相對總胃/腸內容物及總胃腸內容物相對質量(%總胃內容物、總腸內容物、總胃腸內容物) 從表6可以看出,MOS對羔羊胃腸內容物相對總胃/腸內容物及總胃腸內容物相對質量(%總胃內容物、%總腸內容物和%總胃腸內容物)均沒有產生顯著影響(>0.05),但采食含MOS代乳粉羔羊瘤胃內容物相對質量略高于對照組羔羊,而皺胃、盲腸和結腸內容物相對質量略低于對照組羔羊(>0.05)。

表2 MOS對羔羊胃腸指數的影響

表3 MOS對羔羊胃腸相對質量的影響

表4 MOS對羔羊腸道相對長度的影響
同行數據后所標字母相異表示差異顯著(<0.05),所標字母相同表示差異不顯著(>0.05)。下同
Different letters in the same row means significant difference between the treatments (<0.05), same letter in the same row means not significant difference between treatments (>0.05). The same as below

表5 MOS對羔羊胃腸內容物相對活體質量的影響

表6 MOS對羔羊胃腸內容物相對總胃/腸內容物及總胃腸內容物相對質量的影響
從表7可以看出,MOS顯著提高羔羊十二指腸絨毛高度和肌層厚度但顯著降低絨毛寬度(=0.033,=0.047,=0.015),此外,MOS有提高羔羊回腸絨毛高度、絨毛寬度和隱窩深度及皺胃肌層厚度的趨勢(=0.075,=0.078,=0.085,=0.084)。MOS對羔羊皺胃和小腸其他形態學指標未產生顯著影響(>0.05)。
從表8可以看出,MOS顯著上調了羔羊空腸ZO-1蛋白mRNA的表達量(=0.028),且有上調回腸occludin蛋白mRNA表達量的趨勢(=0.052)。MOS對羔羊十二指腸3種緊密連接蛋白、空腸claudin 1和occludin蛋白、回腸claudin 1和ZO-1蛋白mRNA的表達量以及各腸段上皮細胞凋亡率均沒有產生顯著影響(>0.05)。
幼齡反芻動物胃腸道發育中,胃腸道的相對質量(%活體質量、%全胃質量、%全腸質量和%全胃腸道質量)及相對長度(%全腸長度)等是反映機體消化道生長發育的重要指標[29]。幼齡反芻動物在生長發育中,體內組織器官會因機體不同的功能需要而表現出不同的生長發育速度[29]。本次試驗中,對照組和MOS處理組羔羊胃腸道相對質量未出現顯著差異,這是因為,整個試驗期羔羊均飼喂液體代乳粉,盡管代乳粉營養均衡,但前胃得不到正常發育,單純吃奶的動物,瘤胃缺乏粗糙物質的刺激[30],而固體飼料的攝入會為胃腸道發育帶來更好的物理刺激[31]。寇占英等[32]也報道采食粗飼料可以刺激瘤胃發育,而幼齡反芻動物僅喂乳汁或代乳品,會延滯前胃發育。但采食含MOS代乳粉的羔羊空腸相對長度顯著低于對照組羔羊,盲腸相對長度有高于對照組羔羊的趨勢且大腸各段的相對長度均高于對照組羔羊,主要是因為MOS作為低聚糖,在羔羊小腸不能被消化吸收,而在大腸段可作為有益菌的發酵底物并促進有害菌排出體外,促進大腸發育[33],使大腸相對長度增加而小腸相對長度有所降低,但由于其作為添加量很低的飼料添加劑,不能顯著改變羔羊胃腸道的生長發育,僅有微弱的作用。周懌[34]在犢牛代乳粉中添加75 mg·kg-1酵母β-葡聚糖后發現對胃腸道相對質量無顯著影響,閆曉剛[35]在犢牛飼糧中添加20 g·d-1酵母培養物,對犢牛前胃相對質量無顯著影響,也與本試驗結果相同。

表7 MOS對羔羊皺胃和小腸組織形態的影響

表8 MOS對羔羊小腸黏膜緊密連接蛋白mRNA表達量及上皮細胞凋亡的影響
胃腸道內容物滯留時間決定養分的消化吸收率,而內容物的滯留時間由食糜類型和胃腸道運動所決定。本次試驗中,所有羔羊胃腸道內容物含量均處于較低水平,主要是因為羔羊只飼喂液體代乳粉,因此,會縮短食糜在胃腸道中的滯留時間,且食糜流通量顯著低于采食固體飼料的動物[30]。胃腸道的節律性運動以及食糜的推送和分布,由食糜壓力差、體液因素、交感神經、迷走神經、平滑肌細胞興奮性、激素以及食糜的物理化學性質等多種因素調控[36]。本次試驗中,MOS對羔羊胃腸道內容物分布并未產生顯著影響,也說明食物的物理形態是決定胃腸道內容物分布的主要因素,MOS作為外源添加的益生素,不能對胃腸道運動和內容物分布產生顯著影響,僅由于對胃腸道益生菌有促進作用而改變食糜在胃腸道不同部位的滯留時間,導致采食含MOS代乳粉羔羊瘤胃內容物相對質量較高,而皺胃、盲腸和結腸內容物相對質量較低,也與前人在成年羊上的研究結果類似[33]。
對前胃功能發育不完善的幼齡反芻動物來說,皺胃和小腸是養分最主要的消化吸收部位,而養分的吸收取決于皺胃和小腸的組織形態。皺胃的黏膜和肌層厚度、小腸的絨毛高度、隱窩深度、黏膜厚度及V/C值等,是評價動物消化道對養分消化吸收的重要指標[37-39],如絨毛高度與腸道上皮細胞發育呈正相關,高度越高養分吸收能力越強[40],而隱窩深度與腸道上皮細胞成熟率呈負相關,隱窩越淺表明細胞成熟率高且分泌功能越強[41],此外,V/C值與腸道上皮細胞更新程度有關,也與腸道養分吸收能力呈正相關[42-43]。本次試驗中,羔羊腸道絨毛均保持在較高水平,這是因為,試驗羔羊全期只飼喂液體代乳粉,而固體飼料會加大對腸絨毛的刺激而導致腸絨毛脫落速度加快[44],液體飼料可維持腸絨毛高度[45]。本試驗中,MOS顯著提高了羔羊十二指腸絨毛高度和肌層厚度,并有提高回腸絨毛高度、絨毛寬度和皺胃肌層厚度的趨勢,表明MOS能提高羔羊皺胃和小腸段的養分消化吸收能力。周懌[34]報道飼糧添加75 mg·kg-1酵母β-葡聚糖可提高犢牛小腸絨毛高度和V/C值。在仔豬和肉仔雞的試驗中,飼糧添加0.1 % MOS可顯著提高小腸V/C值[21-22]。本試驗中采食含MOS代乳粉羔羊空腸ZO-1蛋白mRNA表達量顯著上調,回腸occludin蛋白mRNA表達量也有上調的趨勢,且小腸上皮細胞凋亡率均低于對照組羔羊,也說明MOS有利于維持小腸正常屏障功能,并使腸絨毛維持在較高水平。occludin蛋白、claudin 1蛋白和ZO-1蛋白是腸上皮細胞間的緊密連接蛋白,構建腸道屏障,機械性阻止微生物入侵[46]。而外界刺激、生理和病理等會使腸道屏障發生改變,增加腸上皮細胞間隙通透性,導致病原菌侵入細胞引發感染性疾病。Puthenedam等[47]報道,腸道中的乳酸菌和雙歧桿菌可上調ZO-1蛋白及occludin蛋白的表達,修復腸道損傷。楊俊等[48]也報道,腸上皮細胞被大腸桿菌(,EIEC)感染后,用乳酸菌處理時,緊密連接相關蛋白(claudin,occludin,junction adherensive molecular-1(JAM-1),ZO-1)表達量上調,腸道通透性得到改善。本試驗中,MOS作為化學益生素可以促進腸道中乳酸桿菌和雙歧桿菌等益生菌的增殖[16],因此發揮出維護腸道屏障健康的作用。腸道黏膜的更新和上皮細胞的轉型由上皮細胞凋亡和有絲分裂共同維持,凋亡一方面可以促進腸黏膜的適度發育和成熟,但另一方面,如細胞過度凋亡,將引起腸道功能紊亂[49]。尚沁沁[50]指出,益生菌可通過抑制病原菌在腸道的定植,調控細胞凋亡通路,降低腸上皮細胞凋亡率。Yan等[51]研究發現,乳酸菌可以抑制由腫瘤壞死因子α(tumor necrosis factor, TNF-α)誘導的腸道上皮細胞凋亡。本次試驗中采食含MOS代乳粉羔羊小腸上皮細胞凋亡率低于對照組羔羊,也是由于MOS促進腸道有益菌增殖而引起的[33]。
7—28日齡湖羊羔羊代乳粉中添加MOS對羔羊胃腸道相對質量和長度、內容物分布和組織形態基本無顯著影響,但顯著提高羔羊十二指腸絨毛高度和肌層厚度并顯著降低絨毛寬度且上調空腸ZO-1蛋白mRNA表達量,還有提高羔羊回腸絨毛高度、絨毛寬度和隱窩深度、皺胃肌層厚度及回腸occludin蛋白mRNA表達量的趨勢。表明代乳粉中添加0.2 % MOS對湖羊羔羊胃腸道發育的影響較為微弱,主要對小腸絨毛形態和屏障功能有一定促進作用。
[1] 郭江鵬, 潘建忠, 李發弟, 張元興, 楊宇澤, 郝正里. 不同早期斷奶日齡對舍飼肉用羔羊胃組織形態發育變化的影響. 畜牧獸醫學報, 2018, 49(5): 971-985.
GUO J P, PAN J Z, LI F D, ZHANG Y X, YANG Y Z, HAO Z L. Effect of different early weaned day on morphological development of stomach for housed lambs., 2018, 49(5): 971-985. (in Chinese)
[2] 馬俊南, 屠焰. 固液飼料飼喂水平對犢牛生長及胃腸道發育影響的研究進展. 家畜生態學報, 2017, 38(5): 7-12.
MA J N, TU Y. Research progress on feeding patterns of different solid and liquid feed level on growth and gastrointestinal tract development in holstein calves., 2017, 38(5): 7-12. (in Chinese)
[3] 馬志遠, 李飛, 李發弟, 李沖, 王維民, 唐德富, 劉婷, 潘香羽. 早期斷奶對湖羊羔羊生長性能及胃腸道發育的影響. 動物營養學報, 2015, 27(5): 1385-1393.
MA Z Y, LI F, LI F D, LI C, WANG W M, TANG D F, LIU T, PAN X Y. Effect of early weaning on performance and gastrointestinal tract development oflambs., 2015, 27(5): 1385-1393. (in Chinese)
[4] 柴建民. 斷母乳日齡對羔羊生長性能與胃腸道發育的影響[D]. 北京: 中國農業科學院飼料研究所, 2015.
CHAI J M. Effect of weaning age on the growth performance and development of the gastrointestinal tract in lambs [D]. Beijing: Feed Research Institute, Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[5] 吳志強. 不同喂奶量和不同類型開食料對哺乳期犢牛胃腸道發育的影響[D]. 泰安: 山東農業大學, 2016.
WU Z Q. Effect of different milk allowances and different starter on gastrointestinal development of dairy calves [D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[6] 楊宏波. 不同精粗比顆粒飼料對3~6月齡犢牛生長性能和胃腸道發育的影響[D]. 揚州: 揚州大學, 2015.
YANG H B. Effects of pellet diets with different concentrate-roughage ratio on growth performance and development of gastrointestinal tract of 3~6 monthly calves [D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[7] 吳兆海. 不同牧草補飼模式對犢牛生長及胃腸道發育的影響[D]. 太谷: 山西農業大學, 2014.
WU Z H. Effects of different forage supplementary patterns on the growth and gastrointestinal development of holstein calves [D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese)
[8] 何軍. 半胱胺鹽酸及代乳蛋白對山羊小腸粘膜生長發育的影響[D]. 南京: 南京農業大學, 2005.
HE J. Influence of cysteamine and milk replacer proteins on the development of small intestinal mucosa of goats [D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
[9] BARTLETT K S, MCKEITH F K, VANDEHAAR M J, DAHL G E, DRACKLEY J K. Growth and body composition of dairy calves fed milk replacers containing different amounts of protein at two feeding rates., 2006, 84: 1454-1467.
[10] GEIGER A J, PARSONS C L M, JAMES R E, AKERS R M. Growth, intake, and health of Holstein heifer calves fed an enhanced preweaning diet with or without postweaning exogenous estrogen., 2016, 99: 3995-4004.
[11] SOBERON F, VAN AMBURGH M E. Effects of preweaning nutrient intake in the developing mammary parenchymal tissue., 2017, 100: 4996-5004.
[12] ADHIKARI P, Kim W K. Overview of prebiotics and probiotics: focus on performance, gut health and immunity – a review., 2017, 17: 949-966.
[13] HALAS V, NOCHTA I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action., 2012, 2: 261-274.
[14] WESTLAND A, MARTIN R, WHITE R, MARTIN J H. Mannan oligosaccharide prepartum supplementation: effects on dairy cow colostrum quality and quantity., 2017, 11: 1779-1782.
[15] FERNANDEZ F, HINTON M, VAN GILS B. Dietary mannan- oligosaccharides and their effect on chicken caecal microflora in relation toEnteritidis colonization., 2002, 31: 49-58.
[16] NAJDEGERAMI E H, TOKMACHI A, BAKHSHI F. Evaluating the effects of dietary prebiotic mixture of mannan oligosaccharide and poly-β-hydroxybutyrate on the growth performance, immunity, and survival of rainbow trout,(Walbaum 1792), fingerlings., 2017, 48(3): 415-425.
[17] GIANNENAS I, DOUKAS D, KARAMOUTSIOS A, TZORA A, BONOS E, SKOUFOS I, TSINAS A, CHRISTAKI E, TONTIS D, FLOROU-PANERI P. Effects of, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs., 2016, 220: 159-167.
[18] BOZKURT M, BINTA? E, KIRKAN S, AK?IT H, Kü?üKYILMAZ K, ERBA? G, ?ABUK M, AK?IT D, PARM U, EGE G, KO?ER B, SEYREK K, TüZüN A E. Comparative evaluation of dietary supplementation with mannan oligosaccharide and oregano essential oil in forced molted and fully fed laying hens between 82 and 106 weeks of age., 2016, 95: 2576-2591.
[19] ATTIA Y A, ABD AL-HAMID A E, IBRAHIM M S, AL-HARTHI M A, BOVERA F, ELNAGGAR A S. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently., 2014, 164: 87-95.
[20] TORRECILLAS S, CABALLERO M J, MONTERO D, SWEETMAN J, IZQUIERDO M. Combined effects of dietary mannan oligosaccharides and total fish oil substitution by soybean oil on European sea bass () juvenile diets., 2016, 22(5): 1079-1090.
[21] 溫若竹. 甘露寡糖對肉仔雞腸道形態及微生物區系的影響[D]. 南京: 南京農業大學, 2010.
WEN R Z. Effects of mannose-oligosaccharide on intestinal morphology and bacterial community in gastrointestinal tract of broiler chickens [D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[22] 黃俊文, 林映才, 馮定遠, 鄭春田, 丁發源. 納豆菌、甘露寡糖對仔豬腸道pH、微生物區系及腸黏膜形態的影響. 畜牧獸醫學報, 2005, 36(10): 1021-1027.
HUANG J W, LIN Y C, FENG D Y, ZHENG C T, DING F Y. Effect of natto and MOS on intestinal pH, colonic microflora population and intestinal membrane shape of early weaning piglet., 2005, 36(10): 1021-1027. (in Chinese)
[23] Mour?o J L, Pinheiro V, Alves A, Guedes C M, Pinto L, Saavedra M J, Spring P, Kocher A. Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits., 2006, 126: 107-120.
[24] DIAZ T G, BRANCO A F, JACOVACI F A, JOBIM C C, BOLSON D C, DANIEL J L P. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology., 2018, 13: e0193313.
[25] ZHENG C, LI F D, HAO Z L, LIU T. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity, and antioxidant capacity of sheep., 2018, 96: 284-292.
[26] DEMIREL G, TURAN N, TANOR A, KOCABAGLI N, ALP M, HASOKSUZ M, YILMAZ H. Effects of dietary mannanoligosaccharide on performance, some blood parameters, IgG levels and antibody response of lambs to parenterally administeredO157: H7., 2007, 61(2): 126-134.
[27] 馬仲華. 家畜解剖學及組織胚胎學. 第3版. 北京: 中國農業出版社, 2001.
MA Z H. Animal anatomy, histology and embryology. 3rdedition. Beijing: China Agriculture Press, 2001. (in Chinese)
[28] LIU J H, XU T T, LIU Y J, ZHU W Y, MAO S Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats., 2013, 305: R232-R241.
[29] 任文. 不同直/支鏈淀粉比對肥羔胃腸道發育及其相關基因mRNA表達量的影響[D]. 大慶: 黑龍江八一農墾大學, 2014.
REN W. Effects of different amylose/amylopectin ratio on the development of gastrointestinal tract and mRNA expression of related genes in fattening lamb [D]. Daqing: Heilongjiang Bayi Agricultural University, 2014. (in Chinese)
[30] 劉敏雄. 反芻動物消化生理學. 北京: 北京農業大學出版社, 1991.
LIU M X. Ruminant digestive physiology. Beijing: Beijing Agricultural University Press, 1991. (in Chinese)
[31] KHAN M A, LEE H, LEE W, KIM H, KIM S, PARK S B, BAEK K S, HA J K, CHOI Y. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves., 2008, 91(3): 1140-1149.
[32] 寇占英, 李啟鵬, 莫放, 張曉明. 犢牛主要消化器官的發育規律. 中國畜牧獸醫學會動物營養學分會第六屆全國會員代表大會暨第八屆學術研討會論文集(下), 2000: 533-536.
KOU Z Y, LI Q P, MO F, ZHANG X M. Studies on development of digestive organs in calves. Proceedings of 6thNational Congress & 8th Symposium of Animal Nutrition Branch of China Animal Husbandry and Veterinary Society (Part Two), 2000: 533-536. (in Chinese)
[33] 鄭琛. 外源添加甘露寡糖對綿羊養分消化代謝、瘤胃發酵、消化道食糜流通量及免疫的影響. 蘭州: 甘肅農業大學, 2012.
ZHENG C. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal parameters, digesta passage and immune of sheep. Lanzhou: Gansu Agricultural University, 2012. (in Chinese)
[34] 周懌, 刁其玉, 屠焰, 云強. 酵母β-葡聚糖對早期斷奶犢牛胃腸道發育的影響. 動物營養學報, 2009, 21(6): 846-852.
ZHOU Y, DIAO Q Y, TU Y, YUN Q. Effects of yeast β-glucan on gastrointestinal development in early-weaning calves., 2009, 21(6): 846-852. (in Chinese)
[35] 閆曉剛. 酵母培養物和顆粒精料對荷斯坦犢牛生長發育的影響[D]. 長春: 吉林農業大學, 2005.
YAN X G. The effect of yeast culture and pellet concentrate on the growing development of Holstein calves [D]. Changchun: Jilin Agricultural University, 2005. (in Chinese)
[36] 趙如茜. 動物生理學. 第五版. 北京: 中國農業出版社, 2011.
ZHAO R Q. Animal physiology. 5thEdition. Beijing: China Agricultural Press, 2011. (in Chinese)
[37] 王彩蓮. 0~56日齡放牧綿羊消化系統發育性變化的研究[D]. 蘭州: 甘肅農業大學, 2009.
WANG C L. Developmental changes of digestive system in grazing sheep from birth to 56d [D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese)
[38] ZHANG X, WU X, CHEN W, ZHANG Y, JIANG Y, MENG Q, ZHOU Z. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period., 2017a, 12: e0179940.
[39] JIN Y M, JIANG C, ZHANG X Q, SHI L F, WANG M Z. Effect of dietaryon the growth performance, apparent digestibility, rumen fermentation and gastrointestinal morphology of growing lambs., 2018, 243: 1-9.
[40] 袁雪. 巴氏殺菌β-內酰胺類抗奶對犢牛生長性能、血液指標和胃腸發育的影響[D]. 大慶: 黑龍江八一農墾大學, 2016.
YUAN X. The effects of feeding pasteurized β-lactam antibiotic milk on holstein calves’ performance, blood indicator, gastrointestinal development [D]. Daqing: Heilongjiang Bayi Agricultural University, 2016. (in Chinese)
[41] 楊全明. 仔豬消化道酶和組織器官生長發育規律的研究[D]. 北京: 中國農業大學, 1999.
YANG Q M. The study on digestive enzymes and growth and development of tissues and organs of piglet [D]. Beijing: China Agricultural University, 1999. (in Chinese)
[42] BAKARE A G, CHIMONYO M. Relationship between feed characteristics and histomorphometry of small intestines of growing pigs., 2017, 47: 7-14.
[43] 姚浪群, 薩仁娜, 佟建明, 霍啟光. 安普霉素對仔豬腸道微生物及腸壁組織結構的影響. 畜牧獸醫學報, 2003, 34(3): 250-257.
YAO L Q, SA R N, TONG J M, HUO Q G. Effect of apramycin on intestinal flora and intestinal morphology of piglets., 2003, 34(3): 250-257. (in Chinese)
[44] 宋恩亮, 陳耀星, 王子旭, 巢國正, 萬發春, 吳乃科. 利雜犢牛小腸各段長度與黏膜結構的發育學變化. 動物醫學進展, 2006, 27(5): 66-70.
SONG E L, CHEN Y X, WANG Z X, CHAO G Z, WAN F C, WU N K. Developmental changes on the lengths of different intestinal segments and the morphological structure of small intestinal mucosa in Limisin-crossbred calf., 2006, 27(5): 66-70. (in Chinese)
[45] MCLEOD J S, CHURCH J T, YERRAMILLI P, COUGHLIN M A, PERKINS E M, RABAH R, BARTLETT R H, ROJAS-PENA A, GREENSON J K. Gastrointestinal mucosal development and injury in premature lambs supported by the artificial placenta., 2018, 53: 1240-1245.
[46] FORSTER C. Tight junctions and the modulation of barrier function in disease., 2008, 130(1): 55-70.
[47] PUTHENEDAM M, WILLIAMS P H, LAKSHMI B S, BALAKRISHNAN A. Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic: Role of F-actin and junctional adhesion molecule-1., 2007, 31(8): 836-844.
[48] 楊俊, 張中偉, 秦環龍. 乳酸菌對腸上皮細胞侵襲性大腸桿菌損傷的保護作用. 世界華人消化雜志, 2008, 16(30): 3394-3399.
YANG J, ZHANG Z W, QIN H L. Protective role ofplantarun in regulating intestinal epithelial cells response to pathogenic bacteria., 2008, 16(30): 3394-3399. (in Chinese)
[49] 王遠孝. IUGR豬的生長與腸道發育及L-精氨酸和大豆卵磷脂的營養調控研究[D]. 南京: 南京農業大學, 2011.
WANG Y X. Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutrition regulation by L-arginine and soya lecithine [D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[50] 尚沁沁, 李雅麗, 史艷云, 付愛坤, 李衛芬, 余東游. 益生菌對動物腸上皮細胞免疫功能的研究進展. 中國畜牧雜志, 2014, 50(13): 87-90.
SHANG Q Q, LI Y L, SHI Y Y, FU A K, LI W F, YU D Y. Research progress on probiotics for the immune function of intestinal epithelial cells in animal., 2014, 50(13): 87-90. (in Chinese)
[51] YAN F, POLK D B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells., 2002, 277(52): 50959-50965.
Effects of adding mannan oligosaccharides to milk replacer on the development of gastrointestinal tract of 7-28 days oldlambs
ZHENG Chen1, LI Fadi2,3, LI Fei2, ZHOU Juwang1, DUAN Pengwei1, LIU Huihui1, FAN Haimiao1, ZHU Weili1, LIU Ting1
(1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070;2State Key Laboratory of Grassland Agro-ecosystems, Key laboratory of Grassland Livestock Industry Innovation/Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020;3Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, Gansu)
【】This study was conducted to investigate the effects of mannan oligosaccharides (MOS) supplementation to milk replacer on the development of gastrointestinal tract of 7-28 day-oldlambs. 【】Thirty 7 day-oldmale lambs were chosen and divided into 2 groups randomly, fifteen lambs in each group and each lamb as a repeat. Lambs were fed milk replacer with or without 0.2 % MOS, respectively. The test lasted for 21 days. Eight lambs were selected from each group randomly and slaughtered at 28 day-old. The weights of the compound stomach and the intestinal tract with and without content, and lengths of the intestinal tract were measured, and the relative quality and length were calculated. While the tissue samples from fundus gland region of the abomasum, the middle part of duodenum, jejunum and ileum were fixed in paraformaldehyde to analyse the histomorphology, and the apoptotic rate of intestinal epithelial cells as well. And the mRNA expression of claudin 1, zonula occludens-1 (ZO-1), and occludin protein of duodenum, jejunum and ileum mucosa were measured.【】The results showed that except relative length of jejunum (=0.040), the relative weights (% body weight, % stomach weight, % intestinal tract weight, and % gastrointestinal tract weight), relative lengths (% intestinal tract length), content of stomach and intestinal tract (% body weight, % stomach content weight, % intestinal tract content weight, and % gastrointestinal tract content weight), the apoptotic rate of intestinal epithelial cells and mRNA expression of claudin 1 protein in intestinal tract of lambs were not affected by MOS (>0.05). However, MOS elongated the villus height and the muscular thickness, and decreased the villus width of lamb duodenum significantly (=0.033=0.047=0.015). MOS also up-regulated the mRNA expression of ZO-1 protein of lamb jejunum significantly (=0.028). And there was a tendency that MOS elongated villus height, width and crypt depth of ileum, muscular thickness of abomasum, and mRNA expression of occludin protein of ileum (=0.075=0.078=0.085=0.084=0.052).【】MOS almost did not affect the relative weights, lengths, and content distribution of gastrointestinal tract of 7-28 days oldlambs, but improved the histomorphology of duodenum and ileum, indicating it could maintain barrier function of intestinal tract and benefit to nutrients digestibility.
lamb; mannan oligosaccharides; milk replacer; gastrointestinal tract; development
10.3864/j.issn.0578-1752.2020.02.014

2019-06-24;
2019-08-14
國家自然科學基金(31560646,31860657)
鄭琛,E-mail:zhengc@gsau.edu.cn。通信作者劉婷,E-mail:liuting@gsau.edu.cn
(責任編輯 林鑒非)