姚敏,李大祥,謝忠穩
茶葉主要特征性化合物抗心血管炎癥研究進展
姚敏,李大祥,謝忠穩*
安徽農業大學茶樹生物學與資源利用國家重點實驗室,安徽 合肥 230036
慢性炎癥是誘發動脈粥樣硬化、高血壓、心肌梗死等心血管疾病的重要原因之一。炎癥因子如IL-6、TNF-α、IL-1β等均能導致心肌肥大、心肌纖維化和血管平滑肌細胞異常增殖。茶葉中富含的多種特征性化合物如茶多酚、茶氨酸、茶黃素、咖啡堿等,它們通過抑制重要炎癥介質的產生和調控NF-κB、MAPK、Tolls樣受體等信號通路,抑制心血管炎癥的發生及發展,對心血管疾病具有預防和治療作用。本文綜述了近幾年茶葉中的茶多酚、茶氨酸、茶黃素等特征成分通過抑制心血管炎癥預防心血管疾病的作用及其機制的研究進展。
心血管炎癥;茶多酚;信號通路;特征性化合物
茶是世界上最受歡迎的飲品之一。茶葉中富含多種生物活性成分,具有多種保健功能。隨著近年來對茶葉健康功能的深入研究,發現茶葉中的特征性化合物如茶多酚、茶氨酸、茶黃素、咖啡堿等均有健康功效[1]。茶多酚是茶葉的天然組分,包含黃烷醇類、黃酮及黃酮醇類、花色素類和酚酸等四大類30余種化合物。茶多酚分子具有α-苯基苯并二氫吡喃為主體的基本結構,其活潑的羥基能提供氫,是一類天然的抗氧化劑[2]。兒茶素類尤其是表沒食子兒茶素沒食子酸酯(Epigallocatechin gallate,EGCG)具有較強的抗氧化、抗炎作用,并且具有廣泛的藥理功效[3-4]。
隨著社會經濟的發展,心血管疾病已成為人類患病率最高的疾病之一,且具有高患病率、高致殘率和高死亡率的特點,是一類嚴重威脅人類健康的常見慢性疾病。心血管疾病涉及心臟或血管的疾病,包括冠狀動脈疾?。ㄐ慕g痛和心肌梗塞)、中風、心力衰竭、心律失常、心肌炎、主動脈瘤、動脈粥樣硬化和高血壓等[5]。全世界每年因心血管疾病死亡的人數居各種死因首位[5-7]?;??680?126名35~75歲中國居民的心血管疾病風險評估調查數據顯示,心血管疾病高危人群占總人群的9.5%,而糖尿病、血脂異常、肥胖等因素將加重心血管疾病[8]?;A研究數據表明炎癥和免疫反應在心血管疾病的發生和發展中發揮著關鍵的作用?;趧游锬P偷难芯堪l現,特定的免疫炎癥轉導途徑可能是治療心血管疾病的優先選擇目標[9]。
動脈粥樣硬化是一種最常發生的動脈病變。目前的一些研究認為,動脈粥樣斑塊從發生、發展到轉移的全過程就是一個慢性炎癥過程。炎癥因子如白細胞介素-6(Interleukin 6,IL-6)、腫瘤壞死因子-α(Tumor necrosis Factor,TNF-α)、白細胞介素-1β(Interleukin 1β,IL-1β)等均能導致心肌肥大、心肌纖維化、心肌細胞凋亡和血管損傷等病癥[10]。同時,大量研究揭示了多種炎性因子、生長因子等在粥樣斑塊形成中的作用[11]。另外,血管平滑肌細胞(Vascular smooth muscle cells,VSMCs)作為構成血管壁組織結構的主要細胞,在血管病變早期,VSMCs發生由收縮表型轉向增殖表型。炎癥因子和生長因子的不正常表達與VSMCs表型轉化密切相關,多種信號通路如NF-κB(Nuclear factor kappa-light-chain-enhancer of activated B cells)、AMPKs(Mitogen-activated protein kinases)、Notch、Tolls受體(Toll-like receptor)信號通路等及炎癥介質如IL-6、TNF-α、IL-8等參與其中[12-13]。VSMCs的異常增殖和遷移是血管損傷后動脈粥樣硬化和再狹窄的重要致病機制[14]。因此,通過抗炎途徑來降低心血管疾病發病率可能成為一種積極的治療措施。基于此,本文主要綜述了近幾年茶葉中的幾種特征性化合物茶多酚、茶氨酸、茶黃素預防與治療心血管炎癥的研究進展,為進一步研究它們抗炎的分子機制提供基礎。
大量研究證明,飲茶對于預防人和動物的心血管疾病具有重要的作用[15-16]。其中,茶葉中的重要活性成分茶多酚在抗動脈粥樣硬化、高血壓等心血管疾病中發揮重要的作用[17-18]。Pang等[19]利用Meta分析,對259?267人進行的9項研究證明了綠茶能夠降低腦出血、腦梗死、心肌梗死等心血管疾病的風險。冠心病是冠狀動脈血管發生動脈粥樣硬化病變而引起血管腔狹窄或阻塞,造成心肌缺血、缺氧或壞死而導致的心臟病。王澤穆[20]通過Meta分析發現飲用綠茶能夠顯著降低冠心病的發病風險,同時證明EGCG可以抑制炎癥因子TNF-α誘導的內皮功能紊亂,這可能是綠茶抗動脈粥樣硬化作用的一個機制。李雅等[21]在探討冠心病合并糖尿病患者血清中sCD146(Soluble cluster of differentiation 146)、PAPP-A(Pregnancy-associated plasma protein A)水平與斑塊易損性的相關性及茶多酚對其影響的試驗中,發現sCD146、PAPP-A水平在患者血清中明顯高于健康對照者,斑塊不穩定組明顯高于斑塊穩定組,斑塊穩定組與正常對照組無統計學差異;口服茶多酚患者血清中sCD146、PAPP-A水平顯著下降。證明了茶多酚具有穩定和改善冠脈斑塊的作用。在高血壓的預防和治療方面,流行病學研究表明,在治療高血壓的藥物中加入膳食黃酮類化合物對血壓、血脂、瘦素、肥胖和炎癥有額外的益處[22]。Nogueira等[23]調查了20名年齡在(41.1±8.4)歲肥胖的高血壓前期女性短期飲茶后血壓的變化,發現與安慰劑相比,綠茶提取物(Green tea extract,GTE)補充4周后能夠顯著降低血壓。Bogdanski等[24]的試驗證明,與安慰劑組相比,GTE顯著降低高血壓患者的收縮壓和舒張壓,GTE組空腹血糖、胰島素水平和胰島素抵抗顯著降低,且GTE組血清中炎癥因子TNF-α和高敏C反應蛋白(High-sensitive C-reactive protein,hs-CRP)顯著降低,每天補充379?mg GTE(包括208?mg EGCG),對肥胖相關高血壓患者的血壓、胰島素抵抗、炎癥和氧化應激等有顯著改善。
2.1.1 抑制心血管炎癥因子
茶葉主要特征性化合物抗炎的主要機制之一是調控炎癥因子的表達,從而達到抑制炎癥發生、減輕炎癥程度或縮短炎癥持續時間的作用。大量試驗證明,茶葉特征性化合物具有廣泛抑制炎癥因子的功能。尤其是茶多酚類物質,其在炎癥引起的心血管疾病的預防和治療中有重要作用[25-31]。
綠茶多酚能夠降低TNF-α的表達抑制炎癥反應,從而避免慢性炎癥引起的大鼠心肌纖維化[25]。IL-1β作為炎性因子在炎癥等病理狀態下發揮重要作用,刺激機體產生氧自由基,損害細胞。深入研究發現,EGCG能夠顯著抑制脂多糖(Lipopolysaccharides,LPS)誘導的人大腦微血管內皮細胞(Human cerebral microvascular endothelial cells,hCMEC)中IL-1β和TNF-α的表達[26]。表兒茶素預處理雄性SD大鼠,能夠下調大鼠腦出血后IL-1β、TNF-α、IL-6,上調IL-4、IL-10、轉化生長因子-β(Transforming growth factor-β,TGF-β)等炎癥因子的表達,進而減輕腦出血后炎癥反應,改善腦出血后期腦白質損傷情況[27]。心臟移植、心肌炎、心肌缺血和動脈粥樣硬化的大鼠模型口服兒茶素后,IL-4、IL-6、基質金屬蛋白酶(Matrix metalloproteinase,MMPs)等炎癥因子可被顯著抑制[28]。另外,在心衰大鼠體內的炎癥反應中,兒茶素能夠顯著抑制TNF-α、IL-1、IL-17等炎癥因子的過度分泌[29]。Mahajan等[30]用正常膽固醇血癥高血壓受試者的血清培養THP-1巨噬細胞,發現炎癥因子IL-6和MMP-9的mRNA表達顯著增加(<0.05),綠茶多酚干預顯著降低了IL-6和MMP-9的表達,且呈時間依賴性(<0.05),這可能是茶多酚抑制高血壓炎癥的一種方式。
茶氨酸是茶葉中獨特的生物活性成分,被廣泛用作功能性成分和膳食補充劑,具有抗炎、抗氧化和肝保護作用。在LPS誘導的小鼠炎癥模型中加入茶氨酸干預發現,茶氨酸顯著抑制LPS誘導的血漿中干擾素γ(Interferon-γ,IFN-γ)的升高,并顯著增加IL-10的表達,提高了IL-10/IFN-γ比率。此外,茶氨酸降低血漿CRP水平。因此,茶氨酸能夠抑制炎癥因子的表達,從而具有保護血管的作用[31]。
茶葉主要特征性化合物如茶多酚、茶氨酸能夠調控許多炎癥因子的表達,在控制炎癥發生、發展中具有重要的作用,對臨床預防和治療慢性炎癥引起的心血管疾病提供了重要的理論支持。
2.1.2 抑制心血管重要促炎分子降低炎癥反應
茶葉主要特征性化合物抗炎作用的發揮除了與調控炎癥因子有關,還和調控炎癥相關的重要分子有關。茶多酚能夠增加AKT、內皮一氧化氮合成酶(Endothelial nitric oxide synthase,eNOS)的磷酸化和一氧化氮的產生來抑制內皮細胞的胞外分泌,從而減少白細胞的聚集和血管炎癥[32]。Hwang等[33]研究發現,L-茶氨酸顯著降低卵清蛋白(Ovalbumin,OVA)誘導的哮喘小鼠肺血管炎性細胞浸潤。細胞外基質金屬蛋白酶誘導因子(Extracellular matrix metalloproteinase inducer,EMMPRIN)和MMPs在許多炎癥性疾病中過表達,并在動脈粥樣硬化斑塊破裂中起重要作用。EGCG(10~50?μmol·L-1)能夠顯著抑制佛波酯誘導的巨噬細胞中EMMPRIN和MMP-9的表達以及炎癥因子細胞外信號調節激酶1/2(Extracellular regulated protein kinase,ERK1/2)、p38和c-jun氨基-(N)-末端激酶1/2/3(c-Jun amino (N)-terminal kinases 1/2/3,JNK1/2/3)的激活[34]。另外,趙興梅等[35]研究發現,兒茶素顯著抑制oxLDL誘導的小鼠RAW264.7細胞中血管細胞粘附因子-1(Vascular cell adhesion molecule-1,VCAM-1)的表達,從而減輕VCAM-1介導的血管炎性病變,預防動脈粥樣硬化等心血管疾病的發生。
2.2.1 抑制NF-κB信號通路
NF-κB是真核細胞中重要的轉錄調節因子之一,在促炎基因表達調節中發揮重要的作用,介導多種炎癥細胞因子如TNF-α、IL-1β、IL-6、IL-8的合成。NF-κB的P65與調節蛋白NF-κB抑制劑(Inhibitor of NF-κB,I-κB)結合,以無活性形式存在于細胞質中,機體可通過膜上受體蛋白感知外界刺激(如LPS)激活IκB激酶(IκB kinase,IKK),進而激活I-κB。I-κB被激活后降解,p65-p50異二聚體隨即被釋放出來,進入細胞核與DNA上的特定位點結合,啟動炎癥基因的表達[36]。已有研究證明,NF-κB可以影響許多慢性炎癥引起的心血管疾病,包括動脈粥樣硬化、心肌缺血/再灌注損傷、血管損傷、心肌梗死和心力衰竭等[37]。
研究表明,茶葉中的多種活性物質對NF-κB信號通路的調控有積極的作用[38-39]。Li等[40]研究發現,GTE降低了高脂飲食小鼠血清中炎癥因子TNF-α的濃度,但不影響低脂飲食小鼠血清中TNF-α的濃度。另外,GTE的攝入能夠通過調控NF-κB炎癥通路降低Nrf2缺失小鼠血脂水平,從而降低動脈粥樣硬化等血管疾病的發病幾率[41]。
大量研究表明,茶葉中茶多酚的抗炎功效十分顯著。茶多酚的主要成分EGCG在體內和體外試驗中均被報道具有抗炎活性,能夠抑制NF-κB的表達[42-43],并且EGCG能夠抑制細胞TNF-α的產生[44],阻斷NF-κB的激活進而抑制細胞粘附因子的表達,減少白細胞粘附及遷移到血管內皮[28],從而抑制炎癥反應。研究表明,EGCG預處理顯著抑制高濃度葡萄糖誘導的人主動脈內皮細胞(Human aortic endothelial cells,HAECs)中單核細胞產生和HAECs的粘附,并且降低HAECs中NF-κB調節的轉錄活性。且EGCG治療能夠減少db/db小鼠主動脈血管中NF-κB p65的核轉位,可能對糖尿病誘發的血管炎癥具有直接保護作用[45]。另外,多酚類物質槲皮素預處理VSMCs細胞,能夠有效抑制ox-LDL誘導的單核細胞趨化蛋白-1(Monocyte chemotactic protein-1,MCP-1)和TNF-α的分泌及NF-κB(p65)核轉位,NF-κB(p65)抑制劑預處理VSMCs也起到了與槲皮素類似的抗炎作用[46]。
茶黃素(Theaflavins,TFs)是茶多酚類物質的氧化物,是一類具有苯駢卓酚酮結構的酚性色素,具有抗氧化、抗菌、抗腫瘤等作用[47]。近幾年研究發現茶黃素在抗炎方面也有顯著效果。李偉[48]研究發現,EGCG、TF1、TF3抑制血管緊張素Ⅱ(AngiotensinⅡ,AngⅡ)引起的大鼠VSMCs炎癥反應,可能是通過抑制ROS的產生和NF-κB信號途徑,而不是p38/MAPK途徑。李紅月等[49]利用試驗性大鼠腦缺血模型研究茶黃素對大鼠缺血性腦損傷所致炎癥的作用,發現茶黃素能夠降低血清中TNF-α、IL-1β及細胞間黏附分子-1(Intercellular adhesion molecule 1,ICAM-1)含量,抑制NF-κB mRNA的表達,從而緩解缺血損傷造成的血管炎癥。TF3以劑量依賴性方式顯著降低TNF-α、IL-1β和IL-6的mRNA表達,分子機制的研究表明,TF3阻止了IκB從細胞質部分磷酸化,并減少LPS誘導的NF-κB p65的核積累[50]。此外,Fu等[51]研究發現茶黃素通過抑制NF-κB相關途徑減輕腦出血引起的大鼠炎癥反應和腦損傷,該研究為腦出血的治療提供了新的思路。
2.2.2 抑制MAPKs信號通路
MAPKs是信號從細胞表面傳導到細胞核內部的重要傳遞者,是參與炎癥信號轉導機制中調節相關基因表達與細胞因子表達等的重要組成部分[52]。MAPKs信號級聯反應在心血管疾病的發病機制中起重要作用。經典的MAPKs包括ERK1/2、JNK1/2/3和p38亞型(α、β、γ和δ)。
綠茶及茶多酚對炎癥的調控可通過多靶點實現[53]。在培養的大鼠主動脈VSMCs中,AngⅡ誘導的增殖與ERK1/2、JNK1/2或p38MAPKs的磷酸化增加有關。綠茶兒茶素通過抑制MAPKs和激活蛋白-1信號通路的激活而降低AngⅡ刺激引起的VSMCs增殖[54]。Zheng等[55]發現,EGCG抑制AngⅡ誘導的VSMCs肥大,主要通過抑制JNK的激活和c-jun的轉錄,對AngⅡ激活的p38MAPK和ERK1/2的磷酸化沒有顯著抑制效果;而與EGCG結構類似的EGC卻不能抑制AngⅡ誘導的VSMCs肥大。Yang等[56]報道EGCG可通過介導PKC、ERK1/2信號通路抑制高糖誘導的VSMCs增殖。此外,在動物試驗中發現,綠茶多酚(Green tea polyphenols,GTP)的干預能降低動脈粥樣硬化兔主動脈粥樣硬化斑塊中磷酸化p38MAPK的表達,從而減緩動脈粥樣硬化斑塊發展,起到保護血管的作用[57]。王齊明[58]的研究表明,EGCG能夠增強高脂飲食誘導的ApoE-/-小鼠動脈粥樣硬化斑塊穩定性,其機制是通過EGCG與67?kDa層粘連蛋白受體(67?kDa laminin receptor,67LR)相互作用,抑制ERK1/2、p38以及JNK信號轉導通路的激活,進而降低巨噬細胞EMMPRIN和MMP-9表達。在心臟保護方面,EGCG能夠減少缺血再灌注(I/R)損傷造成的心肌梗死面積,EGCG通過激活再灌注損傷營救激酶(Reperfusion injury salvage kinase,RISK)途徑和降低p38和JNK磷酸化對局部心肌I/R損傷起到保護作用,表明EGCG可能對接受心肌I/R損傷手術的患者具有心臟保護作用[59]。
TF3具有多種生物活性,包括降低冠心病發病率、預防癌癥等能力。Wu等[60]的研究發現,TF3能夠抑制由LPS誘導的RAW 264.7巨噬細胞JNK和p38 MAPKs的磷酸化,這也證明了TF3可能是治療心血管疾病炎癥的一個潛在的候選藥物。
2.2.3 抑制Toll樣受體信號通路
TLRs是重要的先天免疫信號受體之一,在抗炎免疫中發揮重要作用,啟動復雜的信號通路,導致炎癥反應。TLRs在心血管疾病尤其是慢性炎癥引發的動脈粥樣硬化、高血壓、中風等疾病的發展中起決定性作用[61]。研究表明,當TLRs受體被激活后,可表達和分泌多種促炎癥細胞因子如TNF-α、IL-6等,通過信號傳導激活NF-κB。因此,抑制TLRs途徑還能有效防止NF-κB途徑的激活,起到抗炎作用。TLRs能在各種免疫細胞中表達,已被用于各種感染性和炎癥疾?。òò┌Y)靶向治療藥物的開發[62]。
EGCG具有預防各種炎癥相關疾病的潛力。67LR是一種EGCG介導抗癌作用的細胞表面受體。Hong等[63]研究發現1?μmol·L-1EGCG降低巨噬細胞中TLR4的表達。通過67LR抑制劑或RNAi介導的67LR沉默后,顯著減弱了EGCG對LPS誘導的下游信號通路激活和靶基因表達的抑制作用。還發現是67LR介導了EGCG降低TLR4的表達。另外,EGCG誘導了TLR信號的負調節因子Toll相互作用蛋白(Toll interacting protein,Tollip)的顯著上調,通過67LR沉默或67LR抑制劑可阻止EGCG的作用。這些發現表明67LR介導了EGCG的抗炎作用。在LPS引起的內皮細胞炎癥中,EGCG同樣能夠通過67LR抑制炎癥的發生。另外,Tollip的沉默導致EGCG對LPS誘導的細胞相關粘附分子(例如ICAM-1和VCAM-1)表達的抑制作用消除[64]。這些新發現為理解TLRs信號通路的負調控機制和治療炎癥性疾病的有效治療干預提供了新的見解。另外,MMP-9、MCP-1和TLR4被證實在動脈粥樣硬化和斑塊不穩定中起重要作用[65]。Li等[66]研究表明,EGCG(1?μmol·L-1)能夠抑制TLR4/MAPK/NF-κB信號通路,降低斑塊不穩定性介導細胞因子MMP-9和MCP-1的表達,證明EGCG可能有效穩定動脈粥樣硬化斑塊。
最近研究表明,TLR4的異常激活在肥胖引起的炎癥性疾病中具有關鍵作用,包括高胰島素血癥、高甘油三酯血癥和心血管疾病[67]。Kumazoe等[68]證明了67LR的天然激動劑EGCG通過E3泛素蛋白環指蛋白216(Ring finger protein 216)的上調抑制了TLR4的表達。并且,EGCG以sGC(Soluble guanylate cyclase)依賴性方式上調RNF216。此外,還發現高吸收率67LR激動劑EGCG3?Me顯著降低脂肪組織中TLR4的表達,完全抑制了高脂/高糖(HF/HS)誘導的脂肪組織TNF-α的上調和血清MCP-1的升高。EGCG3?Me的攝入可預防HF/HS誘導的高胰島素血癥和高甘油三酯血癥。因此,67LR是多酚類緩解肥胖引起的炎癥的一個有吸引力的靶點。
李海禹等[46]用槲皮素預處理氧化低密度脂蛋白(ox-LDL)刺激的VSMCs,與ox-LDL刺激組相比,槲皮素預處理有效減少TLR4、MyD88 mRNA和蛋白的表達,并呈劑量依賴性(<0.01)。TLR4抑制劑預處理VSMCs也起到了與槲皮素類似的抗炎作用。因此,槲皮素減少ox-LDL誘導的VSMCs炎癥因子的表達,可能依賴于其對TLR4介導的炎癥通路的調控。
2.2.4 抑制STAT信號通路
IFN及其信號轉導及轉錄激活因子(Signal transduction and activator of transcription,STAT)調節多種炎癥反應,IFN-1/STAT系統與許多自身炎癥綜合癥相關,并且可以充當炎癥相關組織損傷的驅動因子或抑制劑[69]。IFNγ是一種在組織內穩態、免疫和炎癥反應以及腫瘤免疫監測中具有重要作用的細胞因子。IFNγ受體的信號傳導激活Janus激酶(Janus Kinase,JAK)和STAT1通路,誘導具有關鍵免疫效應器功能的經典干擾素刺激基因的表達。巨噬細胞的IFNγ介導極化為“M1樣”狀態增強促炎活性和巨噬細胞對耐受性和抗炎因子的抵抗力[70]。JAK-STAT信號傳導的失調與各種心血管疾病有關,在心肌缺血、血管再狹窄、心力衰竭及心肌保護等過程中發揮重要作用[71]。
近兩年的研究表明,茶多酚可以通過調控JAK2/STAT3信號通路發揮抗炎作用[72-74]。EGCG及JAK2特異性抑制劑AG490均能抑制PDGF-BB誘導的VSMCs的增殖和遷移,且EGCG能明顯降低PDGF-BB刺激上調的VSMCs的JAK2、STAT3、Cyclin D1蛋白質水平及STAT3磷酸化(p-STAT3)水平。因此,EGCG抑制PDGF-BB誘導的VSMCs增殖和遷移可能通過抑制JAK2/STAT3信號轉導通路而實現[75]。此外,石偉林等[76]的研究顯示,EGCG通過STAT3通路抑制LPS誘導的血管內皮細胞炎癥因子的表達?;ㄇ嗨仡愂嵌喾拥囊环N,研究表明,花青素可通過抑制氧化應激和炎癥減輕肝臟缺血再灌注損傷,其機制可能與抑制JAK2/STAT3/P53信號通路的激活有關[77]。原花青素可以抑制H9C2大鼠心肌細胞缺氧/復氧(Hypoxia/Reoxygenation,H/R)損傷引起的p-JAK2和p-STAT3水平下調,以及氧化應激反應[78]。
JAK-STAT信號通路在炎癥和自身免疫疾病的發病機理中十分重要,長期慢性炎癥是心血管疾病發病的重要原因,茶葉中的活性物質在抗炎方面有著顯著的效果,但茶葉活性物質在這一信號通路中的調控作用研究較少,需要進一步的研究闡明其聯系與內在機制,為茶葉主要活性成分靶向抗炎提供更多證據。
2.2.5 抑制Notch信號通路
Notch信號通路是一種存在于大多數多細胞生物體的細胞信號傳導系統,高度保守,是發育和疾病中血管形成和形態發生的關鍵組成部分,異常或失調的Notch信號傳導是許多心血管疾病發生的原因或促成因素[79]。研究表明,Notch信號是心肌梗死后心臟修復和再生的重要調節因子[80]。Notch1通路的激活與TLR4及NF-κB介導的炎癥反應密切相關,抑制Notch通路能夠改善缺血再灌注過程中對心臟的炎癥損傷[81]。
EGCG可通過減少細胞中Notch1 mRNA的表達來抑制Notch1通路的活化[39],Wang等[82]首次確定了EGCG可直接與Notch受體結合。Huang等[83]同樣也證實了Notch1作為EGCG靶標在早期炎癥中發揮調節作用。在心臟中,Notch參與缺血時的保護反應,減少再灌注誘導的氧化應激和心肌損傷,以及心肌分化[84]。而Notch途徑與PI3K/Akt和NF-κB信號通路有交叉作用,并且兩種通路都是缺血預處理誘導的心肌保護中的因素[85]。因此Notch信號傳導途徑可能廣泛參與茶葉特征性化合物抑制心血管炎癥的過程。而目前的研究主要證明了EGCG在Notch通路中的作用。探索茶葉中的其他特征性成分對Notch信號通路的調控,可在今后臨床治療中達到靶向保護心臟的作用。同時能夠更深入的了解茶葉活性成分的抗炎機制。
2.2.6 抑制Nrf2信號通路
Nrf2(Nuclear erythroid 2-related factor 2,Nrf2)是一種堿性亮氨酸拉鏈(Basic leucine zipper,bZIP)蛋白。近年來研究發現,Nrf2通過協調炎癥細胞的募集和抗氧化反應元件(Anti-oxidative response element,ARE)調節基因表達調控炎癥反應[86]。氧化應激、血管再狹窄、心臟缺血損傷等都是心血管疾病危險因素,Nrf2在心血管疾病的調控中具有重要的意義[87-88]。
一些研究表明,EGCG調控Nrf2信號通路,通過減少腦梗死面積、抑制平滑肌細胞增殖、調控炎癥信號通路(p38MAPK、NF-κB等)等阻止心腦血管疾病的發生[89]。EGCG促進Nrf2-Keap1(Kelch樣ECH相關蛋白1,Keap1)復合物的解離,解離的Nrf2易位至細胞核并激活含有ARE元件的基因轉錄,進而抑制NF-κB;解離的Keap1直接與IKKβ相互作用抑制NF-κB的激活[90]。在缺血性卒中早期,EGCG治療促進短暫性大腦中動脈阻塞小鼠的血管生成,可能是通過上調Nrf2信號通路。EGCG的保護作用被MAPK/ERK抑制劑減弱[91]。另外,花青素可能通過激活Nrf2信號通路,抑制炎癥因子如VCAM-1、MCP-1等的表達,保護內皮細胞減輕動脈粥樣硬化[92]。綜上所述,茶葉中的部分活性成分,能夠通過抑制Nrf2信號通路下調炎癥因子的表達,從而對預防慢性炎癥引起的心血管疾病有一定的意義。
近年來的研究表明,心血管疾病的發生與免疫系統密切相關,炎癥反應能夠觸發自身免疫系統[93]。EGCG能夠參與調控T淋巴細胞和B淋巴細胞介導的炎癥反應,抑制炎癥的發生[94]。炎癥小體是天然免疫系統的重要組成部分,主要有NLRP1、NLRP3、NLRC4、IPAF和AIM2 5種。炎癥小體能夠激活促炎癥蛋白酶Caspase-1,誘導細胞的炎癥壞死。已知的炎性小體一般均含有一種NOD樣受體(NOD-like receptor,NLR)家族蛋白(如NLRP1),其在炎癥性疾病發生發展中發揮了重要作用。其中NLRP3炎癥小體被機體各種內外源性危險信號激活后,通過活化Caspase-1促進IL-1β、IL-18的成熟和釋放,引起機體的炎癥反應,參與肥胖、2型糖尿病、痛風、動脈粥樣硬化等炎癥性疾病的發生及發展[95-96]。研究表明,EGCG能夠下調NLRP1、NLRP3的表達[97-99]。EGCG能夠劑量依賴的抑制LPS啟動NLRP3炎癥小體后caspase-1的活化和IL-1β的分泌。另外,EGCG顯著降低了高脂飲食誘導的肥胖小鼠caspase-1的活化和炎性因子IL-1β分泌[100]。花青素通過調節Bcl-2家族蛋白減輕了腦I/R引起的細胞凋亡。同時,花青素抑制TNF-α,IL-1β,IL-6等炎癥因子的表達。此外,NF-κB和NLRP3炎性小體途徑可能參與花青素的抗炎作用,對腦I/R損傷起到保護作用[101]。
高遷移率族蛋白B1(High mobility group box1,HMGB1)是高遷移率族(HMG)蛋白質超家族的成員,其成員是豐富且普遍存在的核蛋白質。在細胞外,HMGB1可以作為激活先天免疫系統、調節廣泛生理病理反應的警報分子。炎癥反應發生時,HMGB1可以與晚期糖基化終產物受體(Receptor for advanced glycation endproducts,RAGE)、TLR-2和TLR-4受體相互作用,并且通過與其他促炎介質協同的方式誘導炎癥反應。另外,HMGB1在動脈粥樣硬化的發展中具有重要的作用[102]。

圖1 茶葉中的主要特征性成分對NF-κB、MAPKs、TLRs、STAT、Notch及Nrf2信號通路的調控作用示意圖
Yang等[103]的研究結果表明,EGCG能夠降低頸動脈球囊損傷大鼠內膜面積和內膜面積/內側面積的比例。EGCG處理顯著抑制球囊損傷誘導的HMGB1和RAGE的表達水平。此外,EGCG顯著抑制NF-κB活化,以及與HMGB1密切相關的炎癥反應和氧化應激損傷。目前的數據提供了EGCG在頸動脈球囊損傷模型中減弱新內膜增生的證據,這表明EGCG可以作為臨床中抑制血管再狹窄的潛在藥物。另外,EGCG能夠刺激自噬并降低內毒素刺激的巨噬細胞中的細胞質HMGB1水平[104]。槲皮素處理降低了內毒素血癥動物體內HMGB1的循環水平,并且抑制了LPS誘導的巨噬細胞中HMGB1的釋放以及細胞因子活性。因此,槲皮素具有預防LPS誘導的HMGB1釋放和促炎癥功能[105]。
綜上所述,茶葉中的特征性活性成分能夠抑制免疫增強的促炎信號及炎癥反應,并且其預防心血管疾病的研究主要集中在多酚類物質,這為研究茶葉中其他特征性化合物利用免疫途徑控制炎癥的發生打下了基礎,也為通過免疫途徑預防和治療心血管疾病炎癥提供了依據。
茶作為世界三大飲料之一,茶葉中的主要特征性化合物的生物活性、藥理作用和健康功能研究一直是國內外的熱點。近幾年的研究表明,心血管疾病是一種慢性炎癥引起的疾病。動脈粥樣硬化和各種血管手術再狹窄等血管疾病都是由于炎癥反應引發的血管平滑肌細胞異常增殖及遷移導致。茶葉中茶多酚尤其是EGCG對心血管的保護作用已被廣泛證明,但茶葉中其他特征性化合物及近年來新分離出來的多酚和其他新發現的化合物在抗心血管炎癥方面仍有待研究。另外,一些研究結果顯示,茶葉及茶葉特征性化合物對慢性炎癥引起的高血壓、冠心病等心血管疾病具有治療作用,但對于機制研究較少,需要更深入的探究其分子機制,以便更有效的利用茶葉特征性化合物預防炎癥引起的高血壓、冠心病等疾病。揭示茶葉中主要特征性化合物抗心血管炎癥及其信號傳導的分子機制能為預防和治療心血管疾病的藥物研發提供重要的理論依據,為進一步豐富茶葉健康功能知識、推動茶產業的發展做出貢獻。
[1] Yang C S, Hong J. Prevention of chronic diseases by tea: possible mechanisms and human relevance [J]. Annual Review of Nutrition, 2013, 33: 161-181.
[2] 毛清黎, 施兆鵬, 李玲, 等. 茶葉兒茶素保健及藥理功能研究新進展[J]. 食品科學, 2007, 28(8): 584-589. Mao Q L, Shi Z P, Li L, et al. Research advances of health and pharmacological functions of tea catechins [J]. Food Science, 2007, 28(8): 584-589.
[3] 李露, 呂佳倩, 江承佳, 等. 茶多酚對心血管保護作用的研究進展[J]. 食品科學, 2016, 37(19): 283-288. Li L, Lü J Q, Jiang C J, et al. Advances in research on protective effect of polyphenols in cardiovascular disease [J]. Food Science, 2016, 37(19): 283-288.
[4] 高俊延, 萬仁濤. 茶多酚抗動脈粥樣硬化研究概況[J]. 中國民族民間藥, 2017, 26(23): 54-56. Gao J Y, Wan R T. Research situation of tea polyphenols anti-atherosclerosis [J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2017, 26(23): 54-56.
[5] Collins D R, Tompson A C, Onakpoya I J, et al. Global cardiovascular risk assessment in the primary prevention of cardiovascular disease in adults: systematic review of systematic reviews [J]. BMJ Open. 2017, 7(3): e013650. doi: 10.1136/bmjopen-2016-013650.
[6] 陳偉偉, 高潤霖, 劉力生, 等. 《中國心血管病報告2017》概要[J]. 中國循環雜志, 2018, 33(1): 1-8. Chen W W, Gao R L, Liu L S, et al. Summary of China cardiovascular disease report 2017 [J]. Chinese Circulation Journal, 2018, 33(1): 1-8.
[7] Ueda P, Woodward M, Lu Y, et al. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys [J].The Lancet Diabetes & Endocrinology, 2017, 5(3): 196-213.
[8] Lu J, Lu Y, Yang H, et al. Characteristics of high cardiovascular risk in 1.7 million Chinese adults [J]. Annals of Internal Medicine. 2019, 170(5): 298-308.
[9] Welsh P, Grassia G, Botha S, et al. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? [J]. British Journal of Pharmacology, 2017, 174(22): 3898-3913.
[10] Libby P. Inflammation in atherosclerosis [J]. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012, 32(9): 2045-2051.
[11] Emini Veseli B, Perrotta P, De Meyer GRA, et al. Animal models of atherosclerosis [J]. European Journal of Pharmacology, 2017, 816: 3-13.
[12] Chistiakov D A, Orekhov A N, Bobryshev Y V, et al. Vascular smooth muscle cell in atherosclerosis [J]. Acta Physiologica, 2015, 214(1): 33-50.
[13] Lim S, Park S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis [J]. BMB Rep, 2014, 47(1): 1-7.
[14] Ashino T, Yamamoto M, Numazawa S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury [J]. Scientific Reports, 2016, 6: 26291. doi: 10.1038/srep26291.
[15] Serino A, Salazar G. Protective role of polyphenols against vascular inflammation aging and cardiovascular disease [J]. Nutrients, 2019, 11(1): 53. doi: 10.3390/nu11010053.
[16] 郭盼盼, 馮任南, 陳楊. 飲茶對心血管疾病的保護作用[J]. 衛生研究, 2018, 47(5): 858-861.
[17]Williamson G. The role of polyphenols in modern nutrition [J]. Nutrition Bulletin, 2017, 42(3): 226-235.
[18] Shirakami Y, Sakai H, Kochi T, et al. Catechins and its role in chronic diseases [J]. Advances in Experimental Medicine and Biology, 2016, 929: 67-90.
[19] Pang J, Zhang Z, Zheng T Z, et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis [J]. International Journal of Cardiology, 2016, 202: 967-974.
[20] 王澤穆. 飲食與心血管病風險的Meta分析及綠茶多酚EGCG的抗炎機制實驗研究[D]. 南京: 南京醫科大學, 2014.Wang Z M. Dietary intake and risk of cardiovascular disease: a meta-analysis, and the anti-inflammatory effects of green tea polyphenol EGCG in HUVECs [D]. Nanjing: Nanjing Medical University, 2014.
[21] 李雅, 馮翠娜, 劉勝輝, 等. 茶多酚對冠心病合并糖尿病患者sCD146和PAPP-A水平的影響[J]. 福建茶葉, 2016, 38(5): 12-13. Li Y, Feng C N, Liu S H, et al. Effects of Tea Polyphenols on the level of sCD146 and PAPP-A in the patients with coronary artery disease combined with diabetes mellitus [J]. Tea in Fujian, 2016, 38(5):12-13.
[22] Marina María de Jesús Romero-Prado, Jesús Aarón Curiel-Beltrán, María Viviana Miramontes-Espino, et al. Dietary flavonoids added to pharmacological antihypertensive therapy are effective in improving blood pressure [J]. Basic & Clinical Pharmacology & Toxicology, 2015, 117(1): 57-64.
[23] Nogueira L P, Nogueira Neto J F, Klein M R, et al. Short-term effects of green tea on blood pressure, endothelial function, and metabolic profile in obese prehypertensive women: A crossover randomized clinical trial [J]. Journal of the American College of Nutrition, 2017, 36(2): 108-115.
[24] Bogdanski P, Suliburska J, Szulinska M, et al. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients [J]. Nutrition Research, 2012, 32(6): 421-427.
[25] Shen C L, Samathanam C, Tatum O L, et al. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats [J]. Inflammation Research, 2011, 60(7): 665-672.
[26] Li J, Ye L, Wang X, et al. (?)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells [J]. Journal of Neuroinflammation, 2012, 9(1): 161. doi: 10.1186/1742-2094-9-161.
[27] 殷文晗. 表兒茶素對大鼠腦出血的保護作用及相關機制的研究[D]. 鄭州: 鄭州大學, 2017. Yin W H. The protective effect of orally intake of (-)-epicatechin in intracecebral hemorrhage rats and the related mechanisms [D]. Zhengzhou: Zhengzhou University, 2017.
[28] Suzuki J, Isobe M, Morishita R, et al. Tea polyphenols regulate key mediators on inflammatory cardiovascular diseases [J]. Mediators of Inflammation, 2009: 494928. doi: 10.1155/2009/494928.
[29] 章琦. 兒茶素對實驗性大鼠心衰模型的保護作用及其初步機制研究[D]. 合肥: 安徽醫科大學, 2014. Zhang Q. Study on protective effects of catchin on exprimental heart failure in rats and its mechanism [D]. Hefei: Anhui Medical University, 2014.
[30] Mahajan N, Dhawan V, Sharma G, et al. Induction of inflammatory gene expression by THP-1 macrophages cultured in normocholesterolaemic hypertensive sera and modulatory effects of green tea polyphenols [J]. Journal of Human Hypertension, 2008, 22(2): 141-143.
[31] Wang D, Gao Q, Zhao G, et al. Protective effect and mechanism of theanine on lipopolysaccharide-induced inflammation and acute liver injury in mice [J]. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7674-7683.
[32] Yamakuchi M, Bao C, Ferlito M, et al. Epigallocatechin gallate inhibits endothelial exocytosis [J]. Biological Chemistry, 2008, 389(7): 935-941.
[33]Hwang Y P, Jin S W, Choi J H, et al. Inhibitory effects of l-theanine on airway inflammation in ovalbumin-induced allergic asthma [J]. Food & Chemical Toxicology, 2017, 99: 162-169.
[34] Wang Q M, Wang H, Li Y F, et al. Inhibition of EMMPRIN and MMP-9 expression by epigallocatechin-3-gallate through 67-kDa laminin receptor in PMA-induced macrophages [J]. Cellular Physiology and Biochemistry, 2016, 39(6): 2308-2319.
[35] 趙興梅, 范春雷. 兒茶素對小鼠巨噬細胞VCAM-1表達的影響[J]. 中國藥理學通報, 2011, 27(3): 443-444. Zhao X M, Fan C L. Effect of catechin on expression of vascular cell adhesion factor-1 in mouse macrophages [J]. Chinese Pharmacological Bulletin, 2011, 27(3): 443-444.
[36] Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation [J]. Signal Transduction and Targeted Therapy, 2017, 2: e17023. doi: 10.1038/sigtrans.2017.23.
[37] Van Der Heiden K, Cuhlmann S, Luong L, et al. Role of nuclear factor κB in cardiovascular health and disease [J]. Clinical Science, 2010, 118(10): 593-605.
[38] Lagha A B, Grenier D. Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages [J]. Cytokine, 2019, 115: 64-75.
[39] 文祎, 蔡淑嫻, 黃建安. 茶葉活性成分的抗炎作用及其機制研究進展[J]. 食品安全質量檢測學報, 2017, 8(10): 3925-3930. Wen Y, Cai S X, Huang J A. Research progress in anti-inflammatory effects of tea active ingredients and its mechanisms [J]. Journal of Food Safety & Quality, 2017, 8(10): 3925-3930.
[40] Li J, Sapper T N, Mah E, et al. Green tea extract treatment reduces NF-κB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability [J]. The Journal of Nutritional Biochemistry, 2017, 41: 34-41.
[41] Li J, Sapper T N, Mah E, et al. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NF-κB pro-inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet [J]. Molecular Nutrition & Food Research, 2016, 60(4): 858-870.
[42] Tipoe G, Leung T M, Hung M W, et al. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection [J]. Cardiovascular & Hematological Disorders-Drug Targets, 2007, 7(2): 135-144.
[43] Nam S, Smith D M, Dou Q P. Ester bond-containing tea polyphenols potently inhibit proteasome activityand[J]. Journal of Biological Chemistry, 2001, 276(16): 13322-13330.
[44] Wang Z M, Gao W, Wang H, et al. Green tea polyphenol epigallocatechin-3-gallate inhibits TNF-α-induced production of monocyte chemoattractant protein-1 in human umbilical vein endothelial cells [J]. Cell Physiology Biochemistry. 2014, 33(5): 1349-1358.
[45] Babu P V, Si H, Liu D. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NF-κB-mediated mechanism [J]. Molecular Nutrition & Food Research, 2012, 56(9): 1424-1432.
[46] 李海禹, 孟哲, 王琛, 等. 槲皮素對氧化低密度脂蛋白誘導的血管平滑肌細胞炎癥反應的影響[J]. 中國合理用藥探索, 2018, 15(3): 29-33. Li H Y, Meng Z, Wang C, et al. Effects of quercetin on inflammatory reactions induced by oxidized low density lipoprotein in vascular smooth muscle cells [J]. Chinese Journal of Rational Drug Use, 2018, 15(3): 29-33.
[47] 宛曉春. 茶葉生物化學[M]. 3版. 北京: 中國農業出版社, 2003. Wan X C. Tea biochemistry [M]. 3rd. Beijing: China Agricuture Press, 2003.
[48] 李偉. 茶黃素中壓色譜制備及對大鼠平滑肌細胞的炎癥抑制作用[D]. 合肥: 安徽農業大學, 2016. Li W. The inflammatory inhition of theaflavin prepare by MPLC in VSMC [D]. Hefei: Anhui Agriculture University, 2016.
[49] 李紅月, 鄧惠芳, 戴長蓉, 等. 茶黃素對大鼠缺血性腦損傷所致炎癥反應的作用[J]. 中國醫院藥學雜志, 2016, 36(20): 1755-1759. Li H Y, Deng H F, Dai C R, et al. Effects of theaflavin on inflammation caused by ischemic brain injuries in rats [J]. Chinese Journal of Hospital Pharmacy, 2016, 36(20): 1755-1759.
[50] Wu Y, Jin F, Liu J, et al. Protective effect of theaflavin-3-digallate on lipopolysaccharide-induced inflammation injury in macrophage cells [J]. International Journal of Pharmacology, 2017, 13: 980-989.
[51] Fu G L, Wang H, Cai Y L, et al. Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats [J]. Drug Design, Development and Therapy, 2018, 12: 1609-1619.
[52] Yang Y, Kim S C, Yu T, et al. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses [J]. Mediators of Inflammation, 2014: 352371. doi: 10.1155/2014/352371.
[53] Ohishi T, Goto S, Monira P, et al. Anti-inflammatory action of green tea [J]. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 74-90.
[54] Won S M, Park Y H, Kim H J, et al. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway [J]. Experimental & Molecular Medicine, 2006, 38(5): 525-534.
[55] Zheng Y, Song H J, Kim C H, et al. Inhibitory effect of epigallocatechin 3--gallate on vascular smooth muscle cell hypertrophy induced by angiotensin Ⅱ[J]. Journal of Cardiovascular Pharmacology, 2004, 43(2): 200-208.
[56] Yang J, Han Y, Sun H, et al. (?)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings [J]. Journal of Agricultural and Food Chemistry, 2011, 59(21): 11483-11490.
[57] 劉洪, 唐旭, 湯志梅, 等. 綠茶多酚對兔主動脈粥樣硬化斑塊中磷酸化p38MAPK的影響[J]. 天然產物研究與開發, 2017, 29(9): 1568-1572. Liu H, Tang X, Tang Z M, et al. Effect of green tea polyphenols on phosphorylated p38MAPK in experimental atherosclerosis rabbits [J]. Natural Product Research and Development, 2017, 29(9): 1568-1572.
[58] 王齊明. 綠茶多酚EGCG增強動脈粥樣硬化斑塊穩定性及其相關機制研究[D]. 南京: 南京醫科大學, 2017. Wang Q M. Green tea polyphenol epigallocachin-3-gallate enhance atherosclerotic plaque stability in high-fat diet fed apolipoprotein e-deficient mice [D]. Nanjing: Nanjing Medical University, 2017.
[59] Kim S J, Li M, Jeong C W, et al. Epigallocatechin-3-gallate, a green tea catechin, protects the heart against regional ischemia-reperfusion injuries through activation of RISK survival pathways in rats [J]. Arch Pharmarcology Research. 2014, 37(8): 1079-1085.
[60] Wu Y, Fujun Jin F, Wang Y, et al.andanti-inflammatory effects of theaflavin-3,3'-digallate on lipopolysaccharide- induced inflammation [J]. European Journal of Pharmacology, 2017, 794: 52-60.
[61] Goulopoulou S, Mccarthy C G, Webb R C. Toll-like receptors in the vascular system: sensing the dangers within [J]. Pharmacological Reviews, 2015, 68(1): 142-167.
[62] Kumar V. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future [J]. International Immunopharmacology, 2018, 59: 391-412.
[63] Hong B E, Fujimura Y, Yamada K, et al. TLR4 signaling inhibitory pathway induced by green tea polyphenol epigallocatechin-3-gallate through 67-kDa laminin receptor [J]. The Journal of Immunology, 2010, 185(1): 33-45.
[64] Byun E B, Mi S Y, Kim J H, et al. Epigallocatechin-3-gallate-mediated Tollip induction through the 67-kDa laminin receptor negatively regulating TLR4 signaling in endothelial cells [J]. Immunobiology, 2014, 219(11): 866-872.
[65] Kobayashi N, Takano M, Hata N, et al. Matrix metalloproteinase-9 as a marker for plaque rupture and a predictor of adverse clinical outcome in patients with acute coronary syndrome: An optical coherence tomography study [J]. Cardiology, 2016, 135(1): 56-65.
[66] Li Y F, Wang H, Fan Y, et al. Epigallocatechin-3-gallate inhibits matrix metalloproteinase-9 and monocyte chemotactic protein-1 expression through the 67-κDa laminin receptor and the TLR4/MAPK/NF-κB signalling pathway in lipopolysaccharide-induced macrophages [J]. Cell Physiologyl Biochemistry. 2017, 43(3): 926-936.
[67] Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance [J]. Nature Medicine, 2012, 18(8): 1279-1285.
[68] Kumazoe M, Nakamura Y, Yamashita M, et al. Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216 [J]. Journal of Biological Chemistry, 2017, 292(10): 4077-4088.
[69] Rauch I, Müller, Mathias, Decker T. The regulation of inflammation by interferons and their STATs [J]. JAK-STAT, 2013, 2(1): e23820. doi: 10.4161/jkst.23820.
[70] Ivashkiv L B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy [J]. Nature Reviews Immunology, 2018, 18(9): 545-558.
[71] Kishore R, Verma S K. Roles of STATs signaling in cardiovascular diseases [J]. JAK-STAT, 2012, 1(2): 118-124.
[72] 肖鵬. 表沒食子兒茶素沒食子酸酯對脂多糖誘導的小鼠巨噬細胞炎癥相關因子表達的影響[D]. 新鄉: 河南師范大學, 2014. Xiao P. Effects of epigallocatechin-3-gallate on the expression of inflammation-related cytokines in mouse macrophage [D]. Xinxiang: Henan Normal University, 2014.
[73] Singh A K, Fechtner S, Wang D, et al. Epigallocatechin-3-Gallate (EGCG) suppresses systemic inflammation by inhibiting IL-6-induced STAT3 activation in cultured hepatocytes and in liver tissue of Adjuvant-Induced Arthritis (AIA) rats [J]. Arthritis Rheumatology, 2018, 70: 111.
[74] 席進, 葛思堂, 左蘆根, 等. 綠茶多酚抑制腸道JAK2/STAT3信號通路保護三硝基苯磺酸誘導的小鼠結腸炎腸黏膜屏障[J]. 細胞與分子免疫學雜志, 2018, 34(3): 237-241. Xi J, Ge S T, Zuo L G, et al. Protective role of green tea polyphenols in intestinal mucosal barrier function of mice with colitis induced by TNBS through inhibiting JAK2/STAT3 pathway [J]. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(3): 237-241.
[75] 鄧穎, 史偉浩, 童進東, 等. EGCG對血小板源性生長因子-BB誘導的大鼠血管平滑肌細胞增殖和遷移的影響[J]. 復旦學報(醫學版), 2018, 45(4): 503-508. Deng Y, Shi W H, Tong J D, et al. Effects of epigallocatechin-3-gallate on the proliferation and migration of vascular smooth muscle cells induced by platelet-derived growth factor BB in rats [J]. Fudan University Journal of Medical Sciences, 2018, 45(4): 503-508.
[76] 石偉林, 徐瑤, 宋如晦, 等. EGCG通過STAT3抑制血管內皮細胞炎性因子表達[J]. 生物技術, 2018, 28(2): 124-129, 135. Shi W L, Xu Y, Song R H, et al. EGCG inhibits LPS-induced inflammatory cytokines through STAT3 pathway in vascular endothelial cells [J]. Biotechnology, 2018, 28(2): 124-129, 135.
[77] 羅林娜, 楊萍, 黃偉. 花青素對大鼠肝缺血再灌注損傷的作用及其機制[J]. 西安交通大學學報(醫學版), 2016, 37(4): 594-598. Luo L N, Yang P, Huang W. The effect and mechanism of anthocyanin on hepatic ischemia reperfusion injury in rats [J]. Journal of Xi'an Jiaotong University(Medical Sciences) , 2016, 37(4): 594-598.
[78] 俞辰斌, 趙國龍, 于立明, 等. JAK2/STAT3信號通路介導原花青素抗H9C2細胞缺氧/復氧損傷[J]. 生理學報, 2016, 68(5): 568-574. YU C B, ZHAO G L, Yu L M, et al. Proanthocyanidin protects H9C2 cells against hypoxia/reoxygenation injury via JAK2/STAT3 signaling pathway [J]. Acta Physiologica Sinica, 2016, 68(5): 568-574.
[79] Baeten J T, Lilly B. Notch signaling in vascular smooth muscle cells [J]. Advance Pharmacology, 2016, 78: 351-382.
[80] Li Y, Hiroi Y, Liao J K. Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction [J]. Trends in Cardiovascular Medicine, 2010, 20(7): 228-231.
[81] 徐曉嫦, 朱曄, 張慧濤, 等. Notch通路在大鼠腎臟缺血再灌注損傷TLR4介導的炎癥反應中的作用[J]. 中國病理生理雜志, 2016, 32(3): 485-491. Xu X C, Zhu Y, Zhang H T, et al. Role of Notch pathway in Toll-like receptor 4 mediated inflammatory response in renal ischemia reperfusion injury in rats [J]. Chinese Journal of Pathophysiology, 2016, 32(3): 485-491.
[82] Wang T F, Xiang Z M, Wang Y, et al. (?)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages [J]. Frontiers in Immunology, 2017, 8: 433. doi: 10.3389/fimmu.2017.00433.
[83] Huang Y W, Zhu Q Q, Yang X Y, et al. Wound healing can be improved by (?)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice [J]. The FASEB Journal, 2019, 33(1): 953-964.
[84] Nistri S, Sassoli C, Bani D. Notch signaling in ischemic damage and fibrosis: Evidence and clues from the heart [J]. Frontier Pharmacology, 2017, 8: 187. doi: 10.3389/fphar.2017.00187.
[85] Yang Y, Duan W, Jin Z, et al. New role of Notch-mediated signaling pathway in myocardial ischemic preconditioning [J]. Medical Hypotheses, 2011, 76(3): 427-428.
[86] Ahmed S M, Luo L, Namani A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation [J]. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2017, 1863(2): 585-597.
[87] 李澤龍, 王茂, 鄢東海, 等. Nrf2與心臟衰老的相關研究進展[J]. 西南國防醫藥, 2019, 29(1): 91-93. Li Z L, Wang M, Yan D H, et al. Research progress of Nrf2 and heart aging [J]. Medical Journal of National Defending Forces in Southwest China, 2019, 29(1): 91-93.
[88] Kloska D, Kopacz A, Piechota-Polanczyk A, et al. Nrf2 in aging-Focus on the cardiovascular system [J]. Vascular Pharmacology, 2019, 112: 42-53.
[89] 楊涪, 劉旭, 李明春. 表沒食子兒茶素沒食子酸酯作為Nrf2/ARE信號通路激活劑的研究進展[J]. 中國藥理學與毒理學雜志, 2017, 31(8): 832-839. Yang F, Liu X, Li M C. Epigallocatechin-3-gallate as an activator of Nrf2/ARE signaling pathway: a review [J]. Chinese Journal of Pharmacology and Toxicology, 2017, 31(8): 832-839.
[90] Jiang J, Mo Z C, Yin K, et al. Epigallocatechin-3-gallate prevents TNF-α-induced NF-κB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macro-phage foam cells [J]. International Journal of Molicular Medecine, 2012, 29(5): 946-956.
[91] Bai Q, Lyu Z, Yang X, et al. Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke [J]. Behavior Brain Research, 2017, 321: 79-86.
[92] Aboonabi A, Singh I. Chemopreventive role of anthocyanins in atherosclerosis via activation of Nrf2-ARE as an indicator and modulator of redox [J]. Biomedicine & Pharmacotherapy, 2015, 72: 30-36.
[93] Fernándezgutiérrez B, Perrotti P P, Gisbert J P, et al. Cardiovascular disease in immune-mediated inflammatory diseases: A cross-sectional analysis of 6 cohorts [J]. Medicine, 2017, 96(26): e7308. doi: 10.1097/MD.0000000000007308.
[94] 閻羽欣, 彭昊, 陳廣潔. EGCG介導的免疫調節及其在自身免疫病模型中的應用[J]. 現代免疫學, 2018, 38(5): 420-424. Yan Y X, Peng H, Chen G J. Immune regulation mediated by EGCG and its application in autoimmune disease model [J].Current Immunology, 2018, 38(5): 420-424.
[95] 劉旦旦, 周靜, 高峰. NLRP3炎癥小體及其與心血管疾病的關系[J]. 世界最新醫學信息文摘, 2018, 18(72): 88-89, 91. Liu D D, Zhou J, Gao F. New development of NLRP3 inflammasome and the connection with cardiovascular diseases [J]. World Latest Medicine Information, 2018, 18(72): 88-89, 91.
[96] Zhou W, Chen C, Chen Z, et al. NLRP3: A novel mediator in cardiovascular disease [J]. J Immunology Research, 2018, 2018: 5702103. doi: 10.1155/2018/5702103.
[97] Gao Z, Han Y, Hu Y, et al. Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways [J]. PLOS One, 2016, 11(2): e0149032. doi: 10.1371/journal.pone.0149032.
[98] Ellis L Z, Liu W, Luo Y, et al. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion [J]. Biochemistry Biophysics Research Communication, 2011, 414(3): 551-556.
[99] Tsai P Y, Ka S M, Chang JM, et al. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation [J]. Free Radical Biological Medecine, 2011, 51: 744-754.
[100]陰海鵬. 多酚類化合物通過抑制NLRP3炎癥小體發揮抗炎作用的研究[D]. 濟南: 山東大學, 2018. Yin H P. polyphenols prevents inflammation through inhibition of the NLRP3 inflammasome [D]. Jinan: Shandong University, 2018.
[101]Pan Z, Cui M, Dai G, et al. Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats [J]. Frontier Neuroscience, 2018, 12: 947. doi: 10.3389/fnins.2018.00947.
[102]Chen J, Zhang J, Xu L, et al. Inhibition of neointimal hyperplasia in the rat carotid artery injury model by a HMGB1 inhibitor [J]. Atherosclerosis, 2012, 224(2): 332-339.
[103]Yang B, Gao P, Wu X, et al. Epigallocatechin-3-gallate attenuates neointimal hyperplasia in a rat model of carotid artery injury by inhibition of high mobility group box 1 expression [J]. Experimental and Therapeutic Medicine, 2017, 14(3): 1975-1982.
[104]Li W, Zhu S, Li J, et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages [J]. Biochemical pharmacology, 2011, 81(9): 1152-1163.
[105]Tang D, Kang R, Xiao W, et al. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function [J]. American Journal of Respiratory Cell and Molecular Biology, 2009, 41(6): 651-660.
Recent Advance on Anti-cardiovascular Inflammation of Major Characteristic Compounds in Tea
YAO Min, LI Daxiang, XIE Zhongwen*
State Key Laboratory of Tea Plant Biology and Utilization. Anhui Agricultural University, Hefei 230036, China
Chronic inflammation is one of the important causes of cardiovascular diseases such as atherosclerosis, hypertension and myocardial infarction. Inflammatory factors such as IL-6, TNF-α and IL-1β can induce many cardiovascular diseases, including myocardial hypertrophy, myocardial fibrosis and abnormal proliferation of vascular smooth muscle cells. Tea is rich in characteristic compounds. These compounds play preventive and therapeutic roles for cardiovascular diseases by inhibiting proinflammatory cytokines production, and regulating the signal pathways such as NF-κB, MAPK and Tolls-like receptors. In this review, we summarized the recent advance of the main characteristic compounds in tea on preventing inflammation related cardiovascular diseases.
cardiovascular inflammation, tea polyphenols, signaling pathways, characteristic compounds
S571.1;Q946.84+1
A
1000-369X(2020)01-001-14
2019-03-26
2019-07-04
國家自然科學基金(31571207)、安徽省高等學校自然科學重大項目(KJ015ZD22)
姚敏,女,碩士研究生,主要從事茶與健康方面的研究。yaomin1993rz@126.com。
zhongwenxie@ahau.edu.cn