999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

巖溶區種植砂糖桔對石灰土有機氮礦化過程的影響

2020-02-22 13:17:37楊會朱同彬吳夏郝玉培吳華英
南方農業學報 2020年11期

楊會 朱同彬 吳夏 郝玉培 吳華英

摘要:【目的】土壤有機氮礦化是產生無機氮的主要過程,研究巖溶區不同土地利用方式對有機氮礦化過程的影響,為巖溶區農業種植提供理論依據。【方法】選擇巖溶區由灰巖和泥晶灰巖發育而來的石灰土作為研究對象,測定土壤的理化性質和碳化學結構,并采用15N同位素標記方法,研究由喬灌地開墾種植砂糖桔后土壤有機質的數量和質量對有機氮礦化速率的影響?!窘Y果】喬灌地開墾種植砂糖桔后,兩種石灰土的土壤有機碳(SOC)、全氮(TN)、鈣(Ca)含量、土壤田間持水量(WHC)和pH均顯著降低(P<0.05,下同),鉀(K)含量顯著增加。灰巖發育的石灰土鐵(Fe)、鋁(Al)含量和粘粒比例顯著增加,泥晶灰巖發育的石灰土Fe、Al含量和粘粒比例無顯著變化(P>0.05,下同)?;規r發育的石灰土碳化學結構變化不顯著,泥晶灰巖發育的石灰土烷基碳從21.9%顯著增至25.7%,羰基碳從16.0%顯著降至13.5%。由灰巖和泥晶灰巖發育成的石灰土有機氮總礦化速率(MNorg)分別由2.96和2.22 mg N/(kg·d)降至0.66和1.05 mg N/(kg·d),主要歸于易利用有機氮礦化速率(MNlab)的降低。灰巖發育的石灰土難利用有機氮礦化速率(MNrec)變化不明顯,泥晶灰巖發育的石灰土MNrec由0.36 mg N/(kg·d)提高至0.66 mg N/(kg·d)。泥晶灰巖發育的石灰土MNorg和MNlab主要受控于土壤有機質數量,與SOC和TN含量呈顯著正相關;MNrec受有機質結構組成的影響,與烷基碳呈顯著正相關。灰巖發育的石灰土MNorg和MNlab除受有機質數量影響外,還受土壤巖性的影響,與Ca含量呈極顯著正相關(P<0.01,下同),與Fe、Al含量和粘粒比例呈極顯著負相關?!窘Y論】喬灌地開墾種植砂糖桔導致不同灰巖發育的石灰土有機氮總礦化速率均顯著降低,土壤無機氮供應能力減弱。

關鍵詞: 巖溶區石灰土;土地利用方式;巖性;礦化速率;有機質質量

中圖分類號: S153.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)11-2665-09

Effects of sugar orange plantation on organic nitrogen mineralization in different calcareous soils in karst region

YANG Hui, ZHU Tong-bin*, WU Xia, HAO Yu-pei, WU Hua-ying

(Institute of Karst Geology, Chinese Academy of Geological Sciences/Key Laboratory of Karst Dynamics,

Ministry of Natural Resources & Guangxi, Guilin, Guangxi ?541004, China)

Abstract:【Objective】Soil organic nitrogen mineralization is the main process of producing inorganic nitrogen. The study of the effects of different land use patterns on organic nitrogen mineralization in karst regions could provide theoretical basis for agricultural planting in karst regions. 【Method】Soil samples were collected from calcareous soils developed from limestone and mudstone limestone in karst region.The physical and chemical properties and carbonization structural of the soil were determined. The 15N tracing technique was used to study the effects of the quantity and quality of organic matter on the mineralization rate in calcareous soil when arbor-bush was converted to sugar orange. 【Result】The results showed that soil organic carbon(SOC), total nitrogen(TN), calcium(Ca), field water-holding capacity(WHC), pH were significantly reducedin the two calcareous soils(P<0.05, the same below), and thecontentof potassium(K) was increased significantly during the conversion of arbor-bush to sugar orange. The content of iron(Fe), aluminium(Al) and clay proportions in calcareous soils developed from limestone were significantly increased, while was not significantly changed in calcareous soils developed from mudstone limestone(P<0.05, the same below). Carbonization structure in calcareous soil developed from limestone did not change significantly. The alkyl carbon increased significantly from 21.9% to 25.7%, and the carbonyl carbon decreased significantly from 16.0% to 13.5% in calcareous soils developed from mudstone limestone.The total organic nitrogen mineralization rate(MNorg) of calcareous soils developed from limestone and mudstone limestone was significantly decreased from 2.96 and 2.22 mg N/(kg·d) to 0.66 ?and 1.05 mg N/(kg·d)during the conversion of arbor-bush to sugar orange, which was mainly due to the reduction of the labile organic nitrogen minerali-zation(MNlab). The mineralization rate of recalcitrant organic N(MNrec) in calcareous soils developed from limestone was not obviously changed, while the calcareous soils developed from mudstone limestone increased significantly from 0.36 mg N/(kg·d) to 0.66 mg N/(kg·d). MNorg and MNlab in calcareous soils developed from mudstone limestone was mainly controlled by the quantity of soil organic matter, and was positively correlated with the contents of SOC and TN. MNrec was mainly controlled by the composition of soil organic matter and significantly positively correlated with alkyl carbon. MNorg and MNlab in calcareous soils developed from limestone was not only related to the quantity of organic matter, but also affected by the soil lithology, which was extremely positively correlated with Ca content(P<0.01, the same below), and was extremely negatively correlated with Fe, Al contents and clay proportion. 【Conclusion】The total organic nitrogen mineralization rate is decreased and soil inorganic nitrogen supply capacity is weakened after arbor-bush converting to sugar orange in calcareous soil developed from different limestone.

Key words: calcareous soil in karst area; land use pattern; lithology; mineralization rate; quality of organic matter

Foundation item: Guangxi Natural Science Foundation(2018GXNSFBA138042, 2018GXNSFAA281320)

0 引言

【研究意義】作為植物生長的必需營養元素,土壤氮素限制著陸地生態系統生產力和穩定性(Fu et al.,2019;Hu et al.,2019)。適量的氮能促進植物生長(Sheshbahreh et al.,2019),但當氮量超過植物需求,不僅對植物無益,還會引起一系列生態環境問題,如溫室效應和水體富營養化等(劉玉萍等,2017;曹文超等,2019)。除小分子有機物外,植物吸收利用的氮主要為無機氮(銨態氮和硝態氮),無外源氮肥投入情況下,土壤有機質礦化是無機氮供應的主要過程(Booth et al.,2005)。因此,研究土壤有機氮礦化能力,有效評估無機氮供應及有效性,對農業種植具有重要現實意義。【前人研究進展】國內外在自然(林地和草地等)和農業(旱地和水田等)生態系統已開展了大量土壤氮轉化過程的研究工作(Zhu et al.,2014;Song et al.,2018;李平和郎漫,2020)。由碳酸鹽巖發育的石灰性土壤具有富鈣、偏堿性、土壤黏重等特點(曹建華等,2004;王世杰和李陽兵,2007),使得巖溶區土壤氮的轉化過程有別于其他地區的土壤。巖溶區林地石灰土的氮礦化速率顯著低于林地紅壤的礦化速率(Zhu et al.,2016)。在巖溶區,林地土壤氮素的總礦化速率最高,農作物土壤如玉米—大豆和飼草田較低,甘蔗地和桑園中最低(Li et al.,2018)。土地利用方式的改變及不同農田管理措施(施用無機氮肥、有機肥和石灰)會顯著影響土壤的物理和化學性質,進而影響土壤氮循環(Zhang et al.,2013)。我國西南巖溶區的碳酸鹽出露面積達51萬km2,因特殊的地質條件,整個西南巖溶區山地多且土地資源有限,導致貧困地區較多(Jiang et al.,2014)。為了提高經濟收入,當地人們經常在坡地毀林種植果樹,如柑桔和砂糖桔等。這種土地利用方式的改變可能通過影響土壤性質(有機質數量和質量、微生物活性和數量等)而改變土壤有機氮礦化過程(López-Poma et al.,2020)。人為擾動較少的石灰土包含較多的鈣,利于土壤有機質累積,砍伐喬木或灌叢種植果樹會降低土壤鈣和有機氮含量,可能導致礦化過程下降(文冬妮等,2020)。果樹種植過程中常施用有機肥,可能提高土壤活性及有機氮含量而促進礦化過程(Zhang et al.,2012)?!颈狙芯壳腥朦c】喬灌地改種砂糖桔不僅改變土壤有機質數量,還改變土壤有機質的化學結構,進而影響土壤有機質的礦化速率。但目前關于土壤有機質數量和化學結構影響礦化過程的研究相對較少。巖溶區石灰土由于存在較大的異質性,不同巖性發育的土壤性質不同,將會影響土壤有機氮礦化過程。【擬解決的關鍵問題】選擇灰巖和泥晶灰巖兩種不同巖性發育的石灰土為研究對象,利用15N標記法,測定坡地喬灌開墾種植砂糖桔后土壤有機氮礦化速率的變化,以及土地利用方式發生改變后土壤有機質濃度和化學結構的變化,從土壤有機質的數量和結構角度闡述其對有機氮礦化過程的影響,為巖溶區農業種植提供理論依據。

1 材料與方法

1. 1 研究區概況

采樣點位于廣西桂林市境內,該地區屬于亞熱帶季風氣候,境內四季分明,雨量充沛,平均海拔150 m,年平均降水量1860 mm,年平均蒸發量1038~1566 mm,雨季主要發生在4—7月,年平均氣溫19.8 ℃。

本研究包含土壤類型和土地利用方式兩因素,土壤類型包括由灰巖和泥晶灰巖分別發育的土壤,土地利用方式包括喬灌和砂糖桔?;規r和泥晶灰巖發育的土壤分別位于桂林市靈川縣大境鄉燈明村(東經110°32′27″,北緯25°12′33″)和雁山區大埠鄉長流水村(東經110°22′44″,北緯25°1′36″)。通過前期調查,燈明村和長流水村的砂糖桔種植年限均為4年左右,由灌叢地砍伐焚荒開墾而來,施肥措施基本一致,相對坡度12°~15°。燈明村喬灌植被以檵木(Loropetalum chinensis)為主,同時包括山麻桿(Alchornea davidii)、葛藤(Pueraria lobota)和野葡萄(Amepelopsis sinica)等,該區域地層為泥盆紀上統融縣組(D3r),巖性為灰巖,土層5~25 cm,坡度約12°。長流水村喬灌群落也以檵木為主,包括楓樹(Aceraceae)、山麻桿和薔薇(Rosa multifora)等,地層為泥盆紀上統桂林組(D3g),巖性為泥晶灰巖,土層5~20 cm,坡度約14°。

1. 2 土壤樣品采集

于2018年12月分別在燈明村和長流水村的喬灌地和砂糖桔地采集土壤樣品。喬灌地和砂糖桔地均選擇3個樣地作為空間重復,樣地間隔約100 m,每個樣地隨機選取3個1 m×1 m的樣點,采樣深度為0~10 cm,混勻組成1個樣品。土壤樣品去除根系、石塊和植物殘體,過2 mm篩,置于密封的保鮮袋中,4 ℃下保存培養。另取一部分樣品風干后測定土壤理化性質。

1. 3 15N標記試驗

稱取相當于30 g干土重的新鮮土樣(過2 mm篩)置于250 mL三角瓶中,在室溫25 ℃的室內預培養1 d,分別加入1 mL 15NH4NO3和NH415NO3(豐度均為5%)溶液,加入的銨態氮(NH4+)和硝態氮(NO3-)濃度均達50 mg N/kg。同時加入去離子水,調節土壤含水量至60%的田間持水量(WHC),用封口膜封住瓶口,并用注射器針頭扎3個小孔,便于瓶內外氣體交換,置于恒溫25 ℃條件下培養。分別在添加標記物后的0.5、24、48和72 h各取3瓶,加入150 mL 2 mol/L KCl溶液,25 ℃、250 r/min下振蕩提取1 h,過濾,立即測定提取液中NH4+、NO3-濃度和15N豐度。

1. 4 樣品分析

土壤pH(水∶土=2.5∶1)采用電位法測定。土壤有機碳(SOC)和全氮(TN)含量測定:采用0.5 mol/L稀鹽酸處理土壤,洗凈后烘干、磨碎,過60目篩,經SerCon Integra 2元素分析儀測定。土壤中鈣(Ca)、鋁(Al)、鐵(Fe)、鉀(K)和磷(P)含量采用XRD法測定。土壤WHC采用室內環刀法進行測定。土壤粒徑采用Beckman Coulter LS 230激光粒度分析儀測定。土壤NH4+和NO3-濃度采用Skalarplus San流動分析儀進行測定。浸提液中NH4+和NO3-的15N采用MgO和定氮合金蒸餾法提?。菏紫仍贙Cl浸提液中加入MgO進行蒸餾,分離出NH4+,然后在蒸餾管中加入定氮合金,再次進行蒸餾,分離出NO3-;蒸餾出的NH3被收集在裝有硼酸溶液的錐形瓶中,用0.02 mol/L的H2SO4溶液進行滴定,將收集的NH3轉化為(NH4)2SO4;將含有NH4+的溶液置于80 ℃烘箱進行烘干,然后采用SerCon Integra 2同位素比質譜計分析15N豐度。

1. 5 碳化學結構分析

利用固體CPMAS 13C核磁共振光譜定量比較土壤有機質的化學組成。為提高光譜的信噪比,對土壤樣品進行氫氟酸預處理,去除Fe3+和Mn2+(Zhang et al.,2013)。氫氟酸處理后的土壤使用Bruker AvanceⅢ WB 400 MHz核磁共振儀測定,13C共振頻率100 MHz,魔角自旋頻率10 KHz,接觸時間2 ms,采樣時間34 ms,循環延遲時間5 s,數據點2048個,化學位移用外標甘氨酸(Glycine)校正,積分面積由儀器自動給出,各類型碳所占比例用某化學位移區間積分面積占總積分面積的百分數表示。按照土壤有機質化學結構波譜可分為四大官能區:(1)烷基碳區(δ=0~45,Alkyl C),是難以降解、較穩定的有機碳組分;(2)烷氧碳區(δ=45~110,O-Alkyl C),代表易被微生物代謝利用的碳水化合物;(3)芳香碳區(δ=110~160,Aromatic C),主要來自單寧、木質素和不飽和烯烴等,表征難以被微生物利用的碳化合物;(4)羰基碳區(δ=160~220,Carbonyl C),大多來自于脂肪酸、氨基酸、酰胺、酯和酮醛類物質的吸收。Alkyl C/O-Alkyl C比值(A/A-O)可用來反映腐殖物質烷基化程度的高低(李娜等,2019)。

1. 6 統計分析

將4次采樣時間取得的NH4+和NO3-濃度和15N豐度輸入土壤氮素轉化模型(Müller et al.,2007),經Matlab 2019b運行得到土壤易利用有機氮礦化速率(MNlab)和難利用有機氮礦化速率(MNrec)。采用SPSS 25.0對土壤基本理化性質進行顯著性分析,并對土壤理化性質與有機氮礦化速率的相關性進行分析。

2 結果與分析

2. 1 土壤理化性質測定結果

土壤基本理化性質受土壤類型和土地利用方式的影響明顯(表1)。喬灌地改種砂糖桔顯著降低土壤SOC、TN、Ca含量和WHC、pH(P<0.05,下同),而顯著提高K含量,且兩種土壤表現出相同趨勢。喬灌地改種砂糖桔后,灰巖發育的土壤Fe、Al含量和粘粒比例顯著增加,而泥晶灰巖發育的土壤Fe、Al含量和粘粒比例無顯著變化(P>0.05,下同)。對于喬灌地而言,灰巖發育的土壤SOC、TN、NO3-、Ca、P含量和砂粒比例顯著高于泥晶灰巖發育的土壤,而C/N和K含量顯著低于泥晶灰巖發育的土壤。對于砂糖桔地而言,灰巖發育的土壤Fe、Al含量和粘粒比例顯著高于泥晶灰巖發育的土壤,而K含量和粉粒比例顯著低于泥晶灰巖發育的土壤。

2. 2 土壤碳化學結構

由表2可知,灰巖和泥晶灰巖發育的土壤有機碳官能團均以烷氧碳所占比例最大,其次是烷基碳和芳香碳,羰基碳所占比例最小。喬灌地改種砂糖桔后,灰巖發育的土壤四大官能團所占比例無顯著變化,泥晶灰巖發育的土壤烷基碳從21.9%顯著增至25.7%,羰基碳從16.0%顯著降至13.5%,A/A-O從0.53顯著增至0.62。對于砂糖桔地而言,灰巖發育的土壤烷基碳所占比例顯著低于泥晶灰巖發育的土壤。

2. 3 土壤有機氮的礦化速率

通過NH4+、NO3-濃度和15N豐度變化(圖1~圖3)運算得出土壤有機氮的礦化速率。對于喬灌地而言,MNlab主導礦化過程,約為MNrec的5倍,兩類土壤表現相同趨勢(圖4)。喬灌地改種砂糖桔,兩種土壤的總礦化速率(MNorg)均明顯降低,其中灰巖發育的土壤MNorg由2.96 mg N/(kg·d)降至0.66 mg N/(kg·d),泥晶灰巖發育的土壤MNorg由2.22 mg N/(kg·d)降至1.05 mg N/(kg·d)。喬灌地改種砂糖桔后,MNrec在有機氮礦化中的比例提高,對于灰巖和泥晶灰巖發育的土壤而言,其比例分別達65%和63%?;規r發育的土壤MNrec變化不明顯,泥晶灰巖發育的土壤MNrec由0.36 mg N/(kg·d)增至0.66 mg N/(kg·d)。

由表3可知,在兩類土壤中,MNlab和MNorg均與SOC、TN、Ca含量及pH、WHC呈顯著或極顯著(P<0.01,下同)正相關,與K含量呈顯著負相關?;規r發育的土壤MNlab和MNorg還與Fe、Al含量和粘粒比例呈極顯著負相關,與粉粒和砂粒比例呈極顯著或顯著正相關;泥晶灰巖發育的土壤MNlab和MNorg與Alkyl C比例呈顯著負相關?;規r發育的土壤MNrec與O-Alkyl C比例呈顯著正相關,而與Fe含量和Aromatic C比例呈顯著負相關;泥晶灰巖發育的土壤MNrec與Alkyl C比例呈顯著正相關。

3 討論

本研究結果表明,喬灌地開墾種植砂糖桔明顯降低土壤MNorg。土壤MNorg的降低主要由MNlab下降造成,灰巖和泥晶灰巖發育的石灰土均表現出相同趨勢。兩種石灰土中MNorg與MNlab的影響因素基本一致。土地利用方式發生改變,MNorg和MNlab首先受到土壤有機質數量的影響。土壤有機氮礦化的底物有機質主要來源于地表植物的凋落物和植物根系的分泌物(Ste-Marie and Houle,2006)。受植被根系及凋落物生物量的影響,植物所產生的枯枝落葉和根系在土壤中分解、積累和礦化,根系及凋落物均會為土壤提供較多的有機質(單志杰等,2019)。已有研究表明,土壤有機氮礦化速率與土壤有機質含量呈顯著正相關,土壤有機質含量是影響有機氮礦化的主要因素(Li et al.,2018)。本研究中,MNorg和MNlab均與土壤SOC和TN含量呈顯著或極顯著正相關,進一步證實了土壤有機質在氮素礦化過程中的重要作用。土壤SOC和TN含量顯著下降,較低的碳氮含量可能無法為微生物生長提供充足的營養物質,降低了微生物對有機物的有效分解,從而使得土壤MNorg和MNlab降低。灰巖發育的土壤MNlab降低了90.8%,泥晶灰巖發育的土壤MNlab降低了79.0%?;規r發育的土壤MNlab較泥晶灰巖發育的土壤下降多,是因為灰巖發育的土壤MNlab除與有機質數量減少有關外,還與不同巖性發育的土壤性質有關。不同巖性的土壤在演變過程中物理和化學性質均具有明顯差異(劉煒,2018)。喬灌地,灰巖發育的土壤Ca含量顯著高于泥晶灰巖發育的土壤。Ca含量高的石灰土能累積更多的有機碳氮(曹建華等,2003),在石灰土演化過程中由于淋溶遷移Ca含量會降低,積累的有機碳氮也會隨之減少(Ye et al.,2018)。在本研究中,喬灌地改種砂糖桔后,灰巖發育的土壤Ca含量降低66.8%,泥晶灰巖發育的土壤Ca含量降低53.7%?;規r發育的土壤Ca含量降低幅度大,導致土壤中有機碳氮含量大量減少,從而降低了土壤MNorg和MNlab。喬灌地開墾種植砂糖桔,灰巖發育的土壤Fe和Al含量均顯著增加。土壤中Fe和Al金屬元素的積累,會導致土壤中微生物活性和數量的降低(王世強等,2011;劉亞利等,2018)?;規r發育的土壤粉粒和砂粒含量顯著減少,粘粒含量幾乎增加一倍,則土壤通透性變差,影響土壤中微生物活性。土壤中有機氮礦化均是微生物參與的活動(Zhang et al.,2019),微生物活性和數量的降低會導致土壤有機氮礦化速率降低。不同巖性發育的石灰土MNorg和MNlab均明顯降低,但影響因素有所不同。泥晶灰巖發育的土壤MNorg和MNlab主要受土壤有機質數量的影響,灰巖發育的土壤MNorg和MNlab受土壤有機質數量和不同巖性發育土壤性質的共同影響。

在喬灌地,有機氮的礦化速率以MNlab為主,土地利用方式發生改變后,灰巖和泥晶灰巖發育的土壤有機氮礦化均是以MNrec為主?;規r發育的土壤MNrec變化不明顯,泥晶灰巖發育的土壤MNrec明顯增加。在本研究中,MNrec與土壤SOC和TN含量無顯著相關性,說明土壤有機質數量不是影響MNrec的因素,而是土壤有機質質量。喬灌地改種砂糖桔后,泥晶灰巖發育的土壤有機質化學結構發生改變,代表難降解、較穩定的烷基碳比例顯著增加,即難利用有機氮礦化的底物濃度增加,導致土壤MNrec增加,而灰巖發育的土壤有機質的化學結構變化不明顯。土壤有機碳主要來源于外源植物殘體,植物殘體化學結構的相似性導致土壤化學結構非常相似(李娜等,2019),但泥晶灰巖發育的土壤活性有機氮較少時難利用有機氮可能更多地保存在晶狀物質中,從而增加MNrec的底物,提高了土壤MNrec。

喬灌地改種砂糖桔,由于MNlab下降的幅度大,最終導致MNorg的大幅降低?;規r和泥晶灰巖發育的土壤MNorg均與土壤有機質數量呈顯著正相關,為了提高石灰土有機氮的供應能力,可通過增施有機肥料提高氮的有效性。灰巖發育的土壤MNorg還受土壤黏重和金屬元素含量的影響,因此在增施有機肥料的同時還要考慮減少土壤的黏重和金屬元素含量。在巖溶區不同巖性發育的土壤中有機氮礦化降低的因素有所不同,因此了解不同巖性土壤有機氮礦化過程特征,可以幫助指導農業生產。

4 結論

土地利用方式的改變影響土壤有機氮的礦化過程。巖溶區喬灌地改種砂糖桔顯著降低土壤有機氮礦化速率,主要通過易利用有機氮礦化速率下降造成,土壤無機氮的供應能力減弱。

參考文獻:

曹建華,袁道先,潘根興. 2003. 巖溶生態系統中的土壤[J]. 地球科學進展,18(1):37-44. [Cao J H,Yuan D X,Pan G X. 2003. Some soil features in karst ecosystem[J]. Advance in Earth Science,18(1):37-44.]

曹建華,袁道先,章程,蔣忠誠. 2004. 受地質條件制約的中國西南巖溶生態系統[J]. 地球與環境,32(1):1-8. [Cao J H,Yuan D X,Zhang C,Jiang Z C. 2004. Karst ecosystem constrained by geological conditions in Southwest china[J]. Earth and Environment,32(1):1-8.]

曹文超,宋賀,王婭靜,覃偉,郭景恒,陳清,王敬國. 2019. 農田土壤N2O排放的關鍵過程及影響因素[J]. 植物營養與肥料學報,25(10):1781-1798. [Cao W C,Song H,Wang Y J,Qin W,Guo J H,Chen Q,Wang J G. 2019. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 25(10):1781-1798.]

李娜,盛明,尤孟陽,韓曉增. 2019. 應用13C核磁共振技術研究土壤有機質化學結構進展[J]. 土壤學報,56(4):796-812. [Li N,Sheng M,You M Y,Han X Z. 2019. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil orga-nic matter[J]. Acta Pedologica Sinica,56(4):796-812.]

李平,郎漫. 2020. 開墾年限對黑土氮初級轉化速率和凈轉化速率的影響[J]. 土壤學報,57(1):165-173. [Li P,Lang M. 2020. Effect of cultivation on gross and net N transformation rates in black soil relative to duration[J]. Acta Pedologica Sinica,57(1):165-173.]

劉煒. 2018. 碳酸鹽巖發育形成土壤屬性及抗蝕性研究[D]. 貴陽:貴州大學. [Liu W. 2018. Study on soil properties and corrosion resistance of soil developed from carbo-nate rocks[D]. Guiyang:Guizhou University.]

劉亞利,鐘婷婷,劉鵬飛,余紫薇,楊燦. 2018. 投加不同形態的鐵對厭氧消化的影響和作用機理[J]. 應用化工,47(10):2264-2267. [Liu Y L,Zhong T T,Liu P F,Yu Z W,Yang C. 2018. Effects and mechanisms of iron in di-fferent forms on anaerobic digestion[J]. Applied Chemical Industry,47(10):2264-2267.]

劉玉萍,陳西,王延華,楊浩,張明禮,謝標,催駿. 2017. 滇池流域土壤養分分布及其對水體富營養化的影響[J]. 南京師大學報(自然科學版),40(4):129-136. [Liu Y P,Chen X,Wang Y H,Yang H,Zhang M L,Xie B,Cui J. 2017. Soil nutrients distribution in the small catchment and their effects on the eutrophication of Dianchi Lake[J]. Journal of Nanjing Normal University(Natural Scien-ce Edition),40(4):129-136.]

單志杰,于洋,殷哲,秦偉,左長清,趙耀,李柏,郭乾坤. 2019. 蒙自斷陷盆地不同土地利用方式土壤養分特征[J]. 中南林業科技大學學報,39(7):85-91. [Shan Z J,Yu Y,Yin Z,Qin W,Zuo C Q,Zhao Y,Li B,Guo Q K. 2019. Soil nutrient characteristics in different land use of Mengzi gabin basin[J]. Journal of Central South University of Forestry and Technology,39(7):85-91.]

王世杰,李陽兵. 2007. 喀斯特石漠化研究存在的問題與發展趨勢[J]. 地球科學進展,22(6):573-582. [Wang S J,Li Y B. 2007. Problems and development trends about researches on karst rocky desertification[J]. Advances in Earth Science,22(6):573-582.]

王世強,胡長玉,程東華,廖萬有,趙燦,葛慧麗,房江育. 2011. Al3+脅迫對茶園土壤微生物區系及生理群的影響[J]. 環境污染與防治,33(6):36-38. [Wang S Q,Hu C Y,Cheng D H,Liao W Y,Zhao C,Ge H L,Fang J Y. 2011. Effect of Al3+ on populations and major physiological groups of microbes in tea garden soils[J]. Environmental Pollution and Control,33(6):36-38.]

文冬妮,楊程,楊霖,秦興華,孟磊,何秋香,朱同彬,Christoph Müller. 2020. 巖溶區農業種植對土壤有機氮礦化的影響[J]. 中國巖溶,39(2):189-195. [Wen D N,Yang C,Yang L,Qin X H,Meng L,He Q X,Zhu T B,Müller C. 2020. Effects of agricultural cultivation on soil organic nitrogen mineralizationin karst regions[J]. Carsologica Sinica,39(2):189-195.]

Booth M S,Stark J M,Rastetter E. 2005. Controls on nitrogen cycling in terrestrial ecosystems:A synthetic analysis of literature data[J]. Ecological Monographs,75:139-157.

Fu Q,Yan J W,Li H,Li T X,Hou R J,Liu D,Ji Y,2019. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles[J]. Geoderma,353:459-467.

Hu P L,Zhang W,Xiao L M,Yang R,Xiao D,Zhao J,Wang W L,Chen H S,Wang K L. 2019. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region[J]. Geoderma,352:70-79.

Jiang Z C,Lian Y Q,Qin X Q. 2014. Rocky desertification in Southwest China:Impacts,causes,and restoration[J]. Earth-Science Reviews,132:1-12.

Li D J,Liu J,Chen H,Zheng L,Wang K L. 2018. Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region[J]. Journal of Environmental Management,212:1-7.

López-Poma R,Pivello V R,de Brito G S,Bautista S. 2020. Impact of the conversion of Brazilian woodland savanna(cerrad?o)topasture and Eucalyptus plantations on soil nitrogen mineralization[J]. Science of the Total Environment,704:135397. doi:10.1016/j.scitotenv.2019.135397.

Müller C,Rütting T,Kattge J,Laughlin R J,Stevens R J. 2007. Estimation of parameters in complex 15N tracing models by Monte Carlo sampling[J]. Soil Biology and Biochemistry,39(3):715-726.

Sheshbahreh M J,Dehnavi M M,Salehi A,Bahreininejad B. 2019. Effect ofirrigation regimes and nitrogen sources on biomass production,water and nitrogen use efficiency and nutrients uptake in coneflower(Echinacea purpurea L.)[J]. Agricultural Water Management,213:358-367.

Song Y Y,Song C C,Hou A X,Ren J S,Wang X W,Gui Q,Wang M Q. 2018. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland[J]. Catena,165:381-389.

Ste-Marie C,Houle D. 2006. Forest floor gross and net nitrogen mineralization in three forest types in Quebec,Canada[J]. Soil Biology and Biochemistry,38(8):2135-2143.

Ye C L,Chen D M,Hall S J,Pan S,Yan X B,Bai T S,Guo H,Zhang Y,Bai Y F,Hu S J. 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon:Plant,microbial and geochemical controls[J]. Ecology Letters,21(8):1162-1173.

Zhang J B,Cai Z C,Yang W Y,Zhu T B,Yu Y J,Yan X Y,Jia Z J. 2012. Long-term field fertilization affects soil nitrogen transformations in a rice-wheat-rotation cropping system[J]. Journal of Plant Nutrition and Soil Science,175(6):939-946.

Zhang J B,Zhu T B,Meng T Z,Zhang Y C,Yang J J,Yang W Y,Müller C,Cai Z C. 2013. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China[J]. Soil Biology and Biochemistry,62:107-114.

Zhang S S,Zheng Q,Noll L,Hu Y T,Wanek W G. 2019. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization[J]. Soil Biology and Biochemistry,135:304-315.

Zhang T,Li Y F,Chang S X,Jiang P K,Zhou G M,Liu J,Lin L. 2013. Converting paddy fields to Lei bamboo(Phyllostachys praecox) stands affected soil nutrient concentrations,labile organic carbon pools,and organic carbon chemical compositions[J]. Plant Soil,367(1-2):249-261.

Zhu T B,Zeng S M,Qin H L,Zhou K X,Yang H,Lan F N,Huang F,Cao J H,Müller C. 2016. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China[J]. Soil Biology and Biochemistry,97:99-101.

Zhu T B,Zhang J B,Meng T Z,Zhang Y C,Yang J J,Müller C,Cai Z C. 2014. Tea plantation destroys soil retention of NO3- and increases N2O emissions in subtropical China[J]. Soil Biology and Biochemistry,73(6):106-114.

(責任編輯 羅 麗)

收稿日期:2020-04-23

基金項目:廣西自然科學基金項目(2018GXNSFBA138042,2018GXNSFAA281320)

作者簡介:*為通訊作者,朱同彬(1983-),博士,副研究員,主要從事土壤氮循環及環境效應研究工作,E-mail:ztb@karst.ac.cn。楊會(1982-),高級工程師,主要從事同位素地球化學研究工作,E-mail:hy5302230@163.com

主站蜘蛛池模板: jijzzizz老师出水喷水喷出| 亚洲香蕉在线| 国产杨幂丝袜av在线播放| 老司国产精品视频| 欧美一区精品| 专干老肥熟女视频网站| 国产丝袜一区二区三区视频免下载| 免费在线色| 人妻精品久久久无码区色视| 亚洲中文字幕精品| 精品国产中文一级毛片在线看 | 丝袜国产一区| 国产午夜福利在线小视频| 亚洲综合在线最大成人| 国产精品.com| 人妻熟妇日韩AV在线播放| 国产无码性爱一区二区三区| 97在线观看视频免费| 国产在线观看第二页| 精品人妻一区二区三区蜜桃AⅤ| 亚洲第一视频网| 欧美日韩中文字幕二区三区| 国产网友愉拍精品| 爽爽影院十八禁在线观看| 国产SUV精品一区二区6| 伊人久热这里只有精品视频99| 亚洲免费播放| 91精品情国产情侣高潮对白蜜| 国产在线观看一区二区三区| 国产成人亚洲无吗淙合青草| 国产精品香蕉在线| 伊人久久大香线蕉综合影视| AV在线麻免费观看网站| 97综合久久| 欧洲高清无码在线| 日韩精品欧美国产在线| 欧美精品1区| h视频在线观看网站| 激情乱人伦| 久久精品电影| 中国精品久久| 波多野结衣中文字幕久久| 免费一级毛片在线观看| 日本91在线| 香蕉视频在线精品| 久草视频一区| 精品国产网| 久久99久久无码毛片一区二区 | 国产视频入口| 国产人人乐人人爱| 国产亚洲视频中文字幕视频| 天堂亚洲网| 久久精品视频亚洲| 国产精品无码一区二区桃花视频| 国产美女在线观看| 97se亚洲综合在线韩国专区福利| 国产精品久久久久久久久久久久| 国内自拍久第一页| 思思热精品在线8| 欧美中文字幕第一页线路一| 精品成人一区二区| 9啪在线视频| 国产精品亚洲αv天堂无码| 日本在线视频免费| 亚洲精品无码不卡在线播放| 国产福利一区视频| 亚洲国产欧美目韩成人综合| 色噜噜中文网| 国产午夜福利亚洲第一| 国产青榴视频在线观看网站| 久操线在视频在线观看| 亚洲视频在线网| 在线另类稀缺国产呦| 国内精品久久久久鸭| 日韩激情成人| 国产精品福利导航| 99人妻碰碰碰久久久久禁片| 国产精品网拍在线| 久青草免费在线视频| 夜色爽爽影院18禁妓女影院| 国产精品冒白浆免费视频| 四虎影院国产|