李峰梅, 柯 鵬,2,*
(1.北京航空航天大學 交通科學與工程學院, 北京 100191; 2.飛機/發動機綜合系統安全北京市重點實驗室, 北京 100191)
飛機/發動機結冰會嚴重影響飛機性能和操穩特性,甚至危害飛行安全[1-3],因此防除冰系統設計非常重要。水滴撞擊特性是部件防除冰系統設計的基礎和關鍵[4-5],主要計算研究方法包括拉格朗日法[6-8]和歐拉法[9-11]。拉格朗日法是將過冷水滴當作離散系,對單個水滴建立控制方程,追蹤水滴運動軌跡。歐拉法則是把過冷水滴視作連續流體,在歐拉坐標系下建立水滴相控制方程,使用同一套網格求解過冷水滴流場和空氣流場,避免了拉格朗日法的大量插值問題,可獲得各網格單元內水滴體積份額和表面撞擊水滴的質量。對比研究[12-14]表明二者都能在特定情況下很好分析物面水滴收集規律。
借助數值模擬工具,國內外對常規防冰系統和部件水滴收集規律開展了大量研究。趙勇等[15]發現飛機三維水平尾翼從翼根到翼尖局部水滴撞擊系數逐漸增加;易賢等[16]發現三段翼最大收集率會出現在縫翼,而水滴撞擊范圍最大的是襟翼,T型尾翼平尾上水滴收集率要整體大于立尾。楊勝華等[17]發現在多段翼后方存在水滴無法撞擊的遮蔽區。楊軍等[18]發現隨著飛行高度、來流速度及水滴直徑的增加,水滴撞擊極限、總收集系數和局部收集系均增加。申曉斌等[19]發現進氣道唇口附近水滴撞擊區和撞擊量都受進氣流量的影響,水滴撞擊特性受到整流罩影響較小。
鑒于沖擊換熱具有高的對流傳熱系數,常規熱氣防冰系統中通常利用熱氣射流沖擊防冰部件內表面來提升加熱效率,近年來也有研究人員直接利用熱氣射流除冰和防冰。例如,羅振兵等[20-21]開展了合成熱射流機翼除冰實驗,發現合成熱射流能有效促進熱能的擴散,縮短除冰時間,出口通道開縫角度與表面積冰越垂直,加速除冰效果越明顯。柯鵬等[22]發展了一種針對復合材料帽罩的熱氣膜防冰系統,采用數值模擬和實驗方法研究了其內部沖擊換熱和外部氣膜加熱效果,發現射流氣膜能大幅提高縫后外壁面溫度,在前緣開設氣膜縫還會提升前緣內部的沖擊換熱效果。
外部射流直接加熱待防護表面的同時還會影響近壁區的外部流場[23],改變物面水滴撞擊特性。例如,柯鵬等[24]計算發現氣膜縫位置和熱氣吹風比等都影響開縫支板表面局部水滴撞擊系數分布,吹風比越大,水滴撞擊系數越小。劉華等[25]計算了不同氣膜縫出流位置、射流角度等結構參數下,支板表面水滴撞擊特性,發現氣膜縫位置會影響局部水滴撞擊系數和總撞擊效率。但目前射流對結構水滴撞擊特性影響的研究仍十分有限,尤其是對于飛機/航空發動機的典型防冰部件,如機翼、進氣道、帽罩和支板等。
本文選取了雙開孔的三維圓柱作為基本構型,采用基于歐拉-歐拉方法的數值模擬算法對不同吹風比和來流速度下的水滴撞擊系數進行了數值模擬,揭示射流對開孔圓柱表面不同位置水滴撞擊系數分布、最大水滴收集系數和撞擊極限的影響規律,并分析原因,為結冰預測與防冰設計提供參考。
一般防冰工況下可認為空氣和水滴之間單向耦合,只考慮空氣流場對水滴運動的影響。基本假設如下:
(1)水滴運動過程保持常物性、無變形、無破碎、無碰撞;
(2)水滴撞擊壁面后無飛濺;
(3)忽略水滴與空氣之間的傳熱傳質;
(4)只考慮作用在水滴上的空氣阻力和重力。
Slater[26]指出速度方向不同的水滴相交后形成一個無限大的密度脈沖,會導致歐拉法計算發散,為此建議在水滴連續性方程中加入數值擴散項,詳細分析參見文獻[27-28]等。
考慮數值擴散后水滴相控制方程如下:
(1)
(2)
其中b為數值擴散系數,ρw為水滴密度,α為局部水滴體積分數,V為水滴速度矢量,Va為氣流運動速度矢量,G是重力加速度矢量。K為空氣-水滴作用因子,
(3)
其中μa是空氣動力黏度,Dw是水滴直徑,f為水滴阻力系數。
基于假設(2),撞擊到壁面的水滴應從計算域中排除。設n為撞擊壁面的單位法向量,n·V<0即表明水滴撞擊到了壁面。壁面水滴容積分數和速度都取緊貼壁面網格的中心點的值。
局部水滴撞擊系數β定義為微元表面上的實際水收集量與該微元表面上最大可能的收集量之比,計算式為:
β=α(V·n)/(α∞|V∞|)
(4)
其中α∞為來流體積分數,V∞為來流速度。
定義吹風比M來表征射流強度,
M=ρjVj/ρ∞V∞
(5)
其中ρj為射流氣體密度,Vj為射流氣體速度。
選取文獻[29]中三維圓柱算例,圓柱直徑101.6 mm,來流速度80 m/s,壓力89 867 Pa,水滴直徑16 μm。計算邊界采用速度入口,壓力出口。圖1給出了中心截面上水滴撞擊系數對比結果。可以發現,本文計算結果中水滴撞擊系數分布與文獻中數值模擬和實驗結果吻合良好,撞擊極限和實驗結果相比誤差大約為6.5%,最大水滴撞擊系數和實驗結果相比誤差大約為1%。更多驗證結果見文獻[14,28]。

圖1 三維圓柱驗證算例
研究構型為開直孔的三維圓柱,幾何模型和計算域如圖2所示,直徑D取76 mm。射流孔為上下對稱分布,水平方向,直徑d為7 mm,孔間距為15.4 mm。計算域為前場8D,后場14D,上下各7D。其中圖2(d)為局部放大圖,圖2(a)、圖2(b)和圖2(c)分別圖2(d)的正視圖、左視圖和俯視圖。
計算網格為三維結構化網格,通過網格無關性驗證后,最終網格數約300萬,如圖3所示,其中近壁網格進行了加密,y+≈1。
來流入口采用速度入口邊界條件,出口采用壓力出口邊界條件,射流采用速度入口邊界條件,展向兩側采用周期性邊界條件,圓柱表面采用1.2節定義的邊界條件,其他壁面為無滑移壁面邊界。
利用Fluent軟件求解空氣流場,水滴流場通過用戶自定義函數求解。采用標準k-ε湍流模型和增強型壁面函數,使用基于壓力的分離式求解器,各項參數均采用二階精度的空間離散方法。
選取典型水滴大小(單一直徑20 μm)在來流速度(30 m/s)和射流吹風比(M=1.0)條件下進行計算,發現射流對水滴撞擊特性存在顯著影響,無射流孔圓柱和有射流孔圓柱的表面水滴撞擊系數分布對比如圖4所示。
對比圖4(a)、圖4(b)可見,射流孔出口下游水滴被完全吹散,小孔附近則隨表面位置不同而呈現出不同變化規律。為此,進一步選取幾個特征截面來分析不同位置水滴撞擊特性。各截面對應位置關系如圖5所示,展向從左往右依次為截面L1~L6,中心截面L6通過兩個射流孔中線,弦向中心截面H1則為二個射流孔上下方向的正中間截面。各個截面的無量綱位置坐標如表1所示,其中,s表示截面到二孔中心線的距離,r為射流孔半徑。
各弦向截面在吹風比為1.0時的水滴撞擊系數分布如圖6所示,射流對水滴撞擊系數分布規律影響較為復雜。例如,中心截面L6的水滴撞擊系數顯著小于無氣膜情況,撞擊極限終止于孔邊緣,最大水滴撞擊系數降低了6.88%。近孔截面L5的水滴撞擊系數分布曲線呈現顯著不同的凹曲線,在前緣的一小段范圍內曲線保持水平,之后呈現為快速下降的凹曲線,到撞擊邊緣附近時降幅趨緩。水滴撞擊系數變化最劇烈的區域(距離中心-0.015~-0.008 m和0.008~0.015 m)正是射流吹襲作用最強的區域。最大水滴撞擊系數相比于無氣膜時減少了5%,撞擊極限減少了8%。中間截面L4上最大水滴撞擊系數和撞擊極限都略小于無氣膜情況,但是水滴撞擊系數曲線從撞擊極限到駐點前緣(距離中心-0.030~-0.012 m和0.012~0.030 m)幾乎呈線性分布,與無射流情況下差異不大。在前緣一小段范圍內(距離中心-0.012~0.012 m)曲線幾乎保持水平。

(a)No film

(b)M=1.0
圖4 水滴撞擊系數云圖
Fig.4 Contours of droplet impingement coefficient

圖5 截面位置示意圖

表1 各截面位置

圖6 吹風比為1.0時的水滴撞擊系數
為分析水滴撞擊系數變化的原因,將圖6中圓柱表面沿弦向劃分為三個區域,I區、II區和III區,對應表面的孔間、孔兩側和孔后區域,圖7進一步給出與三個區相應的水滴速度矢量圖。
I區所有截面的水滴撞擊系數均小于無氣膜作用情況,從圖7中I區水滴速度矢量圖可以明顯看出,水滴有向展向和弦向外側運動的趨勢,這是在射流展向擴散和弦向吹襲共同作用下的結果。

圖7 吹風比為1.0時的水滴速度矢量
1)展向射流擴散作用可以從圖8的H1剖面上來流水滴軌跡和流場y方向渦量場可以明顯看出,兩射流孔間的水滴被吹向展向外側,造成I區的來流水量減少。

(a)Trajectories of droplets on section H1

(b)Vorticity distribution in the y direction on the section H1
2)弦向射流吹襲作用,由圖9中L6和L1截面吹風比為1.0時空氣運動軌跡和水滴運動軌跡可以看出,水滴軌跡有明顯的上揚,被吹向弦向后側,而且對比圖9(b)、圖9(c)發現,近流孔截面受到射流吹襲作用更強,所以L6截面上水滴撞擊特性變化更為劇烈。
II區為射流孔側區域,在氣流吹襲和擴散作用下(如圖7中II區水滴速度矢量圖)下,水滴撞擊系數會下降。近孔截面L5和L6則受射流吹襲作用影響更大,下降最為顯著,而外側截面L1和L2則影響不大;但是,對于L3和L4截面,由于射流擴散作用將I區的水滴吹過來,導致來流水量增加,所以水滴撞擊系數反而會增大。
III區為射流孔后的區域,與II區受到的作用力類似,即在射流吹襲和射流擴散的共同作用下,水滴向孔后、向外側方向運動(如圖7中III區水滴速度矢量圖),射流影響范圍僅局限在近孔截面L4~L6。

(a)Trajectories of air on section L6 and L1

(b)Trajectories of water droplets on section L6

(c)Trajectories of water droplets on section L1
射流強度會影響圓柱表面的水滴撞擊特性分布規律,為此,進一步分析了吹風比(0.5和1.5)對典型截面位置的水滴撞擊系數的分布特征和最大水滴撞擊系數的影響。
圖10給出了不同吹風比條件下表面水滴撞擊系數的分布規律。總體來說,吹風比對不同位置的水滴撞擊系數的影響規律類似,孔后基本無水滴,孔間和近孔位置受影響最為顯著,差異也很明顯。
當吹風比減小到0.5時,由圖10(a)可以看到,總體分布規律與吹風比為1.0時基本一致,是射流吹襲和射流擴散共同作用下的結果。由于吹風比小,射流孔氣流吹襲影響僅限于近孔側截面L5和孔間截面L6。對其他截面的影響較小,基本限于孔間I區范圍。
當吹風比增大到1.5時,圖10(b)顯示了射流的顯著影響。外側截面L1和L2的水滴撞擊系數都明顯高于無氣膜情況,其他截面變化與吹風比1.0的情況類似,但是孔間I區的水滴撞擊系數也明顯增加,高于無氣膜狀態。原因在于當吹風比大于1.0時,射流吹襲和擴散作用更加強烈,來自兩孔間(I區)的水滴沿展向被吹向外側,造成近孔截面L6水滴量減少,小于無氣膜結果,而遠孔各截面上增加,在不同程度上高于無氣膜情況。

(a)M=0.5

(b)M=1.5
各截面水滴撞擊系數變化規律的差異,主要來源于物面局部流場的巨大差異。圖11給出了吹風比為1.5時的物面渦量分布情況,近壁區域存在射流誘發的復雜渦流場,會對水滴撞擊軌跡產生顯著影響。接下來針對不同截面來具體分析。

圖11 吹風比為1.5時的渦量分布
圖12為吹風比為1.5時L6和L1截面水滴運動軌跡。對比圖12(b)和圖9(b)可明顯看出吹風比增大時,中心截面L6處射流吹襲作用加強,減小了局部水滴撞擊系數。綜上,在近孔截面射流吹襲作用和遠孔截面射流擴散作用的綜合影響下,會出現圖10(b)中的水滴撞擊系數分布規律。

(a)Trajectories of air on section L6 and L1

(b)Trajectories of droplets on section L6

(c)Trajectories of droplets on section L1
展向位置上的最大水滴撞擊系數的分布結果能更好的顯示射流在不同區域的綜合作用。圖13給出了三個吹風比下,截面H1的水滴撞擊系數。吹風比較小時(0.5和1.0),總體水滴撞擊系數分布低于無氣膜工況,孔間區域水滴撞擊系數相比于無氣膜工況最大下降了7.51%,吹風比增大到1.5時,射流動量大大增強,對孔間主氣流吹襲作用更為強烈,導致孔間水滴撞擊系數比無氣膜工況最大下降了8.95%。但水滴撞擊系數從展向外側截面向孔間截面呈下降趨勢,最大降幅約17.65%。

圖13 三吹風比下水滴撞擊系數分布
采用基于歐拉-歐拉模型的水滴撞擊算法,針對典型水滴直徑,分析了射流對三維帶雙開孔射流的圓柱表面水滴撞擊特性的影響規律和內在機理,得出以下結論:
1)射流與主流之間存在的強耦合作用會顯著改變來流的流動規律,進而會影響開孔圓柱物面的水滴撞擊特性。在物面的不同區域,射流與水滴之間存在吹襲作用和擴散作用等不同的作用關系,且其強度隨物面區域變化而差異很大。例如,吹風比為1.0時,弦向孔后區域影響最大,完全沒有水滴撞擊,展向向外區域影響逐漸減小。
2)射流和來流水滴間的吹襲和擴散作用不僅與物面位置有關,與射流強度也密切相關。水滴直徑為20 μm,在小吹風比(0.5和1.0)時,射流僅對展向近孔截面有影響,孔間水滴撞擊系數相比于無氣膜工況最大下降7.51%;吹風比為1.5時,射流吹襲和擴散作用進一步加強,孔間的水滴沿展向被吹向外側,造成近孔截面水滴量減少而遠孔截面增加,孔間截面水滴撞擊系數比無氣膜工況最大下降了8.95%,水滴撞擊系數從展向外側向孔間最大降幅約17.65%。
本文初步研究了射流對三維開孔圓柱物面不同區域水滴撞擊特性的影響規律,分析了其內在機理。雖然所得規律在相同工況下對多種結構具有一定普遍性,但僅針對了特定的水滴直徑(20 μm)和開孔布置方式,而射流對水滴撞擊特性的影響程度會隨水滴直徑減小進一步增強,具體規律還有待后續進一步研究。