錢麗玲,陳蔣慶,吳曉燕,荊瑞瑞,孫潔,2
生物工程與大健康

孫潔 博士,浙江大學醫學院研究員,博士生導師。目前研究方向為CAR-T細胞殺傷、增殖及耗竭的分子機制;開發新型生物傳感器與智能分子機器;優化及探索新的細胞癌癥免疫療法。成果以第一作者或通訊作者發表在、、等國際專業期刊。
細胞治療的典范:嵌合抗原受體T細胞療法
錢麗玲1,陳蔣慶1,吳曉燕1,荊瑞瑞1,孫潔1,2
1 浙江大學醫學院附屬第一醫院骨髓移植中心 浙江大學醫學院細胞生物學系,浙江 杭州 310058 2 浙江大學血液學研究所 浙江省干細胞與免疫治療工程實驗室,浙江 杭州 310058
嵌合抗原受體T (CAR-T) 細胞療法是一種利用合成受體特異性靶向抗原的過繼性細胞療法(ACT),目前在血液腫瘤的治療中有極大的臨床應用價值。雖然美國食品藥品監督管理局 (FDA) 已經批準兩款CAR-T藥物上市,但CAR-T療法在治療過程中仍然存在一些副作用,如細胞因子釋放綜合征 (CRS)、神經毒性、B細胞功能缺失等。同時,CAR-T療法在實體瘤治療中的效果甚微,主要原因是缺乏特異性靶點以及腫瘤微環境對CAR-T細胞功能的抑制等。文中將從CAR的結構設計、臨床應用、合成生物學對新型CAR的優化來闡述應用CAR-T細胞療法治療腫瘤所面臨的挑戰及廣闊前景。
細胞治療,免疫治療,嵌合抗原受體T細胞,合成生物學
20世紀80年代以前,藥物的研發主要依賴于天然化合物和小分子藥物的合成,開發了許多有效的小分子藥物用于疾病治療。隨著單克隆抗體技術和蛋白質工程技術的發展,生物大分子藥物如天然蛋白質或具有特定功能的重組蛋白藥物應運而生,但仍然存在新的困難和挑戰,由于疾病的復雜性和多樣性,且存在個體差異和組織特異性,因此很難找到組織特異和個體特異的靶點。近年來,興起了第3種治療方法——將細胞作為藥物的細胞治療,該方法在疾病尤其是癌癥的治療方面具有劃時代的意義[1]。
細胞治療是指將自體、同源異體或異種細胞經體外工程化改造和擴大培養后,輸注患者體內治療疾病的療法。該治療方法與傳統的小分子藥物和蛋白藥物相比最大的特點是利用活細胞作為藥物來治療疾病,具有復雜性和可調節性等特 征[1],具體來說,將細胞作為藥物具有以下優點:1) 選擇性高,細胞藥物能感知復雜的人體內環境,只在特定的環境中激活,以發揮相應功能,這意味著可以更大程度上限制藥物的副作用;2)局部濃度高,人體代謝、藥物效應動力學(Pharmacodynamics,PD) 和藥物代謝動力學(Pharmacokinetics,PK) 決定了分子藥物靶向性較低,它不只在病變組織或細胞內分布,而且分布于整個機體組織,這通常會造成嚴重的脫靶效應,而細胞藥物的優勢在于可主動遷移到靶組織或靶細胞內發揮作用;3) 更加個性化,由于個體差異,目前很難控制每個患者小分子藥物的使用劑量,但在細胞治療中,可應用合成生物學設計基因開關控制藥物的合成或釋放,也可以根據臨床需要設計不同細胞藥物以治療更多疾病[1]。但細胞藥物的開發和合成生物學的應用還需更多基礎研究的支撐,以解決細胞藥物在臨床上治療疾病種類少、副作用嚴重、費用昂貴等問題。
細胞治療根據細胞類型可分為干細胞治療、免疫細胞治療和其他細胞治療。輸血是最早的細胞治療,現已經發展到輸注特定血液成分進行治療,這使得在提高血液利用率的同時減少副作用,目前研究較多的是干細胞治療和免疫細胞治療。干細胞治療是指把健康的干細胞輸注到患者體內,從而修復或替換受損細胞或組織以治療疾病的方法。目前國內外臨床試驗應用較廣泛的是利用間充質干細胞治療神經性疾病、糖尿病、慢性心臟疾病、腎臟病、肝臟疾病、艾滋病和癌癥等疾病[2-6]。免疫細胞治療的過程主要包括從患者或供體血液中提取免疫細胞,在體外進行工程化改造和擴增培養后,重新輸注入病人體內或者直接注射到病灶處。目前用于臨床試驗的免疫細胞療法主要有CAR-T、TCR-T和NK細胞療法等[7-9]。文中主要介紹CAR-T療法的發展、應用和前景。
早在20世紀80年代,得益于過繼性T細胞治療(Adoptive T-cell therapy,ACT) 的發展,臨床上已開始利用輸注自體或異體供體淋巴細胞治療一些腫瘤,如轉移性黑色素瘤、復發性白血 病[10-11]等。但這種基于自然T細胞的ACT治療存在以下不足:首先,供體T細胞可能攻擊受體導致移植物抗宿主反應(Graft-versus-host disease,GVHD);同時,受體可能排斥輸注的T細胞,限制它們的持久性和療效;而且從體內分離的自然T細胞數目少,靶向特異性低,抗腫瘤效率低。這些早期ACT的臨床結果表明,該療法需要增強靶向腫瘤的特異性并提高體外擴增T細胞的數量,同時減少免疫排斥反應[12-14]。T細胞工程的出現改變了傳統ACT的局限性,產生了特異性靶向腫瘤的TCR-T、CAR-T細胞[15],其中通過在T細胞表達嵌合抗原受體(Chimeric antigen receptor,CAR) 而擺脫HLA限制性的治療方法即CAR-T療法,該方法已經在血液瘤的治療中取得顯著的效果。本文首先簡述了CAR的結構設計以及CAR-T療法在血液瘤和實體瘤中的應用現狀,然后總結了合成生物學為CAR-T細胞設計提供的新思路,最后展望CAR-T療法在腫瘤尤其是在實體瘤治療過程中的巨大應用潛能。

臨床試驗已證實CAR-T細胞療法在治療B細胞系血液腫瘤的療效顯著,其中包括非霍奇金淋巴瘤(Non-Hodgkinlymphoma, NHL)、慢性淋巴細胞白血病(Chronic lymphocytic leukemia,CLL)、急性淋巴細胞白血病(Acute lymphoblastic leukemia,ALL),但CAR-T細胞在實體瘤治療中仍存在一定挑戰。

圖1 第一、二和三代CAR的結構設計
2.2.1 CAR-T細胞在血液腫瘤中的應用
目前,CAR-T療法在治療ALL[22-24]中的療效最好,應用也最廣泛,其中靶向CD19的CAR在治療成人和兒童ALL中都取得顯著的療效[25-26],文獻報道,CD19 CAR-T治療復發/難治性ALL的完全緩解率可高達90%[27]。目前FDA批準的CD19 CAR-T細胞藥物分別以CD28或4-1BB為共刺激結構域[28-29]的這兩種CAR-T細胞各有優點,共刺激結構域為CD28的CAR-T細胞在反應初期增殖更快,能介導更強的腫瘤殺傷能力,但同時副作用也更強,且在免疫反應后期的持久性較差;而基于4-1BB的CAR-T細胞雖然在反應初期增殖能力相比CD28 CAR較差,但持續性更好,在免疫反應后期也能維持較高細胞數量[30-32]。另外,值得注意的是,CD19 CAR-T細胞在治療過程中也存在一些副作用,比如細胞因子釋放綜合征(Cytokine release syndrome,CRS),神經毒性,B細胞功能缺失,同時還存在腫瘤復發等問題[21,33-35]。已有研究表明導致CRS的主要原因是單核細胞釋放的IL-1和IL-6[36],目前臨床上主要采用耗竭單核細胞或使用IL-6拮抗劑(托珠單抗,Tocilizumab) 來降低CRS,也有文獻研究表明改良CAR的跨膜區和鉸鏈區結構域可減少細胞因子釋放[36-40];CAR-T療法造成的神經毒性可能是由于巨噬細胞攻擊腦膜導致腦組織損傷,臨床上常用IL-1抑制劑阿那白滯素(Anakinr,別名Kineret) 來控制神經毒性[36,41];由于正常B細胞表面也表達CD19,故CD19 CAR-T細胞在殺傷腫瘤細胞的同時也會攻擊自身正常的B細胞,即“on-target,off-tumor”效應,造成B細胞功能缺失,目前可通過定期向患者體內輸注免疫球蛋白以彌補B細胞的功能缺失[42]。盡管針對CD19抗原的CAR-T療法療效突出,但仍有部分患者易復發,因此需要尋找新的腫瘤靶點進行輔助治療。CD22在大多數急性淋巴細胞白血病患者B細胞較高表達,因此目前臨床上會對一些CD19 CAR-T治療后CD19陰性的患者,開展針對CD22抗原的CAR-T治療的臨床試驗,最新的結果表明在接受CD22 CAR-T細胞輔助治療后,73%的患者獲得了完全緩解(Complete remission,CR)[43]。此外,串聯CD19/CD22 CAR-T目前也已用于臨床試驗[44],它可同時識別CD19和CD22抗原從而減少抗原逃逸引起的復發。
同時,靶向BCMA抗原的CAR-T的初步臨床研究結果令人鼓舞。BCMA全稱為B細胞成熟抗原(B cell maturation antigen),呈相對特異地高表達于骨髓瘤細胞表面,因此可作為多發性骨髓瘤免疫治療的理想靶點。臨床上靶向BCMA 的LCAR-B38M療法對復發/難治性多發性骨髓瘤晚期患者的療效較理想,總緩解率為88%,其中68%患者完全緩解(CR),但安全性上仍存在以細胞因子釋放綜合征(CRS) 為主的副作用[45]。
2.2.2 CAR-T療法在治療實體瘤中的應用
CAR-T療法不僅在治療血液腫瘤方面取得了突破,在治療實體瘤方面也有一定進展。目前,在實體瘤應用方面,CAR-T療法靶向的腫瘤抗原大多是高表達的分化抗原,例如癌胚抗原(Carcinoembryonic antigen,CEA)、前列腺特異性膜抗原(Prostate specific membrane antigen, PSMA)、雙唾液酸神經節苷脂(Disialoganglioside, GD2)、糖鏈抗原-125 (Carbohydrate antigen-125, CA-125)、人類表皮生長因子受體2 (Human epidermal growth factor receptor-2,Her-2) 和間皮細胞抗原(Mesothelin) 等。雖然過表達的抗原種類多樣,但由于其表達特異性低,CAR-T細胞對低水平表達抗原的正常細胞也高度敏感,因此治療中存在on-target/off-tumor的副作用[21]。例如,使用高劑量的Her-2 CAR-T細胞已導致致命的副作用,其中部分原因是由于該抗原也在健康正常肺上皮和心血管細胞低表達[46]。因此,一個首選的實體腫瘤抗原靶點就要求其表達僅限于腫瘤細胞,或只發生在非常低水平的非重要正常組織。目前表皮生長因子受體Ⅲ型突變體(Epidermal growth factor receptor variant type Ⅲ,EGFRvⅢ)、糖鏈抗原15-3 (Carbohydrate antigen 15-3,CA 15-3)和硫酸軟骨素蛋白聚糖4 (Chondroitin sulfate proteoglycan-4,CSPG-4) 分別被認為是治療惡性膠質瘤、胰腺癌、黑色素瘤較理想的CAR靶點[21]。此外,實體瘤的腫瘤微環境(Tumor microenvironment,TME) 也會對CAR-T細胞的功能產生抑制作用。首先,腫瘤細胞的無氧糖酵解途徑使其所處的TME呈現出缺氧、酸性、低營養成分的特點而不利于T細胞存活[47-49]。其次腫瘤細胞表面表達PD-L1、MHCⅡ、Gal9等配體與T細胞上的PD1、LAG-3、TIM-3等受體結合,激活T細胞上的抑制性信號通路抑制T細胞功能[50]。腫瘤微環境中的腫瘤細胞和腫瘤相關細胞如腫瘤相關成纖維細胞(Cancer-associated fibroblast,CAF)、調節性T細胞(Regulatory T cell,Treg) 等則會分泌抑制性的細胞因子,如血管內皮生長因子(Vascular endothelial growth factor,VEGF)、轉化生長因子β (TGF-β),或者通過產生活性氧(ROS)、前列腺素E2 (PGE2) 和乳酸等抑制T細胞的免疫應答[51-53]。因此,CAR-T療法在實體瘤中的應用還需要克服TME的抑制信號,增強CAR-T細胞的腫瘤識別能力、浸潤能力和持久性并避免脫靶效應[21]。目前已有一些應對策略,可能會對CAR-T細胞在復雜的腫瘤微環境中發揮作用提供幫助,比如局部給藥,或使用分泌IL-12的“武裝CAR”、NK細胞受體CAR等[54-60]。
為了克服免疫抑制(包括阻斷檢查點、抑制調節性T細胞和其他髓系細胞),降低on-target/ off-tumor毒性,提高CAR-T細胞的抗腫瘤療效,目前正在探索促進CAR-T細胞的浸潤、增強CAR-T細胞的功能持久性的多種方法,其中CAR的設計與合成生物學技術的結合為設計安全 性更高、功能更強的CAR-T細胞提供了更多可能性。
2.3.1 控制CAR-T細胞的毒性和活性
目前臨床上使用的CAR-T療法所帶來的器官毒性、脫靶毒性等問題亟待解決,已有報道表明嚴重CRS和腦水腫可引起治療相關死亡。合成生物學的發展為更好地調控人體內的CAR-T細胞提供了新的思路。其中一種策略是通過小分子藥物來控制CAR-T細胞自凋亡或抗原抗體結合來降低CAR-T細胞治療過程中的毒性反應。其具體設計有以下幾種方法:其一,在CAR-T細胞內加入相應的信號蛋白作為分子開關,實現對T細胞可逆調控[61]或“自殺”基因如單純皰疹病毒胸苷激酶(HSV-TK) 基因,一旦CAR-T細胞在患者體內發生不良反應,通過施加藥物介導T細胞的自殺基因激活誘導CAR-T細胞凋亡[62-63]。其二,利用小分子藥物,如AP1903二聚化誘導型Caspase 9 (iCasp9) 激活T細胞的自殺開關,誘導其發生凋亡終止CAR-T細胞發揮作用。其三,某些小分子藥物能夠通過介導腫瘤抗原和CAR之間的結合來調節CAR-T細胞識別腫瘤抗原的能力。最后,將CAR的scFv與信號轉導結構域分隔開,兩者之間依靠小分子二聚化的可逆結合得以更靈活地調控CAR-T細胞的功能[64-65]。
2.3.2 增強CAR-T細胞腫瘤識別的特異性
利用合成生物學制備多靶點CAR或Boolean logic-gated CAR,用于識別一種或兩種腫瘤抗原的方式來增強工程化的CAR-T細胞識別腫瘤抗原的能力,比如合成Notch (synNotch) 受體、嵌合共刺激受體(CCR)、抑制性嵌合抗原受體(iCAR) 等。其中SynNotch受體是一種精確識別腫瘤抗原的設計,該策略利用Notch受體獨特的信號傳導機制,即抗原A特異性的synNotch在結合了腫瘤抗原A之后,轉錄因子被切割激活,進而轉運到細胞核引起了抗原B特異性的CAR的表達,最終與腫瘤表面的抗原B結合,T細胞被激活[66-68](圖2A)。此外,synNotch受體系統還具有整合多個細胞外信號的潛能[69]。CCR是將用于T細胞活化的一代CAR和用于共刺激的CCR組合到一起,只有當兩種抗原同時存在于腫瘤細胞表面時,CAR-T細胞才能激活并介導腫瘤殺傷(圖2B)。這樣的設計增強了CAR-T細胞識別腫瘤細胞抗原的特異性,減輕副作用[70]。SynNotch受體和CCR的識別邏輯都是“AND gate”。另一種策略則是將識別不同腫瘤抗原的scFv串聯在一起,只要腫瘤細胞表達其中一個抗原[71],就能活化T細胞介導腫瘤殺傷(圖2C),即“OR gate”。基于CTLA-4和PD-1的iCAR通過識別正常細胞表面的抗原來發揮作用[72],是一種“AND OR NOT gate”,CAR-T細胞一旦識別在正常細胞表面的抗原,就會傳遞抑制信號抑制T細胞的活化,因此可有效預防CAR-T細胞對正常細胞的不良反應(圖2D)。SUPRA (Split,universal and programmable) CARs則整合了以上3種腫瘤識別邏輯[71,73-75],這是一種通用型的CAR,該策略是將CAR分成兩個部分Zip CAR (不含scFv) 和Zip Fv (不含信號轉導結構域),二者能通過匹配的亮氨酸拉鏈結合以形成完整的CAR,且可通過使用不同組合的抗原靶向部分控制對腫瘤抗原的識別能力[74],SUPRA CAR的開發表明多個高級邏輯識別抗原功能可在單個集成系統中實現(圖2E)。

圖2 運用合成生物學設計的新型CARs
目前,對這些CAR的研究還處在初級階段,在向臨床研究轉化的過程中,還存在許多困難和挑戰等待研究者去克服。
腫瘤免疫治療于2013年被雜志評為十大科技突破之首,其中CAR-T作為具有抗原靶向性且有一定持久性的“活細胞藥物”,可重編程T 細胞的效應和分化等功能,在接觸抗原后增殖并發揮抗腫瘤作用,尤其是CAR-T療法在B細胞血液瘤中取得了突破,給復發/難治性白血病及淋巴瘤患者帶來了希望[26-27]。但腫瘤微環境的免疫抑制[76]、抗原表達缺失或下調以及CAR-T細胞持久性不足等導致仍有患者復發。此外,初步臨床結果表明CAR-T療法在對標準治療有耐藥性的多發性骨髓瘤治療中取得重大進展[45]。雖然CAR-T在實體瘤治療上仍缺乏重大突破,但綜合目前CAR-T治療在臨床以及以下各個相關領域的進展,不可否認的是CAR-T療法具有廣闊前景:1) 隨著基因編輯技術和合成生物學的發展,CAR結構的設計更具靈活性和多元化。2) 已有研究表明敲除T細胞受體的同時將CAR插入T細胞受體位點可延遲T細胞耗竭從而增強抗癌作用,這為未來CAR-T設計提供重要思路[44]。3) 選擇最優的T細胞亞群,如調整CD4/CD8 T細胞比率和初始T細胞/效應T細胞比率用于CAR治療,將進一步提高CAR治療的療效和安全性[21]。4) 此外,初步臨床結果表明CAR-T治療與PD-1/PD-L1抑制劑聯用,或兩個不同靶點的CAR-T聯用在淋巴瘤治療上有較好成效[21,77-78]。5) 為了使CAR-T細胞治療成為更普遍的治療手段,已經出現了“通用型”CAR-T細胞,并在機體表現出很強免疫抑制的B-ALL患兒中取得了成功[79]。開發出具有更優性能的“通用型”CAR-T細胞,重點是避免機體和T細胞的相互排斥,因此通過使用基因編輯技術沉默基因、Ⅰ類基因的同種異體T細胞,不僅能有效消除可能造成的GVHD[76],經過改造后,在患者急需治療時能提供大量可用的現成CAR-T細胞,這對臨床治療具有重要意義。6) 對腫瘤發病、復發機制以及對T細胞和CAR-T細胞功能機制的知識體系的擴展和更新也為CAR-T治療提供深厚的理論基礎。隨著CAR-T基礎研究與臨床實踐的不斷深入,CAR-T細胞必將在腫瘤生物細胞免疫治療中發揮越來越重要的作用。
[1] Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med, 2013, 5(179): 179ps7.
[2] Couri CEB, Voltarelli JC. Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials. Diabetol Metab Syndr, 2009, 1: 19.
[3] Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med, 2015, 30(5): 580–589.
[4] Nguyen PK, Rhee JW, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol, 2016, 1(7): 831–841.
[5] Shroff G, Dhanda Titus J, Shroff R. A review of the emerging potential therapy for neurological disorders: human embryonic stem cell therapy. Am J Stem Cells, 2017, 6(1): 1–12.
[6] Zhang Z, Fu JL, Xu XS, et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS, 2013, 27(8): 1283–1293.
[7] Ikeda H. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. International Immunol, 2016, 28(7): 349–353.
[8] Rezvani K, Rouce R, Liu EL, et al. Engineering natural killer cells for cancer immunotherapy. Mol Ther, 2017, 25(8): 1769–1781.
[9] Roncarolo MG, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol, 2007, 7(8): 585–598.
[10] Mttchison NA, Dube OL. Studies on the immunological response to foreign tumor transplants in the mouse. II. The relation between hemagglutinating antibody and graft resistance in the normal mouse and mice pretreated with tissue preparations. J Exp Med, 1955, 102(2): 179–197.
[11] Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. New Engl J Med, 1988, 319(25): 1676–1680.
[12] Greenberg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol, 1991, 49: 281–355.
[13] Melief CJM. Tumor eradication by adoptive transfer of cytototic T lymphocytes. Adv Cancer Res, 1992, 58: 143–175.
[14] Old LJ. Tumor immunology: the first century. Curr Opin Immunol, 1992, 4(5): 603–607.
[15] Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature, 2017, 545(7655): 423–431.
[16] Thistlethwaite FC, Gilham DE, Guest RD, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother, 2017, 66(11): 1425–1436.
[17] Ghobadi A. Chimeric antigen receptor T cell therapy for non-Hodgkin lymphoma. Curr Res Transl Med, 2018, 66(2): 43–49.
[18] Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA, 2009, 106(9): 3360–3365.
[19] Wang JJ, Jensen M, Lin YK, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther, 2007, 18(8): 712–725.
[20] Pulè MA, Straathof KC, Dotti G, et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther, 2005, 12(5): 933–941.
[21] Sadelain M. Chimeric antigen receptors: a paradigm shift in immunotherapy. Annu Rev Canc Biol, 2017, 1: 447–466.
[22] Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med, 2013, 5(177): 177ra38.
[23] Davila ML, Riviere I, Wang XY, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014, 6(224): 224ra25.
[24] Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015, 385(9967): 517–528.
[25] Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017, 129(25): 3322–3331.
[26] Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest, 2015, 125(9): 3392–3400.
[27] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New Engl J Med, 2014, 371(16): 1507–1517.
[28] Forsberg MH, Das A, Saha K, et al. The potential of CAR T therapy for relapsed or refractory pediatric and young adult B-cell ALL. Ther Clin Risk Manag, 2018, 14: 1573–1584.
[29] Hombach AA, Holzinger A, Abken H. The weal and woe of costimulation in the adoptive therapy of cancer with chimeric antigen receptor (CAR)-redirected T cells. Curr Mol Med, 2013, 13(7): 1079–1088.
[30] Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal, 2018, 11(544): eaat6753.
[31] Maloney DG. Anti-CD19 CAR T cell therapy for lymphoma-off to the races!. Nat Rev Clin Oncol, 2019, 16(5): 279–280.
[32] Kawalekar OU, Posey AD Jr, Fraietta J, et al. Distinct signaling by chimeric antigen receptors (CARs) containing CD28 signaling domain versus 4–1BB in primary human T cells. Blood, 2013, 122(21): 2902.
[33] Bonifant CL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy. Mol Ther-Oncolytics, 2016, 3: 16011.
[34] Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med, 2015, 7(303): 303ra139.
[35] Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J, 2014, 20(2): 119–122.
[36] Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med, 2018, 24(6): 739–748.
[37] Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New Engl J Med, 2018, 378(5): 439–448.
[38] Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+: CD8+composition in adult B cell ALL patients. J Clin Invest, 2016, 126(6): 2123–2138.
[39] Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New Engl J Med, 2018, 378(5): 449–459.
[40] Ying ZT, Huang XF, Xiang XY, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med, 2019, 25(6): 947–953.
[41] Fox E, Jayaprakash N, Pham TH, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol, 2010, 223(1/2): 138–140.
[42] Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Ther Adv Hematol, 2015, 6(5): 228–241.
[43] Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med, 2018, 24(1): 20–28.
[44] Schneider D, Xiong Y, Wu DR, et al. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer, 2017, 5: 42.
[45] Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol, 2018, 11: 141.
[46] Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010, 18(4): 843–851.
[47] Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med, 2017, 7(7): a026781.
[48] Newick K, O’brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annu Rev Med, 2017, 68: 139–152.
[49] Renner K, Singer K, Koehl GE, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol, 2017, 8: 248.
[50] Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 2015, 15(8): 486–499.
[51] Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol, 2019, 10: 128.
[52] Morrot A, Da Fonseca LM, Salustiano EJ, et al. Metabolic symbiosis and immunomodulation: how tumor cell-derived lactate may disturb innate and adaptive immune responses. Front Oncol, 2018, 8: 81.
[53] Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol, 2016, 7: 109.
[54] Mardiana S, Solomon BJ, Darcy PK, et al. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci Transl Med, 2019, 11(495): eaaw2293.
[55] Hinrichs CS, Restifo NP. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol, 2013, 31(11): 999–1008.
[56] Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat Med, 2016, 22(1): 26–36.
[57] Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov, 2016, 6(2): 133–146.
[58] Moon EK, Carpenito C, Sun J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res, 2011, 17(14): 4719–4730.
[59] Chmielewski M, Kopecky C, Hombach AA, et al. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res, 2011, 71(17): 5697–5706.
[60] Spear P, Barber A, Rynda-Apple A, et al. NKG2D CAR T-cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol Cell Biol, 2013, 91(6): 435–440.
[61] Wei P, Wong WW, Park JS, et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature, 2012, 488(7411): 384–388.
[62] Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science, 1997, 276(5319): 1719–1724.
[63] Tiberghien P, Reynolds CW, Keller J, et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specificdonor T-cell depletion after bone marrow transplantation? Blood, 1994, 84(4): 1333–1341.
[64] Sun J, Sadelain M. The quest for spatio-temporal control of CAR T cells. Cell Res, 2015, 25(12): 1281–1282.
[65] Wu CY, Roybal KT, Puchner EM, et al. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science, 2015, 350(6258): aab4077.
[66] Gordon WR, Zimmerman B, He L, et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev Cell, 2015, 33(6): 729–736.
[67] Morsut L, Roybal KT, Xiong X, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 2016, 164(4): 780–791.
[68] Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell, 2016, 164(4): 770–779.
[69] Themeli M, Sadelain M. Combinatorial antigen targeting: ideal T-cell sensing and anti-tumor response. Trends Mol Med, 2016, 22(4): 271–273.
[70] Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol, 2013, 31(1): 71–75.
[71] Wu MR, Jusiak B, Lu TK. Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer, 2019, 19(4): 187–195.
[72] Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med, 2013, 5(215): 215ra172.
[73] Chen YY. Increasing T cell versatility with SUPRA CARs. Cell, 2018, 173(6): 1316–1317.
[74] Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell, 2018, 173(6): 1426–1438.
[75] Chopane A, Gupta S, Ajit A, et al. Design and analysis of plastic gears in rack and pinion steering system for formula supra car. Mater Today-Proc, 2018, 5(2): 5154–5164.
[76] Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer, 2017, 5(1): 28.
[77] Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382): 1350–1355.
[78] Otahál P, Pr?ková D, Král V, et al. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells. Oncoimmunology, 2016, 5(4): e1115940.
[79] June CH, Sadelain M. Chimeric antigen receptor therapy. New Engl J Med, 2018, 379(1): 64–73.
Cell therapy’s poster child: Chimeric antigen receptor T cell therapy
Liling Qian1, Jiangqing Chen1, Xiaoyan Wu1, Ruirui Jing1, and Jie Sun1,2
1 Bone Marrow Transplantation Center of the First Affiliated Hospital, and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China 2 Institute of Hematology, Zhejiang University& Laboratory of Stem Cell and Immunotherapy Engineering, Hangzhou 310058, Zhejiang, China
Chimeric antigen receptor T (CAR-T) cell therapy, which adoptively transfers engineered T cells expressing synthetic receptors to target specific antigens, has achieved great clinical success in treating hematological malignancies. Though FDA has approved two CAR-T products, CAR-T therapy can cause some side effects, such as cytokine release syndrome (CRS), neurotoxicity and B cell aplasia. Meanwhile, lacking tumor specific antigen and the suppressive tumor environment limit the efficacy of CAR-T therapy in solid tumor. This review focuses on the structural components, clinical applications and synthetic biology approaches on CAR-T cell design, and summarizes the challenges and perspectives of CAR-T therapy as a revolutionary cancer immunotherapy.
cell therapy, immunotherapy, chimeric antigen receptor T cell, synthetic biology
July 1, 2019;
September 4, 2019
s:Jie Sun. Tel: +86-571-88208509; Fax: +86-571-88208094; E-mail: sunj4@zju.edu.cn
2019-10-10
http://kns.cnki.net/kcms/detail/11.1998.Q.20191010.0940.003.html
錢麗玲, 陳蔣慶, 吳曉燕, 等. 細胞治療的典范:嵌合抗原受體T細胞療法. 生物工程學報, 2019, 35(12): 2339–2349.
Qian LL, Chen JQ, Wu XY, et al. Cell therapy’s poster child: Chimeric antigen receptor T cell therapy. Chin J Biotech, 2019, 35(12): 2339–2349.
(本文責編 陳宏宇)