周家昊 李民



摘? 要: 隨著國民生活水平的提高,旅游業蓬勃發展,旅游業與互聯網的結合促進了在線旅游業的形成,也就是當代所說的“智慧旅游”。用戶可以通過互聯網了解各種各樣的旅游信息,但是,日趨嚴重的過載旅游數據現象讓旅游商們難以準確的挖掘出符合用戶興趣的個性化旅游信息,推薦出一個智慧的旅游路線更是如同大海撈針,而旅游推薦系統是解決這一問題的關鍵技術。本文基于個性化推薦算法的研究,將用戶信息,用戶評論,用戶行為,用戶歷史訂單,用戶未來訂單等多項數據作為算法的訓練測試集,對功能性需求進行分析,開發了基于用戶數據的推薦系統。
關鍵詞: 旅游數據;推薦算法;數據挖掘
【Abstract】: With the improvement of the living standards of the people and the booming tourism industry, the combination of tourism and the Internet has promoted the formation of online tourism, which is also known as “smart tourism”. Users can learn a variety of travel information through the Internet. However, the increasingly serious phenomenon of overloaded travel data makes it difficult for travellers to accurately mine personalized travel information that suits their interests. It is more like recommending a smart travel route. A needle in a haystack, and a travel recommendation system is the key technology to solve this problem. Based on the research of personalized recommendation algorithm, this paper uses user data, user comments, user behavior, user history orders, user future orders and other data as the training test set of the algorithm, analyzes the functional requirements, and studies the system summary design.
【Key words】: Travel data; Recommendation algorithm; Data mining
0? 引言
伴隨著旅游產業收入快速增長,行業互聯網化逐漸加深,在線旅游市場也快速增長。據Analysys監測數據,2008-2017年,中國在線旅游交易規模逐年遞增,2017年交易規模達8923.3億元;2018年前三季度中國在線旅游交易規模為7342.62億元,逼近中國2016年全年在線度假旅游交易規模。此外,2018年全年中國在線旅游交易規模將達9900萬億元,萬億規模指日可待。從2009-2018年在線旅行預訂用戶規模變化情況看,用戶規模逐年遞增,通過線上渠道進行旅游預訂的用戶數量越來越多;截至2018年6月,在線旅行預訂用戶規模達到3.93億,較2017年末增長1707萬人,增長率為4.50%;約一半的網民會通過在線業務進行旅行預訂。
旅游推薦系統利用數據挖掘技術實現一個模擬用戶與旅行社交流……