姜仁華 劉闖 寧銀行 謝洋



Abstract:In order to solve the problem that tracking accuracy of radar servo system is affected by the disturbance quantity of airborne platform and the acceleration of object, the improved auto-disturbance-rejection control (I-ADRC) method, with high tracking precision, is proposed. Considering more disturbance factors of airborne radar platform, such as the mechanical vibration, airflow, environment temperature, and attitude change of airborne, the model compensation method was introduced in the I-ADRC to reduce the load for extended state observer (ESO), which overcomes the observation accuracy decrease for the ESO caused by the large disturbance in traditional ADRC. Moreover, in the I-ADRC, the feed-forward compensation of acceleration was also adopted to eliminate the model error of servo system resulted from the acceleration of maneuvering target. Compared with traditional PI control, the airborne radar servo system with the proposed I-ADRC show its more high accuracy and more strong anti-interference, and the system can quickly track the target in the state of acceleration.
Keywords:airborne radar servo system; platform disturbance; acceleration; auto-disturbance-rejection control; model compensation; feed-forward compensation
0 引 言
位置伺服系統(tǒng)是機(jī)載雷達(dá)的重要組成部分,其控制性能的好壞直接影響雷達(dá)的目標(biāo)探測(cè)實(shí)時(shí)性和穩(wěn)定性等性能。在雷達(dá)進(jìn)行目標(biāo)跟蹤時(shí),伺服機(jī)構(gòu)易受到載機(jī)姿態(tài)、振動(dòng)、氣流等外部干擾及目標(biāo)位置隨動(dòng)的影響,因此雷達(dá)位置伺服系統(tǒng)應(yīng)具有高靜態(tài)穩(wěn)定性、動(dòng)態(tài)響應(yīng)能力,以及較強(qiáng)的抗擾動(dòng)能力[1-2]。傳統(tǒng)雷達(dá)位置伺服系統(tǒng)的控制仍以PID控制為主,PID控制雖然結(jié)構(gòu)簡(jiǎn)單,但針對(duì)機(jī)動(dòng)目標(biāo)位置跟蹤時(shí),存在跟蹤滯后,同時(shí)易受外部擾動(dòng)的影響。隨著現(xiàn)代戰(zhàn)爭(zhēng)目標(biāo)機(jī)動(dòng)能力的提升,傳統(tǒng)PID控制難以滿足高性能跟蹤要求[3]。近年來(lái),隨著微處理器和現(xiàn)代控制理論的發(fā)展,非線性PID控制[4-6]、滑模變結(jié)構(gòu)控制[7]和時(shí)間最優(yōu)控制[8-9]等多種先進(jìn)控制策略應(yīng)用于位置伺服系統(tǒng)中,但由于控制結(jié)構(gòu)復(fù)雜或系統(tǒng)功率受限等問(wèn)題,限制了在雷達(dá)伺服系統(tǒng)中的應(yīng)用。
韓京清研究員在分析了PID控制技術(shù)的基礎(chǔ)上,提出了一種自抗擾控制(active disturbance rejection control, ADRC)新型非線性控制方法,該控制方法具有良好的動(dòng)/靜態(tài)特性,利用擴(kuò)張狀態(tài)觀測(cè)器對(duì)內(nèi)外部負(fù)載擾動(dòng)進(jìn)行提前觀測(cè)和補(bǔ)償,具有良好的魯棒性[10-13]。自抗擾控制技術(shù)已經(jīng)廣泛應(yīng)用于位置伺服系統(tǒng)各種控制領(lǐng)域[14-17],并達(dá)到了很好的抗擾動(dòng)性能。但是,在機(jī)載雷達(dá)伺服系統(tǒng)中進(jìn)行目標(biāo)航跡跟蹤時(shí),伺服系統(tǒng)受載機(jī)平臺(tái)擾動(dòng)及目標(biāo)加速度等因素影響,擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)的擾動(dòng)量變化幅度大,觀測(cè)器負(fù)擔(dān)重,難以保證擾動(dòng)量獲得很高的估計(jì)精度,且跟蹤雷達(dá)的主瓣波束一般較窄,導(dǎo)致動(dòng)態(tài)滯后過(guò)大而使目標(biāo)超出雷達(dá)的主瓣波束寬度,造成目標(biāo)丟失[18]。文獻(xiàn)[19-20]采用模型補(bǔ)償自抗擾控制器,將擾動(dòng)中的已知部分分離出來(lái)以降低擴(kuò)張狀態(tài)觀測(cè)器觀測(cè)的擾動(dòng)量幅度,提高觀測(cè)精度。文獻(xiàn)[21]在采用模型補(bǔ)償應(yīng)用與二階自抗擾控制器的基礎(chǔ)上,引入輸入微分前饋補(bǔ)償自抗擾控制器的建模誤差,通過(guò)仿真和實(shí)驗(yàn)驗(yàn)證減少了時(shí)變速度輸入的跟蹤誤差。
針對(duì)機(jī)載雷達(dá)伺服系統(tǒng)工作環(huán)境特點(diǎn),在借鑒文獻(xiàn)[19-21]設(shè)計(jì)思路的基礎(chǔ)上,將模型補(bǔ)償自抗擾控制方法應(yīng)用于跟蹤雷達(dá)位置伺服系統(tǒng)中,提出了一種基于改進(jìn)型模型補(bǔ)償?shù)淖钥箶_控制方法,將系統(tǒng)已知擾動(dòng)通過(guò)計(jì)算分離出來(lái),降低觀測(cè)器的估計(jì)幅度,提高估計(jì)精度,同時(shí)針對(duì)目標(biāo)位置角加速度問(wèn)題,通過(guò)輸入前饋補(bǔ)償?shù)姆绞较U`差,提高對(duì)機(jī)動(dòng)目標(biāo)的跟蹤精度。最后在某型雷達(dá)伺服產(chǎn)品中進(jìn)行了實(shí)驗(yàn)驗(yàn)證,提高了載機(jī)的作戰(zhàn)效能,具有較大的軍事和經(jīng)濟(jì)意義。
1 機(jī)載雷達(dá)伺服系統(tǒng)模型
以雷達(dá)伺服系統(tǒng)方位軸向控制為研究對(duì)象,方位軸向系統(tǒng)數(shù)學(xué)模型如圖1所示。
5 結(jié) 論
將自抗擾控制技術(shù)應(yīng)用于機(jī)載雷達(dá)位置伺服系統(tǒng)中,由于載機(jī)平臺(tái)對(duì)伺服系統(tǒng)擾動(dòng)較大,通過(guò)模型補(bǔ)償?shù)姆绞浇档蛿U(kuò)張狀態(tài)觀測(cè)器擾動(dòng)觀測(cè)量,提高擾動(dòng)估計(jì)精度,通過(guò)前饋補(bǔ)償?shù)姆绞揭霗C(jī)動(dòng)目標(biāo)的加速度信號(hào),減少自抗擾控制建模誤差,從而提高系統(tǒng)的對(duì)機(jī)動(dòng)目標(biāo)的跟蹤精度。實(shí)驗(yàn)表明,采用改進(jìn)型自抗擾控制器的雷達(dá)伺服系統(tǒng),相對(duì)于傳統(tǒng)ADRC控制和模型補(bǔ)償ADRC控制,在勻速掃描和目標(biāo)跟隨過(guò)程中,伺服系統(tǒng)的跟隨精度有明顯的提高,有效地抑制了載機(jī)平臺(tái)擾動(dòng)和目標(biāo)機(jī)動(dòng)加速度對(duì)雷達(dá)伺服系統(tǒng)的影響,提高了系統(tǒng)的抗干擾性和跟隨精度。
參 考 文 獻(xiàn):
[1] 蔣兵兵,盛衛(wèi)星,張仁李,等. 雷達(dá)目標(biāo)角度跟蹤環(huán)路濾波器設(shè)計(jì)新方法[J].電子與信息學(xué)報(bào),2015,37(12):2948.
JIANG Bingbing, SHENG Weixing, ZHANG Renli,et al. A novel design method of radar target angle tracking loop filter[J]. Journal of Electronics and Information Technology,2015,37(12):2948.
[2] 何輝文,彭程,趙梅,等. 雷達(dá)伺服系統(tǒng)的頻域辨識(shí)與控制方法研究[J]. 現(xiàn)代雷達(dá),2013,35(9):53.
HE Huiwen, PENG Cheng, ZHAO Mei, et al. A study on frequency domain identification and control method in radar servo system[J]. Modern Radar, 2013,35(9):53.
[3] 朱瑩,王金廣,高其娜,等. 噪聲干擾下雷達(dá)角度跟蹤時(shí)滯伺服系統(tǒng)仿真[J]. 系統(tǒng)仿真學(xué)報(bào),2014,26(8):1814.
ZHU Ying, WANG Jinguang, GAO Qina, et al. Noise jam on angle tracking radar delay servo system simulation[J]. Journal of System Simulation, 2014,26(8):1814.
[4] 韓京清. 非線性PID控制器[J]. 自動(dòng)化學(xué)報(bào),1994,20(4): 487.
HAN Jingqing. Nonlinear PID controller[J]. Acta Automatica Sinica,1994,20(4): 487.
[5] 陳幼平,張代林,艾武,等. 基于DSP的直線電機(jī)位置伺服控制策略研究[J]. 電機(jī)與控制學(xué)報(bào),2006,10(1): 61.
CHEN Youping, ZHANG Dailin, AI Wu, et al. Research on the DSP-based control strategies of a positioning servo system of the linear motors[J]. Electric Machines and Control,2006,10(1): 61.
[6] 王江,王靜,費(fèi)向陽(yáng). 永磁同步電動(dòng)機(jī)的非線性PI速度控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2005,25(7):125.
WANG Jiang, WANG Jing, FEI Xiangyang. Nonlinear PI speed control of permanent magnet synchronous motor[J]. Proceedings of CSEE,2005,25(7):125.
[7] 姜靜, 伍清河. 滑模變結(jié)構(gòu)控制在跟蹤伺服系統(tǒng)中的應(yīng)用[J]. 電機(jī)與控制學(xué)報(bào), 2005, 9(6): 562.
JIANG Jing, WU Qinghe. Sliding mode variable structure control for the tracking servo system[J].Electric Machines and Control, 2005, 9(6): 562.
[8] 許天舒, 史小平. 一類不確定非線性系統(tǒng)的最優(yōu)控制[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2000, 5(6): 82.
XU Tianshu, SHI Xiaoping. Optimal control of a class of uncertain nonlinear systems[J]. Journal Harbin University of Science and Technology, 2000, 5(6): 82.
[9] 胡金高,程國(guó)揚(yáng). 魯棒近視時(shí)間最優(yōu)控制及其在電機(jī)伺服系統(tǒng)的應(yīng)用[J]. 電工技術(shù)學(xué)報(bào),2014,29(7):163.
HU Jingao, CHENG Guoyang.Robust procimate time-optimal control with application to a motor servo system[J]. Transactions of China Electrotechnical Society,2014,29(7):163.
[10] 韓京清. 自抗擾控制器及其應(yīng)用[J]. 控制與決策,1998,13(1):19.
HAN Jingqing. Auto-disturbances-rejection controller and its applications[J].Control and Decision,1998,13(1): 19.
[11] 韓京清. 自抗擾控制技術(shù)—估計(jì)補(bǔ)償不確定因素的控制技術(shù)[M]. 北京:國(guó)防工業(yè)出版社,2008.
[12] 高志強(qiáng). 自抗擾控制思想探究[J]. 控制理論與應(yīng)用,2013,30(12):1498.
GAO Zhiqiang. On the foundation of active disturbance rejection control[J].Control Theory and Application,2013,30(12):1498.
[13] 王麗君,李擎,童朝南,等. 時(shí)滯系統(tǒng)的自抗擾控制綜述[J]. 控制理論與應(yīng)用,2013,30(12):1521.
WANG Lijun, LI Qing, TONG Chaonan, et al. Overview of active disturbance rejection control for systems with time-delay[J]. Control Theory and Applications,2013,30(12): 1521.
[14] 叢麟驍,黃旻,趙寶瑋. 自抗擾控制在航空成像穩(wěn)定平臺(tái)上的應(yīng)用[J]. 光電工程,2014,41(9): 38.
CONG Linxiao, HUANG Min, ZHAO Baowei. ADRC application on a stable platform for aerial imaging[J]. Opto-Electronic Engineering, 2014, 41(9): 38.
[15] 周濤,朱景成. 機(jī)載光電跟蹤平臺(tái)伺服系統(tǒng)自抗擾控制[J]. 光電工程,2011,38(4):31.
ZHOU Tao, ZHU Jingcheng. An active disturbance rejection controller in the servo system of an air-borne opto-electronic tracking platform[J]. Opto-Electronic Engineering, 2011, 38(4): 31.
[16] 魏永清, 許江寧, 馬恒. 自抗擾控制器在陀螺穩(wěn)定平臺(tái)控制系統(tǒng)中的應(yīng)用[J]. 電機(jī)與控制學(xué)報(bào), 2017, 21(1): 39.
WEI Yongqing, XU Jiangning, MA Heng. Application of active disturbance rejection controller in gyro-stabilized platform control system[J]. Electric Machines and Control, 2017, 21(1): 39.
[17] 騰福林,胡育文,李宏勝,等. 基于自抗擾控制器的交流位置伺服系統(tǒng)[J]. 電氣傳動(dòng),2011,41(11): 46.
TENG Fulin, HU Yuwen, LI Hongsheng, et al. AC position servo system based on active-disturbance rejection controller[J]. Electric Drive, 2011, 41(11): 46.
[18] 萬(wàn)其,邵兵,胡芳芳. 雷達(dá)伺服系統(tǒng)中非線性控制技術(shù)研究[J]. 現(xiàn)代雷達(dá),2010,32(8):70.
WAN Qi, SHAO Bing, HU Fangfang. A study on non-liner control technology in radar servo systems[J]. Modern Radar, 2010, 32(8):70.
[19] 劉志剛,李世華. 基于永磁同步電機(jī)模型辨識(shí)與補(bǔ)償?shù)淖钥箶_控制器[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2008,28(24):118.
LIU Zhigang, LI Shihua. Active disturbance rejection controller based on permanent magnetic syschronous motor model identification and compensation[J]. Proceedings of the CSEE, 2008, 28(24): 118.
[20] 蓋江濤,黃慶,黃守道,等. 基于模型補(bǔ)償?shù)挠来庞来磐诫姍C(jī)自抗擾控制[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版),2014,48(4): 581.
GAI Jiangtao, HUANG Qing, HUANG Shoudao, et al. Active-disturbance rejection controller for permanent magnet synchronous motor based on model compensation[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(4): 581.
[21] 左月飛,張捷,劉闖,等. 針對(duì)時(shí)變輸入的永磁同步電機(jī)改進(jìn)型自抗擾控制器[J]. 電工技術(shù)學(xué)報(bào),2017,32(2):162.
ZUO Yuefei, ZHANG Jie, LIU Chuang, et al. A modified adaptive disturbance rejection controller for permanent magnetic synchronous motor speed-regulation system with time-varying input[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 162.
[22] 韓京清. 利用非線性特性改進(jìn)PID控制律[J]. 信息與控制,1995,24(6): 358.
HAN Jingqing. The improvement of PID control law by using nonlinearity[J]. Information and Control, 1995, 24(6): 358.
[23] 韓京清,張榮. 二階擴(kuò)張狀態(tài)觀測(cè)器的誤差分析[J]. 系統(tǒng)科學(xué)與數(shù)學(xué),1999,19(4): 465.
HAN Jingqing, ZHANG Rong. Error analysis of the second order ESO[J]. Journal of Systems Science and Mathematical Sciences, 1999, 19(4): 465.
[24] 張文革. 時(shí)間尺度與自抗擾控制器[D]. 北京:中國(guó)科學(xué)院系統(tǒng)科學(xué)研究所,1999.
(編輯:邱赫男)