王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽
回填土質材料對地下換熱器凍脹特性的影響研究
王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽
(山東理工大學交通與車輛工程學院,淄博 255049)
以地源熱泵技術在寒區設施農業中的應用為背景,開展地下換熱器低溫凍脹特性研究。通過巖土埋管凍脹試驗,基于凍結半徑追蹤和管體應變測量,開展凍結區發展規律以及埋管變形收縮特性的研究,對比砂土基和黏土基回填料對凍脹的影響,并進一步考察換熱管容積與流阻變化。結果表明,凍結區在進出水2管中心連線方向發展速度大于其垂直方向,受凍脹影響,U型換熱管產生橢圓化變形與收縮,砂土基回填比黏土基回填具有更大的凍結范圍,但前者換熱管變形和收縮程度卻小于后者。換熱管在100 h內持續由0降至?10 ℃后,測得管容積減小率為0.4%,流阻增大率為6.5%,由此可知,埋管凍脹的變形與收縮成為循環流量減小和系統效率下降的原因之一。
熱泵;傳熱;凍脹;地下換熱器;回填料;埋管變形
近年來,地源熱泵技術在設施農業領域中得以廣泛應用[1],其中以日光溫室的應用最為典型[2-3]。然而為了達到良好的采光效果,溫室的外圍護結構通常采用單層玻璃或塑料膜,因此在光照條件不佳時,地下換熱器的運行溫度受大氣溫度影響較大。對于中國廣大的北方嚴寒地區而言,地下換熱器(埋管)運行溫度常持續低于0 ℃,由此致使換熱巖土發生凍脹,凍脹作用不但會擠壓埋管發生變形,而且也影響到系統運行效率及安全性[4-8]。
對于凍脹巖土擠壓管道的研究,成果主要體現在油氣運輸和管渠輸水等工程領域中。理論研究方面,學者們主要應用管-土模型計算管土作用[9-11]、預測管位移[12-13]、分析管變形應力和應變[14-16]。在試驗研究方面,研究者已針對埋管凍脹變形,開展了許多大規模的工程測試,諸如加拿大Calgary凍脹試驗[17]、法國Caen全尺寸管線凍脹測試[12,18]、美國Fairbanks高速路管線凍脹試驗[19-20]以及美國UAF凍脹隆起管線測試[21-22]。此外,學者們也在農業設施的抗凍設計方面進行了一系列的理論探索[23-25]與驗證[26-27]。近年來,盡管有學者對與地下換熱器相似的垂直埋管[28]和管道溫變影響[29]進行了管土凍脹研究,但由于應用背景不同,對地熱熱泵工程仍缺乏針對性。目前針對寒區地下換熱器運行中易出現的凍脹問題開始得到關注,最初由加拿大工程師Lenarduzzi等[7]結合工程實際指出該問題的研究意義,此后中國學者鄭平等[30]提出了考慮凍脹的土壤源熱泵水熱力耦合數值模型,筆者通過建立巖土凍脹試驗系統探討了換熱管形態對其凍脹變形的影響[31],同時基于孔隙增長率函數建立了地下換熱器的凍脹變形模型[32]。
本文基于前述研究基礎,針對工程中常用的砂土基與黏土基回填料,試驗研究豎埋U型管周圍土壤(以下簡稱圍土)凍脹以及管截面變形特性;對比2種回填料的影響;考察管變形給循環系統帶來的影響,為指導工程應用提供參考。
本試驗模擬地下豎埋U型換熱器在飽和巖土環境中的低溫運行過程,U型埋管內循環流動低溫液體,土壤由此發生凍脹而使換熱管受力變形。通過追蹤土體內0 ℃凍結鋒面發展,研究凍結區發展特性,利用應變測試手段研究換熱管截面變形特性。試驗系統主要包括巖土槽、圍土、U型換熱管和冷源循環系統等,如圖1所示。
圓柱形巖土槽的高為900 mm,內徑為800 mm,槽身下部開4個補水口,控制槽內濕巖土水位,槽內底部鋪墊一層150 mm厚礫石,以利于補水均勻滲入,礫石上部添置試驗圍土(包含地層土壤和回填料),為更好體現凍脹特性,試驗采用均勻的飽和圍土。用PE板制作環套,使巖土槽外圍形成環腔空間,為槽內巖土提供4 ℃恒定的邊界溫度,槽蓋和槽底做絕熱處理。U型換熱管豎向埋置于巖土槽中央,壁厚3.5 mm,外徑32 mm,U型間距為80 mm。循環液采用30%乙二醇溶液,由其將熱量從巖土槽運送至冷源。
1.地層土壤 2.U型管 3.砂土基回填 4.黏土基回填 5.礫石層 6.排液管 7.巖土槽 8.補水口 9.溫控單元 10.循環泵 11.流量計 12.冷源 13.水箱 14.球閥 15.軟連接 16.壓差計 17.槽蓋 18.接線出口 19.環套
1.Ground soil 2.U-pipe 3.Sand-based backfill 4.Clay-based backfill 5.Gravel 6.Bleeder pipe 7.Soil tank 8.Water supply 9.Temperature control unit 10.Pump 11.Flowmeter 12.Cold source 13.Water tank 14.Ball valve 15.Flexible connection 16.Differential pressure gauge 17.Tank cover 18.Wiring channel 19.Annular sleeve
a. 結構示意圖
a. Structure diagram

b. 試驗布置
在U型管進出口布置熱電偶測試循環液溫度,在換熱管埋深200 mm(砂土基回填層)處和600 mm(黏土基回填層)處的水平面上分別布置熱電偶,以測試圍土溫度,如圖2所示。以進、出水2管中心連線為方向,與其垂直方向為方向,2管的中間位置為原點,建立直角坐標系,在和方向上各對稱布置10個測點,相鄰測點間距為40 mm。電阻應變片測試換熱管外壁周向應變,利用應變變化判斷管截面的變形,測試位置1′、1″和2′、2″分別在換熱管埋深180 mm(砂土基回填層)處和580 mm(黏土基回填層)處的進、出水管上,每處在和方向對稱布置Ⅰ、Ⅱ、Ⅲ和Ⅳ 4個應變測點。U型壓差計接U型管同一水平高度的進口與出口,測量其間壓差變化。主要試驗測試儀器型號及規格見表1。

注:1′、1″和2′、2″為應變測試位置,Ⅰ、Ⅱ、Ⅲ和Ⅳ為應變測點,上角標′和上角標″分別表示進水管和出水管。
《地源熱泵工程技術規范》中已經指出:細砂和膨潤土的混合漿或專用灌漿材料宜作為回填材料,以實現保水防滲功能;然而,由于成本或施工便利等原因,工程中也存在回收使用鉆孔屑黏土基回填料的情況,因此,本文選擇以上2種回填料進行分析。地層土壤與黏土基回填料選用天然細粒黏土,砂土基回填料選用細砂和膨潤土混合物(質量比為7:3),其基本特性參數見表2,模擬回填孔直徑為150 mm。試驗過程中,對圍土分層作填充-夯實-填充處理,回填料的填充以回填高度的一半為界(埋深375 mm處),下半部為黏土基回填,上半部為砂土基回填,如圖2所示。最后,通過補水口使土體達到飽和狀態。

表2 回填料基本參數
試驗主要基于變形的應變測量,分析變形的基本形態。初始截面為圓形的換熱管(此時應變=0)受到擠壓后,如果其截面為橢圓化變形,則橢圓化向外凸出的管壁曲率變大時,該處外壁面將承受拉應力,即表現為拉應變(>0);橢圓化向內收縮的管壁曲率變小時,該處外壁面將承受壓應力,即表現為壓應變(<0),如圖3所示。

圖3 變形與應變
試驗過程中,直接測量參數的不確定度可由公式(1)確定

式中u為參數的不確定度,u1,u2, …, u為相互獨立的不確定因素。
本試驗中,溫度測量的不確定度為±2.02%,應變測量的不確定度為±4.08%,液柱差測量的不確定度為±4.54%。
使系統連續運行100 h,換熱管內流體溫度由0 ℃逐漸降低至?10 ℃,如圖4所示。由于U型換熱管的長度僅為0.9 m,運行過程中其進、出口的溫度差異不大(不超過0.5 ℃),進、出水2管及其軸向溫度可視為均勻一致。

圖4 換熱管進出口溫度
以點為基準點,定義凍結鋒面的0 ℃點與基準點之間的距離為凍結半徑,如圖5a所示,以衡量凍結區范圍。圍土內和方向的凍結半徑發展如圖5b所示,可見凍結半徑在不同回填層內發展規律一致。以黏土基回填層為例,和方向的凍結半徑發展至56 mm所用時間分別為11和36 h,二者相差25 h,此后2方向凍結半徑發展至96和136 mm位置的時間差分別為16和13 h,可見凍結區在方向的發展速度始終大于方向,同時隨著凍結范圍的擴大,2方向的發展差異逐漸減小。顯然,不對稱的凍結區發展特性源于換熱管的布置方式,進、出水2管位于方向上,凍結范圍較小時,凍結區形態受到管結構的影響較大,隨著凍結區邊緣(凍結鋒面)距離換熱管越遠,其形態受管結構的影響逐漸減弱。
試驗過程中,砂土基回填層的凍結半徑發展平均速度(向:1.64 mm/h;向:1.43 mm/h)要略快于黏土基回填層(向:1.58 mm/h;向:1.37 mm/h)。事實上,除了砂土導熱性能良好之外,在初始含水率相差不大的情況下,由于砂土基回填料內膨潤土中親水礦物的作用,使得回填料會吸收地層土壤中的水,這種水分遷移作用,可使正在凍結的區域冰晶含量不斷增大[33],冰的導熱系數大于水和土顆粒。因此冰晶較多的砂土基回填層具有更大的凍結范圍。

a. 凍結區a. Freezing areab. 凍結半徑對比b. Comparison offreezing radius
取各應變測試位置處每25 h的應變變化,如圖6所示。

圖6 管體應變變化
由圖6可以發現,各處測點均為負應變(壓應變),且應變值不斷增大,然而各測點變化規律卻有所差異,Ⅰ和Ⅲ測點應變值普遍大于Ⅱ和Ⅳ測點。事實上,所測管體應變取決于2個因素:溫度和變形,管壁不斷的降溫收縮使得壓應變值不斷增大,而變形使管壁附加了額外的拉壓應力。由應變測試結果及前述變形與應變關系可知,相當于Ⅰ和Ⅲ測點附加了壓應變,Ⅱ和Ⅳ測點附加了拉應變,管段發生了橢圓化變形,且橢圓長軸在向。
凍結區的不均勻發展導致了凍脹力的不均勻產生,由管截面的變形可知,來自向的凍脹力大于向,這也與所測凍結區發展特性相一致。同時,隨著運行時間增加,Ⅰ和Ⅲ測點壓應變與Ⅱ和Ⅳ測點壓應變的差距也在不斷增大,表明管截面橢圓化變形程度不斷加重。
對比可知,1′和1″在各個測試時間的變形都要小于2′和2″位置,處于砂土基回填層的管段,其橢圓化變形程度要小于黏土基回填層的管段。這表明相同條件下,黏土基回填層凍結所產生的凍脹力要比砂土基回填層的大。由于進出水2管溫差不大,2管周圍凍結區的發展較相似,因此相同埋深位置處,進出水2管段的變形程度差別不大。
由各測試位置的管體應變(圖6)可以看出,管截面在不斷橢圓化的同時,也在不斷收縮。管體平均應變(ε)反映了截面周長的變化率,進而可反映管截面脹縮程度。試驗中采用4個測點應變的平均值近似表示測試位置處的管體平均應變(ε),如圖7a所示。可見在前30 h內,4處測試位置的ε基本維持在相同的水平,而大約運行至30 h時,2′和2″位置的ε開始大于1′和1″位置,且差距逐漸增大,最終前者的ε值達到?2 500×10-6左右,后者僅為?1 900×10-6左右。表明當凍結發展至一定程度時,黏土基回填層內的管截面收縮程度要比砂土基回填層內的大。
事實上,在低溫運行環境下,管截面的收縮取決于溫降和凍脹擠壓作用的大小。溫降引起的截面收縮應變ε可由公式(2)求得。


因此,試驗中各測試位置的ε與ε之差可體現凍脹擠壓作用對管體應變的影響,如圖7b所示。可見在前30 h內,4處測試位置的凍脹應變值不斷增大且增幅水平相當,從30 h至100 h,1′和1″處凍脹應變值由?400×10-6僅下降至?500×10-6左右,而在2′和2″處凍脹應變值卻降至?1 000×10-6以下。表明當凍結區發展超過一定范圍,黏土基回填對換熱管的凍脹作用將大于砂土基回填,且差距逐漸增大。砂土基回填料中的膨潤土存在遇水膨脹軟化特性,從而使其強度降低[35],凍脹力對換熱管的作用相對減弱,因此在砂土中適量添加膨潤土,可減輕凍脹產生的換熱管變形與收縮程度。對于寒區地源熱泵工程,從地下換熱器安全運行角度而言,按照規范使用砂土基回填料顯得尤為必要。

a. 管體平均應變ε
a. Mean strains in pipe surfaceε

b. 凍脹作用應變εm-εT
在運行溫度不斷降低和凍脹作用力不斷加大的情況下,換熱管降溫收縮和橢圓化變形會使截面面積減小,從而導致管容積減小。對于內徑為25 mm的換熱管,結合4個應變測點的平均值ε,可求得凍脹變形后管體容積,再根據初始管容積0,可得容積變化量=0?,如圖8所示。可見隨著運行時間的增加,管容積呈現不斷減小的趨勢,運行最終,換熱管有約3.3 mL的容積減少量,與計算管段(管長750 mm)的初始容積0=736 mL相比,減少了0.4%。

圖8 換熱管容積減少量
換熱管的變形與收縮同樣也會增大系統的流動阻力,系統流阻的變化可通過U型壓差計的液柱差來反映。凍脹試驗過程中的液柱差變化如圖9所示,可見液柱差不斷增大,且增幅隨運行時間有增加的趨勢,這與不斷增大的管體變形程度有關。在100 h的運行時間內,液柱差由137 mm增至146 mm,表明U型換熱管的流阻有6.5%的增加量。
事實上,換熱管由于凍脹變形造成的容積減小以及流阻增大問題,在文獻[6]和[7]中所闡述的工程問題中已有提及,由此所帶來的諸如循環液溢流、系統流量減小以及COP(性能系數,coefficient of performance)下降等問題不容忽視,在工程設計中應加以考慮。

圖9 液柱差增幅
本試驗基于U型埋管地下換熱器的持續降溫運行過程,針對不同回填土質材料(砂土基和黏土基),開展圍土凍結區發展以及埋管變形特性等基礎研究,得出如下結論:
1)受U型結構影響,圍土凍結區域不均勻發展,凍結區在進出水2管中心連線方向發展速度大于其垂直方向,該差距隨凍結范圍增大而減小,砂土基回填可較黏土基回填具有更大的凍結范圍。
2)換熱管截面產生橢圓化變形和收縮,橢圓短軸在2管中心連線方向,隨著凍結區發展,變形與收縮程度不斷加重,黏土基回填料中由凍脹產生的換熱管變形與收縮程度更為嚴重,對于寒區地源熱泵工程,使用添加膨潤土的砂土基回填料顯得尤為必要。
3)巖土凍脹所致的換熱管截面變形及收縮,會引發管容積減小以及流阻增大問題,運行100 h、溫降10 ℃的試驗條件下測得管容積減小率為0.4%,流阻增大率為6.5%,該問題應在工程設計中加以考慮。
事實上,凍脹特性主要取決于土壤、含水率和溫度。工程中回填土質呈現多樣化特點,土壤粒徑和結構不盡相同,即使對于相同材質的回填料,土體強度也會由于回填深度不同而產生差異;孔隙含水率的變化可致使回填料熱學和力學特性產生差異,同樣,凍融變化也會對孔隙結構及含水率產生影響;此外,環境溫度的變化也會影響地下換熱器的低溫運行模式。因此,上述因素均會影響地下換熱器的結構凍變特性,進而作用于管土換熱效率,限于篇幅,擬在后續對相關問題進行深入探討。
[1] 方慧,楊其長,王柟,等. 淺層地熱源節能技術及其在設施農業中的應用[J]. 農業工程學報,2008,24(10):286-290.
Fang Hui, Yang Qichang, Wang Nan, et al. Geothermal technology and its applications in protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of CSAE), 2008, 24(10): 286-290. (in Chinese with English abstract)
[2] 孫維拓,張義,楊其長,等. 溫室主動蓄放熱-熱泵聯合加溫系統熱力學分析[J]. 農業工程學報,2014,30(14):179-188.
Sun Weituo, Zhang Yi, Yang Qichang, et al. Thermodynamic analysis of active heat storage-release associated with heat pump heating system in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(14): 179-188. (in Chinese with English abstract)
[3] 石惠嫻,任亦可,孟祥真,等. 植物工廠水蓄能型地下水源熱泵供熱系統節能運行特性研究[J]. 農業工程學報,2018,34(23):157-163.
Shi Huixian, Ren Yike, Meng Xiangzhen, et al. Research on energy-saving operating characteristics of water storage groundwater source heat pump heating system in plant factory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 157-163. (in Chinese with English abstract)
[4] 李南生,謝利輝,陳薛浩. 寒區淺埋輸油管線凍脹安全性分析[J]. 結構工程師,2008,24(1):35-40.
Li Nansheng, Xie Lihui, Chen Xuehao. Frozen-heaving of frost-soil bed of shallow-buried oil-pipeline in cold region[J]. Structural Engineers, 2008, 24(1): 35-40. (in Chinese with English abstract)
[5] 胡宗柳,吳明,陳楊,等. 輸油管道凍脹安全性研究現狀與趨勢[J]. 油氣儲運,2011,30(12):881-883.
Hu Zongliu, Wu Ming, Chen Yang, et al. Progress in the safety study of frost heaving of oil pipeline[J]. Oil and Gas Storage and Transportation, 2011, 30(12): 881-883. (in Chinese with English abstract)
[6] Gabrielsson A, Lehtmets M, Moritz L, et al. Heat storage in soft clay field tests with heating (70℃) and freezing of the soil[R]. Sweden: Swedish Geotechnical Institute, 1997.
[7] Lenarduzzi Frank J, Cragg Chris B H, Radhakrishna H S. Importance of grouting to enhance the performance of earth energy systems[J]. ASHRAE Transactions, 2000, 106: 424-434.
[8] Tafreshi S N M, Khalaj O. Laboratory tests of small-diameter HDPE pipes buried in reinforced sand under repeated-load[J]. Geotextiles and Geomembranes, 2008, 26: 145-163.
[9] Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil-pipeline interaction I. Modelling of frost heave[J]. Cold Regions Science and Technology, 1999, 29(3): 215-228.
[10] Selvadurai A P S, Hu J, Konuk I. Computational modelling of frost heave induced soil-pipeline interaction II. Modelling of experiments at the Caen test facility[J]. Cold Regions Science and Technology, 1999, 29(3): 229-257.
[11] Michalowski R L, Zhu M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722.
[12] White T L. Pipelines in Permafrost and Freezing Ground, Engineering Resource Library and Database Indexes[M]. Canada: Permafrost Environmental Consulting Inc, 2006.
[13] Susan A T, Ian D, Moore, Muge Balkaya. Parametric study of frost-induced bending moments in buried cast iron water pipes[J]. Tunnelling and Underground Space Technology, 2016, 51: 291-300.
[14] Wu Yaping, Sheng Yu, Wang Yong. Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions[J]. Cold Regions Science and Technology, 2010, 64(3): 256-261.
[15] Wang Jiabin, Niu Ditao, He Hui. Frost durability and stress–strain relationship of lining shotcrete in cold environment[J]. Construction and Building Materials, 2019, 198(2): 58-69.
[16] Razaqpur A G, Wang D. Frost-induced deformations and stresses in pipelines[J]. International Journal of Pressure Vessels and Piping, 1996, 69(2): 105-118.
[17] Carlson L E, Nixon, J F. Subsoil investigation of ice lensing at the Calgary, Canada, frost heave facility[J]. Canadian Geotechnical Journal, 1988, 25(2): 307-319.
[18] Williams P J, Riseborough D W, Smith M W. France-Canada joint study of deformation of an experimental pipe line by differential frost heave[J]. International Journal of Offshore and Polar Engineering, 1993, 3(1): 56-60.
[19] Nixon J F. The role of convective heat transport in the thawing of frozen soils[J]. Canadian Geotechnical Journal, 1975, 12(3): 425-429.
[20] Nixon J F. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal, 1991, 28(6): 843-859.
[21] Huang S L, Bray M T, Akagawa S, et al. Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska[J]. Journal of Cold Regions Engineering, 2004, 18(1): 2-34.
[22] Kim K, Zhou W, Huang S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology, 2008, 53(3): 382-396.
[23] 謝崇寶,白靜,吳志琴,等. 季節性凍土區灌溉管道排空防凍模式設計[J]. 農業工程學報,2018,34(21):82-88.
Xie Chongbao, Bai Jing, Wu Zhiqin, et al. Design of irrigation pipeline emptying anti-freezing mode in seasonal frozen soil region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 82-88. (in Chinese with English abstract)
[24] 唐少容,王紅雨,潘鑫,等. U 形混凝土襯砌結構凍脹性能離心模型試驗研究[J]. 農業工程學報,2019,35(1):157-163.
Tang Shaorong, Wang Hongyu, Pan Xin, et al. Frost heave performance of U-shaped canal concrete lining based on centrifuge model test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 157-163. (in Chinese with English abstract)
[25] 白靜,謝崇寶,吳志琴. 季節性凍土區管道淺埋換填防凍模式研究[J]. 水利學報,2018,49(5):588-597.
Bai Jing, Xie Chongbao, Wu Zhiqin. Research on anti-freezing pattern of shallow buried pipe by replacement filling of pipe trench in seasonal frozen area[J]. Journal of Hydraulic Engineering, 2018, 49(5): 588-597. (in Chinese with English abstract)
[26] 戴佳琦. 寒區村鎮飲用水輸配管道的保溫防凍分析[D]. 哈爾濱:哈爾濱工業大學,2014.
Dai Jiaqi. Research on the Insulation of the Pipeline in Cold Area[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese with English abstract)
[27] 宋玲,歐陽輝,余書超. 混凝土防滲渠道冬季輸水運行中凍脹與抗凍脹力驗算[J]. 農業工程學報,2015,31(18):114-120.
Song Ling, Ouyang Hui, Yu Shuchao. Frozen heaving and capacity of frozen heaving resistance of trapezoidal concrete lining canal with water in winter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 114-120. (in Chinese with English abstract)
[28] 汪恩良,張安琪,包天鵝,等. 寒區不同材質垂直埋管土壤凍結深度測量差異性分析[J]. 水利學報,2017,48(1):86-95.
Wang Enliang, Zhang Anqi, Bao Tiane, et al. Variability analysis of freezing depth mode of vertical buried pipes with different materials in cold area[J]. Journal of Hydraulic Engineering, 2017, 48(1): 86-95. (in Chinese with English abstract)
[29] 陳繼,李昆,盛煜,等. 季節凍土區埋地管道水溫的變化規律及其影響因素分析[J]. 冰川凍土,2014,36(4):836-844.
Chen Ji, Li Kun, Sheng Yu, et al. Variations and influencing factors of the water temperature within the pipe buried in seasonally frozen ground areas[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 836-844. (in Chinese with English abstract)
[30] 鄭平,吳明,趙玲. 寒區土壤源熱泵換熱埋管的水熱力耦合分析[J]. 土木建筑與環境工程,2011,33(3):100-106.
Zheng Ping, Wu Ming, Zhao Ling. Thermal dynamic analysis of buried hent exchanger in ground-source heat pump system in cold region[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33(3): 100-106. (in Chinese with English abstract)
[31] 王有鏜,高青,朱曉林,等. 地下換熱管凍脹變形實驗研究[J]. 應用基礎與工程科學學報,2014,22(4):744-751.
Wang Youtang, Gao Qing, Zhu Xiaolin, et al. Experimental research on deformation of ground heat exchange pipe due to frost heave[J]. Journal of Basic Science and Engineering, 2014, 22(4): 744-751. (in Chinese with English abstract)
[32] 白莉,王有鏜,高青,等. 地下換熱管土結構凍脹變形模擬[J]. 農業工程學報,2016,32(18):118-124.
Bai Li, Wang Youtang, Gao Qing, et al. Simulation on underground pipe-soil heat exchange structure deformation due to frost heave[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 118-124. (in Chinese with English abstract)
[33] 趙學文. 凍脹融沉試驗方法及粘土凍脹特性研宄[D]. 北京:北京交通大學,2014.
Zhao Xuewen. Research on Test Method of Frost Heave and Thawing Settlement and Frost Heave Characteristic of Clay[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese with English abstract)
[34] 天華化工機械及自動化研究設計院. 腐蝕與防護手冊(第1卷)腐蝕理論、試驗及監測[M]. 北京:化學工業出版社,2009.
[35] 賈迪,孫德安,張龍. 鹽溶液及摻砂率對高廟子膨潤土強度的影響[J]. 上海大學學報:自然科學版,2018,24(6):1002-1013.
Jia Di, Sun Dean, Zhang Long. Effects of saline solution and sand rate on strength of GMZ bentonite[J]. Journal of Shanghai University: Natural Science, 2018, 24(6): 1002-1013. (in Chinese with English abstract)
Effects of backfill materials on frost heave characteristic of ground heat exchanger
Wang Youtang, Zheng Bin, Wang Chunguang, Li Chengyu, Mao Mingming, Liu Xuyang
(255049,)
Based on the ground source heat pump technology (GSHP) application in facility agriculture in cold regions, the frost heave characteristics of ground heat exchanger were studied. The research, based on the freezing radius tracking and pipe surface strains measurement, was carried out by frost heave experimental system. The experimental system mainly included soil tank, surrounding soil (ground soil and backfill material), U-type heat exchange pipe and cold source circulation system. In order to reflect better the effects of soil frost heave on pipe, uniform and saturated surrounding soil was used, the initial temperature of which was 4 ℃. The effects of sand-based and clay-based backfill materials on frost heave were contrasted. The frost-susceptible natural clay was applied as ground soil and clay-based backfill material, the mixture of fine sand and bentonite was applied as sand-based backfill material. In the experiment, the cryogenic fluid circulated in the U-pipe for 100 hours continuously, the temperature of which reduced from 0 to -10 ℃. The research on the characteristics of freezing area growth, buried pipe deformation and contraction were developed. Moreover, the changes of heat exchange pipe volume and flow resistance due to pipe deformation were investigated. In this study, thedirection was defined as the line through two centers of inlet pipe and outlet pipe, thedirection was perpendicular todirection. It could be found in both backfill materials, the running time in thedirection was less than thedirection at the corresponding freezing radius. This was related to the structure of U-pipe with two side-by-side pipes. The difference decreased with the increase of freezing area. In contrast, the freezing radius growth rate in the sand-based backfill (the rates inanddirection were 1.64 and 1.43 mm/h respectively) was slightly larger than that of the clay-based backfill (the rates inanddirection were 1.58 and 1.37 mm/h respectively). This indicated the freezing area in the sand-based backfill was greater than that in the clay-based backfill. As the freezing area increased, the pipe surface strains in both backfills showed gradually increasing and regular difference, which indicated the pipes’ cross-sections became more and more elliptical. The major axes of elliptical cross-sections coincided with thedirection. Meanwhile, the decrease of the mean strains on the pipe surface indicated that the pipes’ cross-sections were contracting. It was found that the elliptical deformation and the contraction of the pipe in the clay-based backfill were more serious than that in the sand-based backfill. By eliminating the influence of temperature drop from the mean strains, it could be found that the frost heave effect on the heat exchange pipe in clay-based backfill could be greater than that in sand-based backfill, when the freezing area exceeded a certain range. After the temperature of U-pipe dropped from 0 to -10 ℃ within 100h, it could be found that the pipe volume reduced 0.4%, the flow resistance increased 6.5%. Consequently, the pipe deformation with ovalization and contraction could be one reason for the decrease in circulation flow rate and system efficiency.
heat pumps; heat transfer; frost heave; ground heat exchanger; backfill material; buried pipe deformation
2018-02-24
2019-06-28
國家自然科學基金資助項目(51806130);山東省自然科學基金資助項目(ZR2017LEE031);山東省重點研發計劃資助項目(2019GHY112076)
王有鏜,講師,博士,主要從事淺層地能利用研究。Email:wyt@sdut.edu.cn
10.11975/j.issn.1002-6819.2019.14.026
S215; TK521
A
1002-6819(2019)-14-0205-07
王有鏜,鄭 斌,王春光,李成宇,毛明明,劉旭陽. 回填土質材料對地下換熱器凍脹特性的影響研究[J]. 農業工程學報,2019,35(14):205-211. doi:10.11975/j.issn.1002-6819.2019.14.026 http://www.tcsae.org
Wang Youtang, Zheng Bin, Wang Chunguang, Li Chengyu, Mao Mingming, Liu Xuyang. Effects of backfill materials on frost heave characteristic of ground heat exchanger[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 205-211. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.026 http://www.tcsae.org