999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

代謝組學在農產品營養品質檢測分析中的應用

2019-10-10 06:02:32許彥陽姚桂曉劉平香趙潔王昕璐孫君茂錢永忠
中國農業科學 2019年18期
關鍵詞:分析

許彥陽,姚桂曉,3,劉平香,趙潔,王昕璐,孫君茂,錢永忠

代謝組學在農產品營養品質檢測分析中的應用

許彥陽1,姚桂曉1,3,劉平香1,趙潔1,王昕璐1,孫君茂2,錢永忠1

(1中國農業科學院農業質量標準與檢測技術研究所/農業農村部農產品質量安全重點實驗室,北京 100081;2農業農村部食物與營養發展研究所, 北京 100081;3西安理工大學印刷包裝與數字媒體學院,西安 710048)

科學檢測和分析農產品營養品質對提升優質農產品的營養水平具有重要作用。由于農產品中營養成分組成復雜,已有的分析方法只能針對已知營養素的濃度、功能等進行分析,無法對農產品中存在的大量其他功能性活性物質進行分析鑒定。代謝組學技術通過高通量化學分析技術對生物樣品中的小分子代謝產物進行定性和定量分析,在具有特殊營養功能的小分子物質分析中具有突出優勢。代謝組學技術的引入,為農產品營養成分表征及差異性分析,產地溯源及真偽鑒別,生長儲藏過程中營養成分變化規律揭示,營養功能成分作用機制研究等提供了新方法,也為膳食結構的優化調整提供了新策略。本文對代謝組學研究方法的新進展,包括樣品制備、代謝物分析鑒定以及數據分析等進行了綜述,總結了代謝組學技術在農產品營養成分表征及差異性分析、產地溯源及真偽鑒別、生長儲藏過程中營養成分變化規律以及營養功能成分作用機制等方面的應用,旨在為我國農業高質量發展提供思路。在樣品制備方法方面,首先通過快速改變樣品所處的環境條件,如添加強酸、強堿或液氮冷凍等技術終止新陳代謝相關酶的活性。然后針對代謝物的極性,選擇不同的提取溶劑,從而獲得較高的提取率。在樣品分析方法方面,核磁共振、色譜質譜和毛細管電泳質譜等技術得到了廣泛地應用。其中,色譜質譜聯用技術將色譜的有效分離和質譜的準確定量相結合,已經成為代謝組學中使用最廣泛的分析技術。在數據處理及分析方面,無監督分析中的主成分分析和有監督分析中的正交偏最小二乘法-判別分析是目前應用最多的數據分析方法。通過通路分析軟件的富集分析和拓撲分析,可以明確與代謝物差異相關性最高的代謝通路,對差異代謝產物的機制進行分析和解釋。在農產品營養成分分析應用方面,通過對農產品中初生代謝產物及次生代謝產物進行全面表征,形成農產品獨特的代謝指紋圖譜,從而實現營養成分的差異性分析;通過非特定目標物的檢測和無監督分析方法,實現不同產地農產品的組間差異鑒別和差異化合物篩選;通過農產品生長過程中關鍵成分的消長規律及合成機理分析,指導最佳收獲期;通過體液代謝譜和生物標志物的檢測,系統研究營養功能成分與生物體代謝之間的交互作用,為營養功能成分作用機制研究及膳食指導提供有價值的信息。

代謝組學;農產品;營養;品質

0 引言

當前,我國進入消費結構轉型升級和供給側結構性改革的關鍵時期,面對“吃飽”到“吃好”的需求轉變,需要發展高品質、高營養的農產品[1-2]。農產品的品質和營養一般根據產品中營養素的種類、含量以及營養素功能進行判定。農產品中的營養素[3]主要包括蛋白質、脂肪、碳水化合物、維生素、礦物質元素、膳食纖維、水及其他各類微量功能活性成分等8大類,通過對8類物質成分含量和組分的檢測,建立食用農產品的營養成分數據庫,從而評價農產品的質量。同時,針對不同農產品中營養素的特定功能性成分,如不飽和脂肪酸類、多酚類、黃酮類、多糖類、多肽類等物質進行降血糖、降血壓、抗衰老、抗動脈硬化等功能研究,評價農產品的營養功能。然而,農產品中營養成分組成復雜,已有的分析方法只能針對已知營養素的濃度、功能等進行分析,無法對農產品中存在的大量其他功能性活性物質進行分析鑒定。

代謝組學以分子量在1 000以下的小分子為研究對象,通過對動態多參數代謝應答反應進行定量測量,研究生物體內源性和外源性代謝物整體構成及代謝途徑變化的新技術[4-6],在疾病研究[7]、藥物開發[8]、毒性評價[9]、環境科學[10]等領域已經得到較為廣泛的應用。由于代謝組學可以在全景角度揭示生物系統、生理狀態等優勢,近年來被逐漸應用于農產品的營養品質研究。通過代謝組學分析,為農產品營養成分表征及差異性分析,產地溯源及真偽鑒別,生長儲藏過程中營養成分變化規律揭示,營養功能成分作用機制研究等提供新方法[11-12],也為膳食結構的優化調整提供新策略。

1 代謝組學研究進展

代謝組學技術根據研究目的和研究層次不同分為非靶向代謝組學和靶向代謝組學[13]。非靶向代謝組學是對生物系統中代謝物進行全面系統地分析,盡可能多地定性和相對定量生物體系中的代謝物,獲取大量數據并對其進行處理,進而分析獲得差異性代謝物;靶向代謝組學通常針對某個代謝通路或已知的某些特定代謝物,進行高通量檢測和定量分析,主要用于驗證差異性代謝物。應用代謝組學技術開展農產品營養品質檢測分析研究主要包括樣品的收集和制備,代謝物分離、檢測和鑒定,數據統計分析等過程。

1.1 代謝組學樣品制備方法

樣品的收集和制備是代謝組學分析的基礎,主要包括樣品采集、淬滅、儲存、提取等[14-15],旨在迅速、有效終止樣品新陳代謝反應,最大限度地去除樣本中雜質(如蛋白質、糖類、脂肪等),同時能較為完整地保留樣品中的整體代謝產物或特異性目標代謝產物[16]。

代謝組學技術的研究對象包括組織、器官、提取液等,分析對象種類多,結構、性質差異大,要獲得穩定可重復的試驗結果,需考慮試驗目的、儀器平臺、分析方法等要求,選擇合適的樣品處理方法。目前,主要通過快速改變樣品所處的環境條件,如添加強酸、強堿或液氮冷凍等手段終止新陳代謝相關酶的活性。采用的前處理技術主要包括超聲波提取[17]、固相萃取[18]、固相微萃取[19]、分散液液微萃取[20]、超臨界流體萃取[21]等,使用的提取劑主要包括甲醇、乙醇、乙腈、異丙醇、氯仿、水以及混合溶劑等。Vargas等[22]比較了不同萃取劑、不同溫度和運輸條件對代謝物提取效果的影響,結果顯示,提取溶劑對代謝產物具有顯著影響。

代謝物的極性不同,提取溶劑也應不同。如極性代謝物的提取溶劑主要為含水的有機溶劑,如甲醇/水溶液、乙腈/水溶液、氯仿/甲醇/水溶液等[23]。脂溶性代謝物常用的提取溶劑主要有氯仿、甲基叔丁醚和二氯甲烷等[23-24],獲得較高提取率的關鍵是氯仿/甲醇/水的比例。BLIGH等[25]在FOLCH等[26]提取方法的基礎上進行了進一步的優化,指出提取鱈魚組織中脂質的氯仿/甲醇/水的最佳比例為1﹕2﹕0.8。鑒于氯仿具有高毒性,作為其替代物的二氯甲烷逐漸被用于脂溶性代謝產物的提取[27]。此外,使用氯仿/甲醇法提取脂質代謝產物時,目標物位于下方的氯仿層,操作時需穿過上方水層,操作不方便。MATYASH等[28]基于甲基叔丁醚密度小于水的原理,提出了以甲基叔丁醚代替氯仿或二氯甲烷提取脂質的方法,使得脂質所在的甲基叔丁醚層位于水層上方,簡化了脂質提取的操作過程。

生物體內的部分代謝物極性強、揮發性低,如氨基酸、脂肪酸、胺類、糖類和核苷酸類物質,前處理過程中需要進行化學衍生化,常用的衍生化方法包括硅烷化、甲酯化、烷基化、?;萚29]。另外,代謝物的基質不同,所選擇的提取方法和提取試劑也各不相同,在實際操作過程中應結合基質特點,妥善選擇前處理方法,以達到最佳提取效果。在非靶向代謝組學研究中,通常需要制備質控(QC)樣品,保證分析數據的穩定性和可靠性。

1.2 代謝組學分析方法

代謝組學基于高通量分析技術對生物樣品中小分子代謝產物的組成、含量及其變化進行定性和定量分析,通過代謝物信息與生物體生理變化的關聯分析,尋找生物標志物。樣品中的成分復雜多樣,有效分離并準確鑒定各種物質是代謝組學研究的前提。目前,代謝組學主要的分析技術包括核磁共振、色譜質譜和毛細管電泳質譜等。

1.2.1 核磁共振技術 核磁共振(nuclear magnetic resonance,NMR)技術是指核磁矩不為零的原子核,在外磁場的作用下,共振吸收某一特定頻率的電磁波。通過能量吸收曲線分析,判斷該原子在分子中所處的位置及相對數目,從而實現定量分析和結構分析。NMR技術可以對樣品實現無偏性分析,具有前處理較少、不破壞樣品結構和性質等優點,能夠對完好組織、生物液等進行代謝成分分析,并確定代謝物結構式[30]。適用于農產品中脂肪、多元醇類、有機酸、糖類等營養成分的檢測分析。應用最為廣泛的一維氫譜核磁共振(1H-NMR)對含氫代謝產物具有普適性,具有無需標準品、無損等特點,可得到豐富的樣品信息,在農產品組分分析、產品質量鑒別、質量控制等方面應用廣泛[31-32]。許茜等[33]采用NOESY脈沖序列對14個不同來源的固體動物膠樣品進行原料來源鑒定,結果顯示,1H-NMR技術能夠區分不同樣品的來源,判別正確率達91.67%。對復雜樣品的代謝物鑒定需結合二維核磁共振波譜,如總相干轉移光譜(total correlation spectroscopy,TOCSY)[34],TOCSY可以解決重疊峰的問題,能進一步提高分辨率[35]。另外,核磁共振技術與色譜結合使用可有效提高分析的靈敏度,如液相核磁共振聯用(LC-NMR)解決了NMR中干擾過多等問題,有效提高了分析的檢測限[36]。BRAUNBERGER等[37]綜合液相質譜技術、液相核磁共振聯用和離線NMR技術,分析了茅膏菜中黃酮類和鞣花酸衍生物,并解析了13種化合物的結構。

1.2.2 質譜分析技術 色譜質譜聯用技術將色譜的有效分離和質譜的準確定量相結合,已經成為代謝組學中使用最廣泛的分析技術。經過近年來的發展,目前,質譜分析技術主要包括四級桿質譜(quadrupole mass spectrometer, QMS)、三重四級桿質譜(triple quadrupole mass spectrometer,QQQ)、飛行時間質譜(time-of-flight mass spectrometry,TOF-MS)、四級桿飛行時間串聯質譜(quadrupole time-of-flight mass spectrometry,Q-TOF-MS)、離子阱質譜(ion trap mass spectrometer,ITMS)等,所使用的電離源主要包括電噴霧電離源(electron spray ionization,ESI)[38]、大氣壓化學電離源(atmospheric-pressure chemical ionization,APCI)、基質輔助激光解析電離源(matrix- assisted laser desorption ionization,MALDI)[39]、大氣壓光電離源(atmospheric-pressure photoionization,APPI)、質子轉移反應器(proton transfer reaction,PTR)[40]、實時直接分析(direct analysis in real time,DART)[41]等。相較于NMR技術,質譜的靈敏度更高,但穩定性不足,在不同儀器甚至不同日期獲得的數據之間存在差異,為保證結果的穩定,需采用標準化的操作步驟[42]。

GC-MS是指氣化后的樣品根據各組分的熔沸點、吸附性及極性不同在色譜柱中實現分離,在質譜系統中經電離產生具有不同質荷比的離子后進行分析的技術。GC-MS技術具有分離能力強,靈敏度高,分析速度快,操作方便,標準譜庫成熟等優點,通常用于揮發性、半揮發性、低分子量和熱穩定化合物的鑒定和定量檢測。適用于農產品中精油、酯類、類十二烷酸、類胡蘿卜素、類黃酮、脂質等極性較小物質的分析。相對于NMR技術,GC-MS分析技術樣品前處理較為復雜,部分代謝物在分析前需要衍生化處理,以增強揮發性[43]。MARI等[44]使用甲硅烷基化混合物,經兩步衍生化后,對蕨麻植物樣品中的53種代謝物進行了分析。也有學者[45]采用甲氧基胺化/三甲基硅基化衍生化后,分析了乙烯利處理后甜櫻桃代謝譜變化規律。為同時分析盡可能多的代謝物,具有較高分離能力和靈敏度的質譜分析技術被逐漸應用于組學分析,如WONG等[46]采用二維氣相色譜飛行時間質譜(GC- GC-TOF/MS)對桉樹葉油代謝譜進行了全面分析。

LC-MS是根據樣品中各組分在液相色譜柱中保留時間不同實現分離,在質譜系統中經離子源電離后產生具有不同質荷比的離子后進行分析的技術。LC-MS技術可以在常溫下實現分離,相較于NMR靈敏度低、GC-MS樣品處理較復雜等問題,LC-MS更靈敏,不受試樣揮發性和熱穩定性的限制,樣品前處理簡單,可對農產品中糖類、氨基酸、多酚、萜類化合物等極性較強的代謝產物進行分析[47]。GARCIA等[38]基于UPLC-ESI-QToF-MS建立了非靶向的分析方法,對生菜代謝譜進行了分析。此外,基于HPLC-QToF-MS的非靶向技術在雞蛋蛋黃[48]及大蒜[49]小分子物質分析方面也得到了很好的應用。但LC-MS沒有綜合性數據庫,給后期代謝物的分析造成了一定的困難與挑戰。

毛細管電泳質譜(capillary electrophoresis–mass spectrometry,CE-MS)[50]是基于樣品中各組分間淌度和分配行為差異實現分離,經質譜系統中電離源電離產生不同質荷比的離子,從而實現離子型化合物的分析。CE-MS技術能夠檢測離子型化合物,在含氨基化合物等復雜基質食品分析中有很大優勢,常用于氨基酸類物質的分析。CE-MS能夠同時測定丁醇衍生后的6種氨基酸(鳥氨酸、丙氨酸、γ-氨基丁酸、異亮氨酸、瓜氨酸和焦谷氨酸),該方法已成功應用于大豆油、橄欖油摻假分析[51]。

目前,代謝組學的研究大部分依賴成本相對較高的高分辨質譜或核磁技術,但LAN等[52]成功開發了HPLC-UV技術,分析了不同批次草藥提取物含量,該方法簡單、廉價,可以作為農產品營養成分分析的初步方法。由于農產品代謝物種類多,結構、性質差異大,僅采用單一分析手段很難實現代謝物的全景定性及定量分析,可采用多種分析手段,取長補短,盡可能全面地覆蓋農產品代謝物。

1.3 代謝組學的數據處理及分析

在代謝組學分析中,代謝物數據量大、樣本分析產生的數據復雜,需要能自動、無歧視分析原始數據文件[53]。為使數據更簡潔、分析簡便,儀器分析獲得的數據通常需要預處理,主要包括信號濾噪、代謝特征提取、色譜與質譜匹配、缺失值過濾與補值、信號歸一化、化合物定性定量等步驟[54-55]。經過預處理后的代謝組學數據需要借助數據分析軟件實現單變量分析和多元變量等統計分析,數據分析方法包括無監督分析和有監督分析兩種,其中無監督分析包括主成分分析(principal component analysis,PCA)[56]、聚類分析(hierarchical cluster analysis,HCA)[57]等。由于無監督分析法不能忽略組內誤差,不利于組間差異的鑒別,需要進一步結合有監督分析突出組間差異;有監督分析主要包括偏最小二乘分析(partial least squares discrimination analysis,PLS-DA)[58]、正交偏最小二乘法-判別分析(orthogonal partial least squares discriminant analysis,OPLS-DA)等。數據分析時也可以通過數據分析軟件特有的分析功能揭示代謝物上/下調情況、變量權重(variable importance,VIP值)和顯著性變化,經多種組合數據分析后,可以揭示不同組別樣本中小分子代謝物的差異,篩選獲得差異代謝物。隨著組學技術的發展,多家儀器公司結合數據采集軟件開發了多種數據分析軟件,如Agilent公司的MPP軟件、Waters公司的QI軟件、SCIEX公司的Lipid View軟件等[59-61]。上述數據分析軟件的成功研發給從事代謝組學研究的學者們提供了便利條件,簡化了數據分析工作。

通過組學軟件篩選出的差異代謝物需要進一步借助通路分析軟件、網站或大量相關文獻,實現生物標志物的重要性和功能性解讀,了解其在生命活動過程中參與的代謝通路,繼而進一步為物質靶點分析、營養功能評價等提供參考依據[62]。HMDB[63]、KEGG、METLIN[64]、NIST[65]等數據庫是常用的代謝物結構鑒定和代謝通路分析的數據庫。我國學者WANG等[66]也開發了代謝途徑延伸(MPE)的方法快速表征代謝組學生物標志物,即通過已知的代謝途徑連接未知的代謝物到特定的核心化合物,然后通過定量測定匹配代謝物的MS/MS譜進行驗證,獲得93種生物標志物(95%覆蓋)的結構后,通過MS/MS匹配確認獲得66種代謝物(70%覆蓋),快速闡明了肉堿的靶向代謝網絡。

2 代謝組學在農產品營養品質檢測分析中的應用

代謝組學能在生物學水平上檢測農產品中小分子代謝產物的差別,定性與定量分析不同品種、不同產地和不同生長儲藏條件下農產品營養成分的差異。同時,經過非靶向代謝組學全面系統分析和靶向代謝組學的確證后,新的生物標志物的發現進一步推動了代謝組學在產地溯源、作用機制、育種策略以及種養方式等方面的應用,見表1。

2.1 農產品營養成分表征及差異性分析

不同農產品具有不同的特征營養成分,代謝組學技術可對農產品中初生代謝產物及次生代謝產物進行全面表征,形成農產品獨特的代謝指紋圖譜。ZHU等[67]采用廣泛靶向的LC-MS/MS分析方法,研究了442份成熟番茄果實果皮組織中代謝物,共發現了980個不同的代謝物。B?TTCHER等[68]采用LC/ESI-QTOF-MS技術對洋蔥中的低聚果糖、氨基酸、多肽、S-半胱氨酸、黃酮及皂苷類等極性及半極性成分進行了全面的代謝輪廓分析。對葡萄代謝組的研究發現,野生品種的葡萄花色苷及芪類化合物組成比雜交品種及歐亞種葡萄復雜,歐亞種葡萄果皮和種籽中原花青素含量更高[69]。意大利‘藍蟹’等3個品種代謝組學分析結果顯示,谷氨酸、丙氨酸、甘氨酸、龍蝦堿、乳酸、甜菜堿和?;撬岬?種代謝物含量具有顯著差異[70]。

農產品中代謝物種類及水平通常與其感官特征具有重要相關性,如番茄中鄰甲基苯乙酮、苯甲酮等揮發性成分對番茄氣味形成起關鍵作用[71],蕪菁中L-谷氨酰胺、L-天冬酰胺與苦味呈負相關,而金縷梅糖、麥芽糖和蘋果酸與苦味呈正相關,異硫氰酸烯丙酯等芥子甙降解產物與“銳”度呈正相關[72]。此外,不同農產品品種、不同組織及器官營養成分不同,如不同品種蔓越莓[73]、樹莓[74]花青素的含量及水平,馬鈴薯皮和塊莖組織[75]、番茄果肉與種子[76]代謝物種類及水平均存在較大差異,借助代謝組學分析,可以獲得不同品種、組織及器官的營養成分組成及含量,從而應用于不同的農產品加工和消費。

轉基因技術提高了糧食產量,但由此而來的安全問題引起廣泛爭論,代謝組學技術能在生物學水平上鑒別和篩選轉基因與非轉基因農產品代謝差異物,揭示轉基因帶來的本質性變化以及各種非預期變異效應[77]。RAO等[78]對轉基因玉米與常規玉米中210種代謝產物進行分析,在考慮自然變異后發現4種差異代謝物。番茄經基因修飾后氨基酸和多酚等物質含量水平發生顯著性改變,其中山奈酚、桂皮素苷含量水平較對照組提高10倍以上[79]。非靶向代謝組學在考慮自然變異的情況下能為轉基因作物代謝產物分析提供技術手段。

2.2 農產品產地溯源及真偽鑒別

農產品的產地來源是消費者選擇食品的重要依據,食品摻假等問題引起了消費者的廣泛關注。代謝組學技術在非特定目標物的檢測方面有著其他方法無法比擬的優勢,有監督分析方法可以有效減少同一產地農產品的組內誤差,實現不同產地農產品的組間差異鑒別和差異化合物篩選,為農產品產地溯源和真偽鑒別提供了重要技術手段[80-81]。ISABAL等[82]基于非靶向代謝組學方法分析了4種不同地理來源枸杞的化學成分區別,發現了蒙古枸杞中槲皮素、山奈酚糖苷、二咖啡??鼘幩岷头铀岷匡@著高于其他地區的枸杞。對捷克、中國和西班牙3個國家的大蒜進行代謝輪廓分析[83],獲得了蒜氨酸、PC(16﹕0/18﹕2)和精氨酸3種標志性差異化合物。RITOTA等[84]采用高分辨率魔角旋轉核磁共振技術(HRMAS-NMR)及偏最小二乘法判別分析(PLS-DA)等多元數據統計分析方法,成功實現意大利4個產地、2個品種大蒜(白皮蒜、紫皮蒜)的分類及溯源。CAMARGO[85]、VADALA[86]和SMITH等[87]也分別通過礦物質元素及痕量金屬元素實現了大蒜不同產地的溯源。

表1 代謝組學在農產品營養品質檢測分析中的應用

經非靶向代謝組學篩查獲得差異代謝物后,靶向代謝組學可以對產品中的特異性指標如氨基酸、揮發性成分等化合物成分進行定量分析[88-89],進一步提高模型鑒別能力。KLOCKMANN等[90]采用UPLC- QTOF-MS對來自德國、法國、意大利、土耳其和格魯吉亞共196個榛子進行了產地溯源,篩選確定了20種關鍵差異代謝物(5種磷脂酰膽堿,3種磷脂酰乙醇胺,4種甘油二酯,7種三?;视秃挺?生育酚),PCA-LDA訓練精度可達99.5%。隨后,對鑒定出的差異代謝物采用LC-ESI-QqQ-MS進行了靶向分析[91],預測模型訓練精度達到100%,交叉驗證精度達到97%。

2.3 農產品生長儲藏過程中營養成分變化規律

農產品不同生長階段營養成分存在較大差異,研究農產品生長過程中關鍵成分的消長規律及合成機理,對于確定最佳收獲期和改善果蔬的保質期具有重要意義。ZHANG等[92]對草莓生長過程中的揮發性成分進行了定性和定量分析,發現草莓成熟之前游離氨基酸含量逐漸下降,過熟后快速上升,涉及的代謝通路包括酯生物合成、三羧酸循環、莽草酸途徑和氨基酸代謝。對‘赤霞珠’和‘梅洛’2個不同葡萄品種在生長、發育及成熟過程中營養成分變化規律及代謝途徑研究發現,葡萄在坐果和顏色轉化期代謝物變化較大,且在果實成熟過程中,糖類和氨基酸呈現相反的變化趨勢[93]。農產品在采后、儲藏過程中,營養成分會發生轉化或降解,對其營養品質產生影響。OMS-OLIU等[94]鑒定發現,甘露糖、檸檬酸、葡萄糖酸和酮-1-古洛糖酸等4種代謝產物與番茄采后階段密切相關。JOHNSON等[48]研究了不同儲藏時間蛋黃內小分子代謝物的變化規律,確定膽堿為不同儲藏時間的差異代謝物,隨后靶向驗證結果顯示,12周儲藏時間內膽堿水平由6.8 μg?g-1上升至28.7 μg?g-1。

此外,外界環境以及灌溉、施肥、管理措施等因素均會對農產品生長發育過程中營養品質的變化規律產生影響[95],借助代謝組學高通量檢測技術研究不同環境條件下農產品的生物標志物,可為農產品的品質優化提供科學的指導意見。我國西南地區在大豆收獲期溫度低,濕度大,持續降雨天氣易導致霉菌爆發,DENG等[96]研究了豆莢、種皮和子葉對霉菌的抵抗機制,發現不同組織代謝輪廓存在差異,脯氨酸、賴氨酸和硫在子葉、種皮和豆莢代謝中發揮重要作用。

2.4 農產品中營養功能成分作用機制及對代謝的影響

代謝組學通過體液代謝譜和生物標志物的檢測,可以系統性地研究營養功能成分與生物體代謝之間的交互作用[97],為營養功能成分作用機制研究及膳食指導提供有價值的信息[98-99]。代謝組學為食藥兩用農產品中功能成分作用機制研究提供了可靠便利的方法。LIU等[100]基于雄性C57BL/6小鼠模型,研究了生姜中姜精油(GEO)和檸檬醛的抗氧化能力和肝臟保護作用,采用HPLC-QTOF-MS分析技術對小鼠血清中的代謝產物進行了分析,結果顯示,服用姜精油(GEO)和檸檬醛后,因食用含酒精液體飲食而導致的D-葡糖醛酸-6,3-內酯、甘油-3-磷酸、丙酮酸、石膽酸、2-吡啶酸和前列腺素E1等異常代謝產物可恢復至正常水平,上述代謝產物的改變主要涉及碳代謝、氨基酸代謝等代謝通路。枸杞多糖(lycium barbarum polysaccharides,LBP)的降糖作用研究結果顯示[101],枸杞多糖干預一個月后,2型糖尿病模型大鼠血清中丙氨酸、胸腺嘧啶脫氧核苷酸含量有所上升,氨基酸代謝和核苷酸代謝通路的確認為進一步研究LBP的降糖作用機制提供了參考。除小鼠和大鼠模型外,也有學者采用細胞模型分析農產品中營養素的作用機制,如FUJIMURA等[102]基于人臍靜脈內皮細胞,研究了不同品種綠茶抑制肌球蛋白調節輕鏈(MRLC)磷酸化的活性,分析獲得了能夠顯著抑制MRLC磷酸化的品種,并發現多酚含量與其獨特的代謝特征和生物活性相關。

此外,通過對膳食攝入后人體尿液、血液、糞便等生物樣本的研究,代謝組學可以了解機體對單一物質或復雜物質的代謝應答[103-104],從而為全面考察農產品攝入對機體代謝的影響提供參考[105-106]。邊會喜[107]基于小鼠模型研究了苦瓜及苦瓜的不同提取組分對降低血脂的作用,通過對尿液樣本的NMR代謝組分析識別了37種差異代謝物,確定了泛酸和輔酶a合成、淀粉和蔗糖代謝、三羧酸循環等3條主要作用途徑,發現苦瓜的正丁醇提取物和胰島素對小鼠體重及多種脂肪組織的抵抗效應高于其他提取物。人體尿液樣品的代謝譜分析發現[108],適量飲用白茶使機體內馬尿酸和檸檬酸上調、肌酐下降。1H-NMR光譜技術結合多元統計分析研究素食、少肉、多肉3種飲食模式對人體代謝的影響顯示,肌酸、肉堿、乙酰肉堿和三甲胺-N-氧化物等代謝物在多肉飲食模式中含量較高,而對-羥基苯基在素食飲食模式下含量較高[109]。

3 展望

隨著組學技術的不斷發展和完善,代謝組學技術將在農產品營養品質檢測分析中發揮越來越重要的作用,該類技術在提升農產品營養的同時還有助于提升農產品品質,對農產品育種策略、種養模式調整和膳食指導等方面具有重要指導意義。然而,當前階段組學分析中存在樣品分析結果不穩定、儀器分析范圍局限和數據庫不完善等諸多挑戰,因此,如何優化代謝組學的樣品前處理技術,建立高通量的檢測技術,如何使數據處理過程更加標準和規范,以便獲得更多更準確的代謝物信息,在取樣方法、分析技術研發和數據庫構建等方面,都需要進一步的研究。另外,基于代謝組學技術發現了許多農產品中的生物標志物,但對農產品中生物活性成分的作用機制研究還不夠系統和深入,需結合基因組學、轉錄組學和蛋白組學等組學技術,形成系統生物學數據鏈,通過多組學聯合分析技術,從表型-通路等多角度解釋功能活性成分的作用機制,為膳食結構的優化調整提供技術手段。

[1] 吳永寧. 我國食品安全科學研究現狀及"十三五"發展方向. 農產品質量與安全, 2015(6): 3-6.

WU Y N. The research status of food safety science in China and the development direction in “13th Five-year Plan”., 2015(6): 3-6. (in Chinese)

[2] 唐華俊. 中國營養型農業發展正當其時. 高科技與產業化, 2018, 266(7): 3.

TANG H J. China's nutritious agriculture is developing at the right time., 2018, 266(7): 3. (in Chinese)

[3] 韓娟, 孫君茂, 秦玉昌. 農產品質量與營養功能風險評估研究方向探討. 農產品質量與安全, 2016(2): 45-48.

HAN J, SUN J M, QIN Y C. Discussion on the research direction of risk assessment in agricultural product quality and nutrition function., 2016(2): 45-48. (in Chinese)

[4] 許國旺, 路鑫, 楊勝利. 代謝組學研究進展. 中國醫學科學院學報, 2007, 29(6): 701-711.

XU G W, LU X, YANG S L. Recent advances in metabonomics., 2007, 29(6): 701-711. (in Chinese)

[5] NICHOLSON J K, LINDON J C, HOLMES E. ''Metabonomics'': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data., 1999, 29(11): 1181-1189.

[6] FIEHN O. Metabolomics–the link between genotypes and phenotypes., 2002, 48(1/2): 155-171.

[7] COCCI P, MOSCONI G, PALERMO F A. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants., 2019, 209: 81-90.

[8] EVERETT J R. Pharmacometabonomics in humans: A new tool for personalized medicine., 2015, 16(7): 737-754.

[9] POTRATZ S, TARNOW P, JUNGNICKEL H, BAUMANN S, VON BERGEN M, TRALAU T, LUCH A. Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 Cells., 2017, 30(4): 883-892.

[10] JIANG G T, KANG H Y, YU Y Q. Cross-platform metabolomics investigating the intracellular metabolic alterations of HaCaT cells exposed to phenanthrene., 2017, 1060: 15-21.

[11] ZOTTI M, DE PASCALI S A, DEL COCO L, MIGONI D, CARROZZO L, MANCINELLI G, FANIZZI F P.1H NMR metabolomic profiling of the blue crab () from the Adriatic Sea (SE Italy): a comparison with warty crab (), and edible crab ()., 2016, 196: 601-609.

[12] CHEN J P, CHAN P H, LAM C T W, LI Z G, LAM K Y C, YAO P, DONG T T X, LIN H Q, LAM H, TSIM K W K. Fruit of ziziphus jujuba (Jujube) at two stages of maturity: distinction by metabolic profiling and biological assessment., 2015, 63(2): 739-744.

[13] CEVALLOS-CEVALLOS J M, REYES-DE-CORCUERA J I, ETXEBERRIA E, DANYLUK M D, RODRICK G E. Metabolomic analysis in food science: A review., 2009, 20(11): 557-566.

[14] 趙春霞, 許國旺. 基于液相色譜-質譜技術的代謝組學分析方法新進展. 分析科學學報, 2014, 30(5): 761-766.

ZHAO C X, XU G W. Progress of metabonomics technique based on liquid chromatography-mass spectrometry.,2014, 30(5): 761-766. (in Chinese)

[15] 馬寧, 楊亞軍, 劉希望, 李劍勇. 基于液質平臺代謝組學生物樣本的采集和制備. 中國獸醫學報, 2017, 37(6): 1193-1200.

MA N, YANG Y J, LIU X W, LI J Y. Biological sample collection and preparation for metabonomic study with LC-MS platform.,2017, 37(6): 1193-1200. (in Chinese)

[16] KNOLHOFF A M, CROLEY T R. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry., 2016, 1428: 86-96.

[17] LIU Y Y, HU X L, BAO Y F, YIN D Q. Simultaneous determination of 29 pharmaceuticals in fish muscle and plasma by ultrasonic extraction followed by SPE-UHPLC-MS/MS., 2018, 41(10): 2139-2150.

[18] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, CERDà V. Solid-phase extraction of organic compounds: A critical review (Part I)., 2016, 80: 641-654.

[19] WANG C H, SU H, CHOU J H, HUANG M Z, LIN H J, SHIEA J. Solid phase microextraction combined with thermal-desorption electrospray ionization mass spectrometry for high-throughput pharmacokinetics assays., 2018, 1021: 60-68.

[20] SHAMSIPUR M, YAZDANFAR N, GHAMBARIAN M. Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice., 2016, 204: 289-297.

[21] GIL-RAMIREZ A, AL-HAMIMI S, ROSMARK O, HALLGREN O, LARSSON-CALLERFELT A K, RODRíGUEZ-MEIZOSO I. Efficient methodology for the extraction and analysis of lipids from porcine pulmonary artery by supercritical fluid chromatography coupled to mass spectrometry., 2019, 1592: 173-182.

[22] VARGAS L H G, NETO J C R, RIBEIRO J A D, RICCI-SILVA M E, SOUZA M T, RODRIGUES C M, OLIVEIRA A E, ABDELNUR P V. Metabolomics analysis of oil palm () leaf: evaluation of sample preparation steps using UHPLC-MS/MS., 2016, 12(10): 153.

[23] 徐佳, 劉其南, 翟園園, 單進軍, 張麗. 細胞代謝組學樣品前處理研究進展. 中國細胞生物學學報, 2018, 40(3): 418-425.

XU J, LIU Q N, ZHAI Y Y, SHAN J J, ZHANG L. The Research development of sample pretreatment in cell metabolomics., 2018, 40(3): 418-425. (in Chinese)

[24] WANG X, XU Y, SONG X, JIA Q, ZHANG X, QIAN Y, QIU J. Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC- MS/MS., 2019, 169: 120-127.

[25] BLIGH E G, DYER W J. A rapid mmethord of total lipid extraction and purification., 1959, 37(8): 911.

[26] FOLCH J, LEES M, SLOANE STANLEY G H. A simple method for the isolation and purification of total lipides from animal tissues., 1957, 226(1): 497-509.

[27] SARAFIAN M H, GAUDIN M, LEWIS M R, MARTIN F P, HOLMES E, NICHOLSON J K, DUMAS M E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry., 2014, 86(12): 5766-5774.

[28] MATYASH V, LIEBISCH G, KURZCHALIA T V, SHEVCHENKO A, SCHWUDKE D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics., 2008, 49(5): 1137-1146.

[29] MOROS G, CHATZIIOANNOU A C, GIKA H G, RAIKOS N, THEODORIDIS G. Investigation of the derivatization conditions for GC-MS metabolomics of biological samples., 2017, 9(1): 53-65.

[30] 焦宏. 核磁共振技術在代謝組學中的應用. 山西醫藥雜志, 2011(4): 335-336.

JIAO H. Application of nuclear magnetic resonance technology in metabolomics., 2011(4): 335-336. (in Chinese)

[31] 王超, 涂文志, 王穆, 讓蔚清. 代謝組學分析技術及代謝物鑒定. 國際藥學研究雜志, 2010, 37(5): 355-360.

WANG C, TU W Z, WANG M, RANG W Q. Metabonomics analytical technologies and metabolite identification., 2010, 37(5): 355-360. (in Chinese)

[32] 夏建飛, 梁瓊麟, 胡坪, 王義明, 羅國安. 代謝組學研究策略與方法的新進展. 分析化學, 2009, 37(1): 136-143.

XIA J F, LIAGN Q L, HU P, WANG Y M, LUO G A. recent trends in strategies and methodologies for metabonomics., 2009, 37(1): 136-143. (in Chinese)

[33] 許茜, 王磊, 張杰, 許卉. 基于核磁代謝組學的阿膠原料來源鑒別. 食品科技, 2018, 43(1): 316-319.

XU Q, WANG L, ZHANG J, XU H. Origin identification of Colla Corii Asini based on1H-NMR metabolomics., 2018, 43(1): 316-319. (in Chinese)

[34] BRENNAN L. NMR-based metabolomics: From sample preparation to applications in nutrition research., 2014, 83: 42-49.

[35] SANDUSKY P, APPIAH-AMPONSAH E, RAFTERY D. Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids., 2011, 49(3/4): 281-290.

[36] STURM S, SEGER C. Liquid chromatography-nuclear magnetic resonance coupling as alternative to liquid chromatography-mass spectrometry hyphenations: curious option or powerful and complementary routine tool?, 2012, 1259(19): 50-61.

[37] BRAUNBERGER C, ZEHL M, CONRAD J, FISCHER S, ADHAMI H R, BEIFUSS U, KRENN L. LC-NMR, NMR, and LC-MS identification and LC-DAD quantification of flavonoids and ellagic acid derivatives in drosera peltata., 2013, 932(15): 111-116.

[38] GARCIA C J, GARCíA-VILLALBA R, GARRIDO Y, GIL M I, TOMáS-BARBERáN F A. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce., 2016, 12(8): 138.

[39] SARABIA L D, BOUGHTON B A, RUPASINGHE T, VAN DE MEENE A M L, CALLAHAN D L, HILL C B, ROESSNER U. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress., 2018, 14(5): 1-16.

[40] FARNETI B, KHOMENKO I, CAPPELLIN L, TING V, ROMANO A, BIASIOLI F, COSTA G, COSTA F. Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS., 2015, 11(4): 838-850.

[41] KIM H J, SEO Y T, PARK S-I, JEONG S H, KIM M K, JANG Y P. DART–TOF–MS based metabolomics study for the discrimination analysis of geographical origin ofroots collected from Korea and China., 2015, 11(1): 64-70.

[42] GONG Z G, HU J, WU X, XU Y J. The Recent developments in sample preparation for mass spectrometry-based metabolomics., 2017, 47(4): 1-7.

[43] BEALE D J, PINU F R, KOUREMENOS K A, POOJARY M M, NARAYANA V K, BOUGHTON B A, KANOJIA K, DAYALAN S, JONES O A H, DIAS D A. Review of recent developments in GC-MS approaches to metabolomics-based research., 2018, 14(11): 152.

[44] MARI A, LYON D, FRAGNER L, MONTORO P, PIACENTE S, WIENKOOP S, EGELHOFER V, WECKWERTH W. Phytochemical composition ofL. analyzed by an integrative GC-MS and LC-MS metabolomics platform., 2013, 9(3): 599-607.

[45] SMITH E D, WHITING M D, RUDELL D R. Metabolic profiling of ethephon-treated sweet cherry (L.)., 2011, 7(1): 126-133.

[46] WONG Y F, PERLMUTTER P, MARRIOTT P J. Untargeted metabolic profiling ofspp. leaf oils using comprehensive two-dimensional gas chromatography with high resolution mass spectrometry: Expanding the metabolic coverage., 2017, 13(5): 46.

[47] TOFFALI K, ZAMBONI A, ANESI A, STOCCHERO M, PEZZOTTI M, LEVI M, GUZZO F. Novel aspects of grape berry ripening and post-harvest withering revealed by untargeted LC-ESI-MS metabolomics analysis., 2011, 7(3): 424-436.

[48] JOHNSON A E, SIDWICK K L, PIRGOZLIEV V R, EDGE A, THOMPSON D F. Metabonomic profiling of chicken eggs during storage using high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry., 2018, 90(12): 7489-7494.

[49] MOLINA-CALLE M, SáNCHEZ DE MEDINA V, CALDERóN- SANTIAGO M, PRIEGO-CAPOTE F, LUQUE DE CASTRO M D. Untargeted analysis to monitor metabolic changes of garlic along heat treatment by LC-QTOF MS/MS., 2017, 38(18): 2349-2360.

[50] IBá?EZ C, SIMó C, GARCíA-CA?AS V, CIFUENTES A, CASTRO- PUYANA M. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: A review., 2013, 802: 1-13.

[51] BAN E, PARK S H, KANG M J, LEE H J, SONG E J, YOO Y S. Growing trend of CE at the omics level: The frontier of systems biology-an update., 2012, 33(1): 2-13.

[52] LAN K, ZHANG Y, YANG J Y, XU L. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform., 2010, 1217(8): 1414-1418.

[53] FIEHN O. Metabolomics--the link between genotypes and phenotypes., 2002, 48(1/2): 155-171.

[54] 徐淑玲, 魏芳, 董緒燕, 陳洪. 脂質組學在脂質膳食營養與健康研究中的應用. 中國食物與營養, 2017, 23(11): 5-10.

XU S L, WEI F, DONG X Y, CHEN H. The Application of lipidomics in lipids dietary nutrition and health research., 2017, 23(11): 5-10. (in Chinese)

[55] GIKA H G, THEODORIDIS G A, PLUMB R S, WILSON I D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics., 2014, 87: 12-25.

[56] GUO Q, WU W, MASSART D L, BOUCON C, JONG S D. Feature selection in principal component analysis of analytical data., 2002, 61(1): 123-132.

[57] ARROIO A, HONóRIO K M, SILVA A B F D. A theoretical study on the analgesic activity of cannabinoid compounds., 2004, 709(1): 223-229.

[58] BOULESTEIX A L, STRIMMER K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data., 2007, 8(1): 32-44.

[59] DAYGON V D, PRAKASH S, CALINGACION M, RIEDEL A, OVENDEN B, SNELL P, MITCHELL J, FITZGERALD M. Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation., 2016, 12(4): 63.

[60] CAI Y, WENG K, GUO Y, PENG J, ZHU Z-J. An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing., 2015, 11(6): 1575-1586.

[61] RAFIEI A, SLENO L. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis., 2015, 29(1): 119-127.

[62] 王昕璐. 基于脂質組學的PCB153和PCB95對PC12細胞聯合毒性效應研究[D]. 中國農業科學院, 2018.

WANG X L. PCB153 and PCB95 in combined exposure modulate PC12 cells as defined by targeted lipidomics analysis [D]. Chinese Academy of Agricultural Sciences, 2018. (in Chinese)

[63] WISHART D S, JEWISON T, GUO A C, WILSON M, KNOX C, LIU Y, DJOUMBOU Y, MANDAL R, AZIAT F, DONG E. HMDB 3.0-The human metabolome database in 2013., 2013, 41: 801-807.

[64] SMITH C A. METLIN: A metabolite mass spectral database., 2005, 27(6): 747-751.

[65] PAUPIèRE M J, MüLLER F, LI H, RIEU I, TIKUNOV Y M, VISSER R G F, BOVY A G. Untargeted metabolomic analysis of tomato pollen development and heat stress response., 2017, 30(2): 81-94.

[66] WANG L, YE H, SUN D, MENG T, CAO L J, WU M Q, ZHAO M, WANG Y, CHEN B Q, XU X W, WANG G J, HAO H P. Metabolic pathway extension approach for metabolomic biomarker identification., 2017, 89(2): 1229-1237.

[67] ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO QBG, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding., 2018, 172(1/2): 6-8.

[68] B?TTCHER C, KR?HMER A, STüRTZ M, WIDDER S, SCHULZ H. Comprehensive metabolite profiling of onion bulbs () using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry., 2017, 13(4): 35.

[69] NARDUZZI L, STANSTRUP J, MATTIVI F. Comparing wild American grapes with: A metabolomics study of grape composition., 2015, 63(30): 6823-6834.

[70] ZOTTI M, COCO L D, PASCALI S A D, MIGONI D, VIZZINI S, MANCINELLI G, FANIZZI F P. Comparative analysis of the proximate and elemental composition of the blue crab callinectes sapidus, the warty crab eriphia verrucosa, and the edible crab cancer pagurus., 2016, 2(2): e00075.

[71] CORTINA P R, SANTIAGO A N, SANCE M M, PERALTA I E, CARRARI F, ASIS R. Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits., 2018, 14(5): 57.

[72] FUKUDA T, OKAZAKI K, WATANABE A, SHINANO T, OKA N. GC–MS based metabolite profiling for flavor characterization of brassica crops grown with different fertilizer application., 2015, 12(2): 20.

[73] BROWN P N, MURCH S J, SHIPLEY P. Phytochemical diversity of cranberry (Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis., 2012, 60(1): 261-271.

[74] CARVALHO E, FRANCESCHI P, FELLER A, HERRERA L, PALMIERI L, ARAPITSAS P, RICCADONNA S, MARTENS S. Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis., 2016, 12(9): 144.

[75] INOSTROZA-BLANCHETEAU C, DE OLIVEIRA SILVA F M, DURáN F, SOLANO J, OBATA T, MACHADO M, FERNIE A R, REYES-DíAZ M, NUNES-NESI A. Metabolic diversity in tuber tissues of native Chiloé potatoes and commercial cultivars ofssp.L., 2018, 14(10): 138.

[76] MOUNET F, LEMAIRE-CHAMLEY M, MAUCOURT M, CABASSON C, GIRAUDEL J-L, DEBORDE C, LESSIRE R, GALLUSCI P, BERTRAND A, GAUDILLèRE M, ROTHAN C, ROLIN D, MOING A. Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA., 2007, 3(3): 273-288.

[77] 張曉磊, 張瑞英. 代謝組學及其在農作物研究中的應用. 生物技術通訊, 2018, 29(3): 446-450.

ZHAGN X L, ZHANG R Y. Metabolomics and its application in the crop research., 2018, 29(3): 446-450. (in Chinese)

[78] RAO J, YANG L T, GUO J C, QUAN S, CHEN G H, ZHAO X X, ZHANG D B, SHI J X. Metabolic changes in transgenic maize mature seeds over-expressing the., 2016, 35(2): 429-437.

[79] LE GALL G, COLQUHOUN I J, DAVIS A L, COLLINS G J, VERHOEYEN M E. Metabolite profiling of tomato () using1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification., 2003, 51(9): 2447-2456.

[80] LI Y, PANG T, LI Y, WANG X L, LI Q H, LU X, XU G W. Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves., 2011, 34(12): 1447-1454.

[81] KIM J, JUNG Y, SONG B, BONG Y S, RYU D H, LEE K S, HWANG G S. Discrimination of cabbage (ssp.) cultivars grown in different geographical areas using1H NMR-based metabolomics., 2013, 137(1): 68-75.

[82] BONDIA-PONS I, SAVOLAINEN O, T?RR?NEN R, MARTINEZ J A, POUTANEN K, HANHINEVA K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non- targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry., 2014, 63(Part B): 132-138.

[83] HRBEK V, REKTORISOVA M, CHMELAROVA H, OVESNA J, HAJSLOVA J. Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry., 2018, 67: 19-28.

[84] RITOTA M, CASCIANI L, HAN B Z, COZZOLINO S, LEITA L, SEQUI P, VALENTINI M. Traceability of Italian garlic (L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis., 2012, 135(2): 684-693.

[85] CAMARGO A B, RESNIZKY S, MARCHEVSKY E J, LUCO J M. Use of the Argentinean garlic (L.) germplasm mineral profile for determining geographic origin., 2010, 23(6): 586-591.

[86] VADALà R, MOTTESE A F, BUA G D, SALVO A, MALLAMACE D, CORSARO C, VASI S, GIOFRè S V, ALFA M, CICERO N, DUGO G. Statistical analysis of mineral concentration for the geographic identification of garlic samples from sicily (Italy), Tunisia and Spain., 2016, 5(1): 20.

[87] SMITH R G. Determination of the country of origin of garlic () using trace metal profiling., 2005, 53(10): 4041-4045.

[88] DU H Y, FU J L, WANG S Q, LIU H L, ZENG Y C, YANG J R, XIONG S B.1H-NMR metabolomics analysis of nutritional components from two kinds of freshwater fish brain extracts., 2018, 8(35): 19470-19478.

[89] 陳羽紅, 張東杰, 張桂芳, 王穎, 王長遠. 代謝組學技術在食品產地溯源中的研究進展. 糧食與飼料工業, 2016, 12(7): 16-19.

CHEN Y H, ZHANG D J, ZHANG G F, WANG Y, WAGN C Y. Review on metabonomics techniques in food origin traceability., 2016, 12(7): 16-19. (in Chinese)

[90] KLOCKMANN S, REINER E, BACHMANN R, HACKL T, FISCHER M. Food fingerprinting: metabolomic approaches for geographical origin discrimination of hazelnuts () by UPLC-QTOF-MS., 2016, 64(48): 9253-9262.

[91] KLOCKMANN S, REINER E, CAIN N, FISCHER M. Food targeting: Geographical origin determination of hazelnuts () by LC-QqQ-MS/MS-based targeted metabolomics application., 2017, 65(7): 1456-1465.

[92] ZHANG J J, WANG X, YU O, TANG J J, GU X G, WAN X C, FANG C B. Metabolic profiling of strawberry (×Duch.) during fruit development and maturation., 2011, 62(3): 1103-1118.

[93] CUADROS-INOSTROZA A, RUíZ-LARA S, GONZáLEZ E, ECKARDT A, WILLMITZER L, PE?A-CORTéS H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites., 2016, 12(2): 39.

[94] OMS-OLIU G, HERTOG M L A T M, VAN DE POEL B, AMPOFO- ASIAMA J, GEERAERD A H, NICOLA? B M. Metabolic characterizationof tomato fruit during preharvest development, ripening, and postharvest shelf-life., 2011, 62(1): 7-16.

[95] MARTINS N, PETROPOULOS S, FERREIRA I C F R. Chemical composition and bioactive compounds of garlic (L.) as affected by pre- and post-harvest conditions: A review., 2016, 211: 41-50.

[96] DENG J C, YANG C Q, ZHANG J, ZHANG Q, YANG F, YANG W Y, LIU J. Organ-specific differential NMR-based metabonomic analysis of soybean [(L.) Merr.] fruit reveals the metabolic shifts and potential protection mechanisms involved in field mold infection., 2017, 8(508).

[97] 許騰, 張玥, 張海麗, 辛鳳姣, 王艷, 王鳳忠. 代謝組學技術在營養學研究中的應用. 中國食物與營養, 2017, 23(11): 11-16.

XU T, ZHANG Y, ZHAGN H L, XIN F J, WANG Y, WANG F Z. Applications of metabonomics in nutriology research., 2017, 23(11): 11-16. (in Chinese)

[98] 張雙慶, 黃振武. 營養代謝組學技術在營養學研究中的應用. 衛生研究, 2013, 42(6): 1041-1046.

ZHAGN S Q, HUANG Z W. Application of nutritional metabolomics technology in nutrition research., 2013, 42(6): 1041-1046. (in Chinese)

[99] 何慶華, 任萍萍, 王玉蘭. 代謝組學在營養學研究中的應用. 食品科學, 2011, 32(5): 317-320.

HE Q H, REN P P, WANG Y L. Applications of metabolomics in nutrition research: A review., 2011, 32(5): 317-320. (in Chinese)

[100] LIU C T, RAGHU R, LIN S H, WANG S Y, KUO C H, TSENG Y F J, SHEEN L Y. Metabolomics of ginger essential oil against alcoholic fatty liver in mice., 2013, 61(46): 11231-11240.

[101] 唐華麗, 夏惠, 王鋒, 孫桂菊. 枸杞多糖作用于2型糖尿病大鼠的血清代謝組學研究. 食品科學, 2017, 38(13): 160-166.

TANG H L, XIA H, WANG F, SUN G J. Serum metabonomics study of type 2 diabetic rats administrated with lycium barbarum polysaccharides., 2017, 38(13): 160-166. (in Chinese)

[102] FUJIMURA Y, KURIHARA K, IDA M, KOSAKA R, MIURA D, WARIISHI H, MAEDA-YAMAMOTO M, NESUMI A, SAITO T, KANDA T, YAMADA K, TACHIBANA H. Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars,. 2011, 6(8): e23426.

[103] ACCARDI C J, WALKER D I, UPPAL K, QUYYUMI A A, ROHRBECK P, PENNELL K D, MALLON C T, JONES D P. High-resolution metabolomics for nutrition and health assessment of armed forces personnel., 2016, 58(8S Suppl 1): S80-S88.

[104] RAI A, SAITO K, YAMAZAKI M. Integrated omics analysis of specialized metabolism in medicinal plants., 2017, 90(4): 764-787.

[105] 侯紹英, 黃放放, 劉鑫妍, 彭雪. 基于UPLC-MS技術的人體內芒果苷代謝組學研究. 哈爾濱醫科大學學報, 2016, 50(4): 315-318.

HOU S Y, HUANG F F, LIU X Y, PENG X. Metabolomics study of mangiferin in human based on UPLC-MS., 2016, 50(4): 315-318. (in Chinese)

[106] LLORACH R, URPI-SARDA M, TULIPANI S, GARCIA-ALOY M, MONAGAS M, ANDRES-LACUEVA C. Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention., 2013, 57(6): 962-973.

[107] 邊會喜. 基于代謝組學與多光譜成像技術對苦瓜影響高脂飲食肥胖小鼠能量代謝的有效組分的研究[D]. 合肥: 合肥工業大學, 2016.

BIAN H X. The energy metabolism study of effective componets from bitter melon (Momordica charantia) on DIO mice based on metabolomics and multispectral imaging techonogy [D]. Hefei: Hefei University of Technology, 2016. (in Chinese)

[108] TAKIS P G, ORAIOPOULOU M E, KONIDARIS C, TROGANIS A N. (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects oftea ingestion., 2016, 7(9): 4104-4115.

[109] STELLA C, BECKWITH-HALL B, CLOAREC O, HOLMES E, LINDON J C, POWELL J, VAN DER OUDERAA F, BINGHAM S, CROSS A J, NICHOLSON J K. Susceptibility of human metabolic phenotypes to dietary modulation., 2006, 5(10): 2780-2788.

Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-products

XU YanYang1, YAO GuiXiao1, 3, LIU PingXiang1, ZHAO Jie1, WANG XinLu1, SUN JunMao2, QIAN YongZhong1

(1Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081;2Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081;3Xi’an University of Technology, Xi’an 710048)

Scientific evaluation of the nutrition and quality of agricultural products is essential for improving the nutrition level of agro-products. Because of the complex composition of nutrients in agro-products, the existing analytical methods can only analyze the concentration and function of known nutrients but cannot analyze and identify a large number of unknown functional substances. On the basis of high-throughput chemical analyses, metabolomics can qualitatively and quantitatively analyze endogenous and exogenous metabolites of biological samples. Therefore, metabolomics has outstanding advantages in the analysis of small molecular substances with special nutritional functions in agricultural products; it has advantages like providing new methods for the characterization and differential analysis of nutrient components, traceability and authenticity of identification, variation analysis of functional substances during growth and storage, and the effect mechanisms of functional components. It also provides new strategies for structural optimization of dietary requirements. In this paper, the recent advances in metabolomics research, including sample preparation, metabolite analysis, data processing, differential metabolite identification, and metabolic pathway analysis were reviewed. This work summed up the application of metabolomics in the characterization and difference analysis of metabolites, traceability and authenticity identification of origin, metabolite variation in the process of storage, and the evaluation of nutritional functions to provide theoretical bases and practical references for high-quality agricultural development in China. In the field of sample preparation, the activity of metabolism-related enzymes is first terminated by rapidly changing the environmental conditions, such as adding strong acid (alkali) or freezing in liquid nitrogen. Different extraction solvents are selected based on the polarities of the metabolites to obtain a higher extraction rate. In the field of sample analysis methods, technologies, such as nuclear magnetic resonance spectroscopy, chromatography mass spectrometry and capillary electrophoresis-mass spectrometry, have been widely used. Among them, the combination of chromatography and mass spectrometry has become the most commonly used analytical technique in metabolomics. In the field of data processing and analysis, principal component analysis and orthogonal partial least squares-discriminant analysis are the most common data analysis techniques. Through enrichment and topological analysis, the metabolic pathway with the highest correlation to differential metabolites can be identified, and the reason of differential metabolites can be explained and analyzed. In the field of evaluation of nutrition and quality of agricultural products, through the comprehensive characterization of primary metabolites and secondary metabolites in agricultural products, unique fingerprints of agricultural products are established and used for differential analysis, whereas through non-specific target analysis and unsupervised analysis methods, differences between groups and relating metabolites can be identified. Via concentration analysis of key components in the growth process of agricultural products, the best harvest periods can be provided. Interaction studies between functional components and metabolism of organisms based on the detection of humoral metabolism and biomarkers can provide valuable information for dietary guidance.

metabolomics; agro-product; nutrition; quality

10.3864/j.issn.0578-1752.2019.18.009

2019-02-22;

2019-04-23

國家自然科學基金(31701519)、科技部食品安全關鍵技術研發專項(2017YFC1600705)

許彥陽,Tel:010-82106539;E-mail:xuyanyang@caas.cn。

錢永忠,Tel:010-82106298;E-mail:qianyongzhong@caas.cn。通信作者孫君茂,Tel:010-82109887;E-mail:sunjunmao@caas.cn

(責任編輯 趙伶俐)

猜你喜歡
分析
禽大腸桿菌病的分析、診斷和防治
隱蔽失效適航要求符合性驗證分析
電力系統不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
電力系統及其自動化發展趨勢分析
經濟危機下的均衡與非均衡分析
對計劃生育必要性以及其貫徹實施的分析
現代農業(2016年5期)2016-02-28 18:42:46
GB/T 7714-2015 與GB/T 7714-2005對比分析
出版與印刷(2016年3期)2016-02-02 01:20:11
中西醫結合治療抑郁癥100例分析
偽造有價證券罪立法比較分析
在線教育與MOOC的比較分析
主站蜘蛛池模板: 亚洲免费黄色网| 精品亚洲国产成人AV| 国产精品va| 色九九视频| 福利在线不卡| 国产精品黑色丝袜的老师| 尤物精品视频一区二区三区| 久热re国产手机在线观看| 亚洲精品无码av中文字幕| 不卡网亚洲无码| 亚洲女同一区二区| 不卡视频国产| 国产不卡在线看| 亚洲欧美自拍视频| 中文字幕在线观| 免费高清a毛片| 全部无卡免费的毛片在线看| 爱色欧美亚洲综合图区| 欧美成人二区| 国产成人免费手机在线观看视频| 日本午夜影院| 亚洲色大成网站www国产| 国产视频一二三区| 亚洲国产亚洲综合在线尤物| 亚洲一区二区日韩欧美gif| 美女潮喷出白浆在线观看视频| 在线播放国产99re| 22sihu国产精品视频影视资讯| 91视频国产高清| 日本午夜精品一本在线观看 | 国产一级妓女av网站| 波多野结衣一区二区三视频| 毛片网站在线播放| 精品国产中文一级毛片在线看| 三区在线视频| 女人18毛片一级毛片在线 | 四虎国产精品永久一区| 美女亚洲一区| 97se亚洲综合在线| 日韩一级毛一欧美一国产| 精品一区二区三区水蜜桃| 激情五月婷婷综合网| 91精品国产一区自在线拍| 亚洲人成影视在线观看| 日本尹人综合香蕉在线观看| 国产成人一二三| 亚洲人成色77777在线观看| 亚洲成人黄色在线| 久久午夜夜伦鲁鲁片不卡| 欧美福利在线观看| 国产成人1024精品下载| 日本伊人色综合网| 国内嫩模私拍精品视频| 亚洲男人在线| 久久99精品久久久久纯品| 原味小视频在线www国产| 欧美日韩va| 呦女亚洲一区精品| 真实国产乱子伦视频| 亚洲第一色网站| 91精品国产自产在线老师啪l| 中文纯内无码H| 欧美日韩中文国产| 亚洲成在人线av品善网好看| 国产精品一区在线麻豆| 精品国产乱码久久久久久一区二区| 国产第一福利影院| 91久久偷偷做嫩草影院| 欧美性色综合网| 午夜a级毛片| 久久a级片| 福利一区三区| 欧美精品在线免费| 日韩精品毛片人妻AV不卡| 亚洲精品爱草草视频在线| 日韩天堂视频| 亚洲精品中文字幕无乱码| 国产手机在线小视频免费观看 | 亚洲VA中文字幕| 亚洲区欧美区| 亚洲国产成人久久精品软件| 国产精品一线天|