
動力電池產業發展迅猛、前景廣闊,然而其安全問題仍亟需解決。中國科學院院士、中國電動汽車百人會執行副理事長歐陽明高表示,為了解決動力電池安全問題,我國建立了清華大學電池安全實驗室,開展了動力電池安全防控研究,這其中就包括動力電池熱失控主動安全防控技術。
歐陽明高從四個方面,對動力電池熱失控主動安全防控技術進行了詳細介紹。
電池充電析鋰與快充控制
近期發生的充電事故的分析表明,主要是不當快速充電或過充引發電池析鋰,導致熱失控溫度大幅度下降,從219℃下降到107℃,并與電解液劇烈反應,導致電池在107℃發生熱失控。
通過實驗表征發現,在快充的時候能夠明顯看出析鋰的產生,實驗室通過對析鋰機理進行研究,發現了析鋰的完整過程,包括電池充電過程負極表面鋰析出和重新嵌入,析出過程就是負極零電位之后形成,在電池停止充電之后,電位會恢復到零電位以上,這個時候會重新嵌入,然后所有的可逆鋰均完全溶解,負極不再發生反應。
實驗室對這個機理建立了仿真模型,在常規電池準二維(P2D)模型基礎上加入析鋰反應的過程,并在此基礎上進行了仿真和驗證。從仿真結果看,可以成功模擬充電析鋰后電池靜置過程中的電壓平臺,這個平臺是重新嵌入的過程。對上述電壓平臺進行微分處理,可以定量得到整個析鋰全過程的時間。以這個時間為一個變量,實驗室可以建立經驗公式計算出析鋰量。
電池內短路與電池管理
內短路是電池熱失控的共性環節,各種各樣的原因都可能產生不同類型的內短路,包括機械變形、擠壓、撕裂、隔膜破裂、過充過放、極端過熱。更危險的一種內短路是自引發內短路,如波音787的事故,是在制造過程中引入的雜質和顆粒,在長期運行之后累積演變發生的。枝晶生長是可以模擬的,而內短路是較難進行實驗再現的現象,需要發展各種各樣的替代實驗方法。實驗室發明了一種新的替代實驗方法進行內短路的模擬測試,主要是將特制的具有尖刺結構的記憶合金內短路觸發元件植入電池內部,升溫使尖刺結構翹起并刺穿隔膜,模擬內短路過程。通過該實驗發現主要的內短路類型包括,鋁-銅、正極-銅、鋁-負極、正極-負極等四種電路。其中有的是立即發生熱失控,如鋁和負極的接觸,而正極和負極接觸一般不會發生熱失控,鋁和銅接觸的危險程度也比較高,但是不一定馬上引發內短路。
實驗室對熱失控內短路建立仿真模型,其中很重要的是內短路位置的熔斷,這種熔斷可能導致整個內短路終止,也有可能導致更劇烈的內短路發生。為此,實驗室對影響這種熔斷的各種參數進行了分析,對整個內短路發生演變的過程進行了綜合分析和總結,在此基礎上,提出為防止發生熱失控,必須要在早期階段將內短路檢測出來。
單體電池熱失控與熱設計
隔膜材料發生了很多變化,從PE、PP、PE+Ceramic到PET材料,隔膜的耐熱溫度已經很高,可以達到300℃;與此同時,正極材料從早期的LFP,到NCM111、NCM523、NCM622,再到現在的NCM811,正極材料的釋氧溫度在逐步降低。隨著這兩種技術的變化,熱失控的機理也在發生變化。早期電池大多由于隔膜崩潰引發大規模內短路引發熱失控,但目前使用的耐高溫隔膜配811正極動力電池,其熱失控的機理已經發生變化,正極材料釋氧變成了引發熱失控的主因。實驗結果表明,在沒有內短路的情況下,把隔膜完全去掉,電解液抽干依然會發生熱失控。當把正負極粉末混合進行測試,會出現劇烈的放熱峰值。通過進一步的分析發現,充電態正極材料在250℃左右開始出現相變,并釋放活性氧,產生的氧氣與負極發生反應,放熱量急劇增加,因此在新電池體系中,正負極氧化還原反應產生大量熱量是導致熱失控的直接原因,而不僅僅是傳統電池體系中隔膜崩潰導致內短路引發熱失控。
電池系統的熱蔓延與熱管理
如果前面所有方法都失效,就要從整個系統的角度來考慮問題。比如劇烈碰撞或者底盤被銳利物質刺穿,會立即熱失控,這是時有發生的,這種熱失控只能從系統層面解決。
在一系列測試的基礎上,實驗室進行了熱蔓延抑制設計,包括隔熱設計和散熱設計,隔熱設計是利用不同隔熱材料防止模塊熱蔓延,散熱設計是不同液冷流量對熱蔓延進行抑制。在一般的電池系統中,隔熱和散熱單獨就可以解決熱蔓延的過程,但是在新電池體系中,需要把隔熱和散熱兩者結合起來抑制熱蔓延,這就是所謂的防火墻技術。
本文根據2019 中國(青海)鋰產業與動力電池國際高峰論壇上歐陽明高發言速記整理,有刪減,未經本人審閱。