999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于超限學習機的柱塞泵故障診斷

2019-07-25 07:05:48陳浩然
煤礦現代化 2019年5期
關鍵詞:故障診斷故障信號

陳浩然

(中煤平朔集團有限公司露天設備維修中心 ,山西 朔州 036000)

露天煤礦常用的前裝機有復雜的液壓系統,其含有9個泵,而柱塞泵就占5個,且液壓泵是液壓系統中的關鍵部件,其性能的好壞直接影響到前裝機的工作效率,因此對柱塞泵進行故障診斷方法的研究在煤礦應用中具有重要意義。柱塞泵一旦發生故障,輕則振動、噪聲增大,降低工作效率;重則導致液壓系統不能正常工作,甚至會造成嚴重事故[1]。

目前對柱塞泵進行故障診斷常用的方法是通過分類算法來實現[2]。其中一些分類算法,如BP神經網絡和支持向量機都已被應用在柱塞泵的故障診斷與識別中。然而這些方法的共同缺點就是診斷速度慢。而在本文中則采用一種新的分類算法即超限學習機(ELM)來對柱塞泵進行故障診斷與識別。

1 超限學習機(ELM)理論

考慮任意N個不同樣本(Xi,ti)∈Rn×Rm。如果一個含有L個隱層節點的SLFN能夠準確的表示N個樣本,那就存在 βi,αi和 bi使得[3,4]:

式中:ai和bi為隱層節點的學習參數;βi為輸出權重;G(ai,bi,X)為相對于輸入X的第i個隱層節點的輸出。

方程(1)可以簡寫成如下:

其中:

H在網絡中被稱為隱藏層輸出矩陣。

根據ELM理論,所有隱層節點(ai,bi)都是隨機生成的。輸出權值β的解被表示為:

H+是隱藏層輸出矩陣H的Moore-Penrose廣義逆矩陣。ELM算法總結為以下三步:

1)初始化輸入權值 ai與偏置值 bi,i=1,…,L

2)計算隱藏層輸出矩陣H

3)計算輸出權重β:β=H+T

2 實驗研究

2.1 實驗數據選擇

本文研究的柱塞泵是來自露天煤礦常用的勒圖爾勒L1150前裝機,前裝機如圖1所示,柱塞泵如圖2所示。

圖1 勒圖爾勒L1150前裝機

圖2 柱塞泵

對柱塞泵進行故障診斷的關鍵是提取故障特征向量。從柱塞泵采集的信號是由泵內向泵外傳遞的共振信號,因此原始信號為調制信號。所以需要對原始信號進行帶通濾波、消噪以及包絡解調才能得到有用的真實包絡信號,從而很好的提取故障特征向量。

因此本文首先對原始信號進行小波包分解,選出高頻頻帶,并對其用小波包重構算法得到對應得時域信號,再進行閥值去噪,得到了經帶通濾波去噪的高頻時域信號,由于采集的信號是調制信號,所以應對高頻的時域信號進行Hilbert包絡解調處理[5]。因為柱塞泵故障特征頻率在1 kHz以下,所以對包絡信號進行采樣頻率為2 kHz的重采樣,故重采樣后包絡信號頻率為1 kHz。本文選擇的特征向量是重采樣后包絡信號的時域指標包括方差、標準差、峰值指標、脈沖指標、裕度指標和峭度指標。

柱塞泵常見的故障類型包括:滑靴磨損、松靴和配流盤磨損等。本文將不同的故障對應的特征向量作為分類算法超限學習機(ELM)、支持向量機(SVM)和BP神經網絡的輸入值,比較故障類型的測試準確度,選用的柱塞泵數據集如表1所示:

表1 柱塞泵故障數據集

2.2 實驗結果分析

在本文中,所有的估算都是在Matlab R2014a平臺下進行的,并且應用超限學習機(ELM)和BP神經網絡分類器的結果是通過仿真20次的平均值。柱塞泵故障診斷結果對比如表2所示:

由表2可以得出,基于ELM、BP神經網絡和SVM的測試精度都非常高且都超過92%,而基于ELM的測試準確度達到99%,且其診斷時間最短。因此ELM在對柱塞泵的故障診斷方法是可行的,可以看出該方法故障診斷準確度高且診斷速度快。

表2 在數據集中對超限學習機(ELM)、BP神經網絡和支持向量機(SVM)的性能比較

3 結論

應用超限學習機(ELM)分類算法對前裝機的柱塞泵常見故障進行檢測,能夠很好地實現對柱塞泵故障的診斷,得出結論:超限學習機(ELM)能夠對柱塞泵進行有效的故障診斷,并且該方法的故障診斷準確度高診斷時間短,可以推廣到柱塞泵的其它故障診斷中,具有較為廣闊的應用前景。

猜你喜歡
故障診斷故障信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
故障一點通
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
奔馳R320車ABS、ESP故障燈異常點亮
基于LabVIEW的力加載信號采集與PID控制
因果圖定性分析法及其在故障診斷中的應用
故障一點通
江淮車故障3例
基于LCD和排列熵的滾動軸承故障診斷
主站蜘蛛池模板: 无码视频国产精品一区二区 | 91免费国产高清观看| 蜜芽国产尤物av尤物在线看| 亚洲91精品视频| 亚洲综合一区国产精品| 亚洲中文字幕在线一区播放| 日韩欧美色综合| 久久亚洲国产最新网站| 热思思久久免费视频| 午夜丁香婷婷| 久久精品国产精品一区二区| 国产爽爽视频| 999国产精品| 五月天久久综合国产一区二区| 国产不卡网| 亚洲综合色婷婷中文字幕| 四虎国产精品永久一区| 国产jizzjizz视频| 国产亚洲视频免费播放| 日韩高清中文字幕| 久久五月天综合| 久久国产精品国产自线拍| 综合久久久久久久综合网| a级毛片在线免费观看| 国产成人精品在线| 五月婷婷丁香综合| 精品视频一区二区观看| 国产日韩av在线播放| 蜜桃视频一区二区三区| 国产精品妖精视频| 中文字幕亚洲电影| 国产成人三级在线观看视频| 婷婷色在线视频| 最新国产午夜精品视频成人| 色欲色欲久久综合网| 国产情侣一区二区三区| 日韩 欧美 国产 精品 综合| 午夜福利在线观看入口| 二级特黄绝大片免费视频大片| 欧美在线观看不卡| 日本国产精品| 久久99精品久久久久纯品| 欧美日韩国产在线人| 日韩欧美网址| 日韩无码白| 99re这里只有国产中文精品国产精品 | 亚洲国产中文精品va在线播放 | 亚洲国产理论片在线播放| 日韩福利视频导航| 国产精品女主播| 波多野结衣爽到高潮漏水大喷| 美女潮喷出白浆在线观看视频| 大香伊人久久| 中文字幕亚洲综久久2021| 国产成人综合网| 午夜久久影院| 国产在线观看第二页| 精品无码一区二区三区在线视频| 婷婷六月综合| 国产美女精品在线| 日韩在线2020专区| 国产精品无码久久久久AV| 国产在线观看一区二区三区| 青青草国产一区二区三区| 精品自拍视频在线观看| 久久人妻xunleige无码| 二级特黄绝大片免费视频大片 | 久操线在视频在线观看| 国产精品亚洲专区一区| 欧美h在线观看| 欧美精品伊人久久| 亚洲综合色在线| 99无码中文字幕视频| 欧美精品啪啪| 国产黄网永久免费| 亚洲成人网在线观看| 国产无人区一区二区三区| 久久亚洲中文字幕精品一区| 国产真实乱子伦视频播放| 亚洲天堂网视频| 天天做天天爱天天爽综合区| 久久这里只有精品8|