邵宇超,龍於洋,周 穎,金之源,周 丹,沈東升
酸堿預處理對西瓜皮微波水熱炭化產物特性的影響
邵宇超,龍於洋※,周 穎,金之源,周 丹,沈東升
(浙江工商大學環境科學與工程學院,浙江省固體廢物處理與資源化重點實驗室,杭州 310018)
為了探究預處理下西瓜皮微波水熱(microwave hydrothermal, MHT)溫度對炭化產物資源化的影響,該研究對其干燥處理、酸處理和堿處理后進行不同MHT溫度試驗,分析炭化產物的特性及其可能的應用。結果表明,在MHT溫度為130~190 ℃之間,堿處理在MHT溫度為170 ℃所得水熱炭的產率最高達86.01%,明顯高于干燥處理和酸處理對應產率(<0.05)。然而,其熱值小于17 MJ/kg,不具有作為燃料的潛力。干燥處理和酸處理不僅能獲得符合標煤的水熱炭,而且能夠得到高附加值的5-羥甲基糠醛(5-hydroxymethylfurfural, HMF)和糠醛(furfural, FF)。對比干燥處理產物情況,酸處理能夠在MHT溫度為130 ℃時得到3.3%的HMF產率以及在150 ℃下得到相同產率的FF。經濟性分析表明在MHT溫度為130 ℃下酸處理1 t新鮮西瓜皮可得炭化產物的價值約為6 607元,且工藝能耗僅為66元/t。該研究結果可為預處理下西瓜皮資源化轉化以及MHT工藝的實際應用提供參考。
生物炭;炭化;溫度;微波水熱;西瓜皮; 5-羥甲基糠醛
生物質的主要成分是大分子有機物(纖維素、半纖維素和木質素)、可提取的小分子有機物(淀粉、低聚糖、蛋白質、油)和各種無機鹽[1]。生物質廢物是生產生物油的原料,其中含有一些高價值物質,如5-羥甲基糠醛(5-hydroxymethylfurural, HMF)和糠醛(furfural, FF)[2]。因此,生物質廢棄物具有極大的資源化潛力。隨著石化資源的枯竭,對生物質廢物的研究以及工藝的開發日益受到各方關注[3-5]。然而,中國生物質廢物利用率極低,以典型的生物質西瓜為例,其瓜皮年產量約為7 000萬t[6],通常與其他廢棄物混合填埋或焚燒處理,不僅容易引發新的二次污染[7],而且浪費資源。因此,利用綠色先進技術高效地將生物質廢物轉化為環境友好的替代資源,對緩解未來能源緊張形勢意義重大。
水熱技術是將生物質廢物轉化為能源物質的有效途徑之一[8-9]。該技術處理生物質廢物所得的固相產物,稱之為水熱炭,是一種類似于生物炭的物質,例如高碳含量[10],高熱值[11],多孔結構,豐富的表面含氧官能團(羥基,羰基和羧基),對離子、極性和非極性分子具有強親和力[12-13],以及具有對化學和生物分解的頑抗性[14]。可作為燃料[15]、吸附劑[6]、土壤修復劑[16]等工程用途。與其他熱化學轉化技術(如氣化和熱解)相比,水熱技術可在溫和的條件(160~270 ℃)下運行[17]。近期,微波水熱(microwave hydrothermal, MHT)這種改進的水熱方式因其更節能、環保、處理效率高等特點而備受關注[18-20]。之前的試驗表明,MHT促使綠植廢物在純水環境下轉化為水熱炭,且使其具有作為燃料的潛力[21]。另外,以西瓜皮作為原料在酸性環境下,MHT條件對其轉化為HMF的效果收益巨大[22], 但是,不同酸堿預處理條件下MHT產物的產率尚不明確。因此,本研究考慮生物質廢物在不同酸堿條件下進行不同MHT處理后所得水熱炭、HMF等炭化產物的價值及其可能的應用,以期獲得最大的經濟效益。
基于此,本研究以西瓜皮為典型的生物質廢物,探究MHT對其干燥處理、酸處理和堿處理后的炭化產物特性,并對該工藝進行經濟分析,以期為實際工業應用提供參考。
新鮮西瓜皮(含水率為96.08%±0.08%)取自浙江杭州某水果店,用上海博迅實業的烘箱(GZX-9076 MBE)于105 ℃干燥至恒質量后用德國Retsch SM 2000切割式研磨儀破碎至直徑小于1 mm的粉末。本試驗對新鮮西瓜皮進行如下預處理[23]:1)干燥處理,直接取上述干燥后的粉末樣品,待用;2)酸處理,樣品與1)相同,用1%稀鹽酸代替去離子水,按液固比12∶1 L/g混合后進入反應器;3)堿處理,將樣品1)與2%體積分數的NaOH溶液按液固比10∶1 L/g混合放入Duran瓶混合,并在60 ℃下放置48 h,冷卻后,通過布式漏斗過濾,并使用蒸餾水沖洗至pH值為中性,于105 ℃烘干,待用。
MHT條件的測試在2.45 GHz的微波消解儀(MarsXpress,CEM,USA)中進行,其配有四氟乙烯消解管。樣品在放入消解管之前用四分法進行操作,直至混合均勻。每根消解管中加入0.5 g樣品和6 mL 1%稀酸或去離子水。
根據先前的MHT條件試驗結果[21-22],本研究設置微波水熱程序如下:功率為1 600 W,加熱速率為15 ℃/min,停留時間為5 min,液固比為12∶1 L/g,停留溫度范圍為130~190 ℃。反應后,將消解管放入冰水中冷卻,而后用布氏漏斗過濾,分別得到固相產物和液相產物。固相產物(即水熱炭),放入105 ℃烘箱中烘干至恒量。將收集到的液相產物轉移到容量瓶中,用去離子水定容。每個MHT條件試驗重復3次,其中5~6根消解管為1個平行。
1)水熱炭指標測定
測定MHT前后樣品的質量,根據公式(1)計算出水熱炭產率。使用上海精密XRY-1A型氧彈熱量儀測定水熱炭的高位熱值(high heat value, HHV)。水熱炭表面上的化學官能團通過德國Bruker公司的傅立葉變換紅外光譜(VERTEX 70)在400~4 000 cm-1的波長范圍內進行鑒定,掃描64次,分辨率為4 cm-1。使用瑞士Phenom公司的掃描電子顯微鏡(SEM,Phenom G2 Pro)研究水熱炭表面形態。將放大倍率定在3 000,即可觀察水熱炭形態結構的細節。
2)液相產物指標測定
使用日本島津TOC分析儀(TOC-LCPH)測定液相產物總有機碳。通過美國METTLER TOLEDO 公司的pH計(Series Meters-S20)在冷卻步驟之后立即測量液體產物的pH值。通過高效液相色譜(美國 Waters公司)和Alliance HPLC系統與2489 UV-Vis檢測器偶聯,在波長為285 nm下分析液相產物中HMF和FF的含量[24]。使用的柱是XBridge TM C18分析柱(4.6×250mm),柱溫為30 ℃。流動相是水和甲醇(色譜級),其體積比例為9∶1,流速為1.0 mL/min。使用公式(2)計算HMF和FF產率。所有試驗和指標均測定3次。
=M/M′100% (1)
= 0.1/(2)
式中是水熱炭產率,%;M是水熱炭干燥后的質量,g;M是反應前原料的質量(干基),g;是HMF或FF產率,%;是通過HPLC測定的液體產物中HMF或FF的質量濃度,mg/L;是液體產物的體積,L;是反應前原料的質量(干基),g。
本試驗采用SPSS 22.0軟件對數據進行單因素方差分析,假定方差齊性選擇LSD,顯著性水平為0.05。
2.1.1 MHT對水熱炭產率的影響
西瓜皮分別經過干燥處理、酸處理和堿處理3種方式,然后在不同微波水熱溫度的條件下產生水熱炭。計算所得的水熱炭產率如圖1所示。在130~190 ℃的微波水熱溫度區間,堿處理后水熱炭的產率在61.60%± 1.51%~86.01%±0.73%,明顯高于同樣溫度下西瓜皮干燥處理和酸處理后的水熱炭產率(<0.05)。原因是堿處理對生物質廢物中的成分如木質素、半纖維素等的增溶作用導致其質量損失嚴重[25]。最終所得的堿處理后的樣品在MHT條件下的脫羧和水解反應不如其他2種處理方式。干燥處理的西瓜皮在MHT處理下,其水熱炭的產率在25.60%±0.52%~37.51%±0.92%,而且隨著MHT停留溫度的上升而增加。可能原因是隨著MHT停留溫度的升高,水溶液中復雜的大分子如碳水化合物、蛋白質、脂質分解后,又發生聚合反應,生成固態球體后沉淀或吸附在水熱炭表面[26]。而酸處理的西瓜皮的水熱炭產率隨著MHT溫度的升高而降低,從25.96%±0.12%下降到19.17%±0.19%。其原因是酸處理的西瓜皮在MHT條件下,隨著反應溫度的升高,纖維素和半纖維素的不斷水解,致使水熱炭產率的降低。Dai等通過微波水熱竹屑也得到了類似的結果[27]。

注:不同字母表示數據存在顯著性差異,小寫字母表示相同處理比較,大寫字母表示相同溫度比較,顯著性水平為0.05,下同。
2.1.2 MHT對水熱炭熱值的影響
堿處理下水熱炭的產率是最高的,但其熱值與其他兩種處理方式相比明顯偏低(<0.05)。如圖2所示,堿處理下水熱炭的熱值在(15.81±0.21)~(16.84±0.43)MJ/kg,其熱值隨著MHT溫度變化不明顯,其中最大值是在MHT溫度為190 ℃。而通過干燥處理和酸處理得到的水熱炭的熱值是隨著MHT溫度升高而增加,分別在(16.75±0.16)~(20.92±1.19)MJ/kg和(18.86± 0.16)~(23.79±0.14)MJ/kg。干燥處理和酸處理得到的水熱炭熱值較高的原因可能是在MHT過程中纖維素和半纖維素隨著MHT溫度的升高而部分降解,留下高木質素含量的水熱炭[28]。而木質素的熱值在23.3~26.6 MJ/kg之間,高于纖維素和半纖維素的熱值(17~18 MJ/kg)[29]。
與其他材料的水熱炭熱值進行對比,如玉米秸稈(17.6~18.5 MJ/kg),甘蔗渣(17.3~19.4 MJ/kg),軟木木材(18.6~21.1 MJ/kg),城市固體垃圾(13.1~19.9 MJ/kg)和廢物衍生燃料(15.5~19.9 MJ/kg)[30],本研究干燥處理和酸處理下的水熱炭熱值具有明顯的優勢。另外,標煤的熱值在17~28 MJ/kg之間,其市場價格約為700元/t。因此,干燥處理和酸處理的水熱炭類似于標煤,具有作為燃料的潛力。

圖2 不同預處理方式下微波水熱溫度對水熱炭熱值的影響
2.1.3 水熱炭結構和表面表征
不同MHT溫度下原料和水熱炭的傅立葉紅外光譜如圖3所示。圖中,O-H伸縮振動位于3 200~3 600 cm-1[31]。從圖3a和圖3b中可以看到,該峰強度隨著MHT溫度的升高減弱明顯,說明西瓜皮在干燥處理和酸處理情況下發生劇烈水解。而圖3c位于3 200~3 600 cm-1的O-H伸縮振動變化不明顯,說明堿處理的西瓜皮對MHT溫度變化不敏感,水解效果較差。因此,這可能是導致堿處理下水熱炭的熱值變化不明顯的原因。圖3a和3b中位于1 000~1 200 cm-1的C-O伸縮振動隨著MHT溫度的升高而減弱,說明西瓜皮在干燥處理和酸處理情況下發生脫羧反應,而且溫度越高反應越劇烈[32]。C-H伸縮振動位于2 850~3 000 cm-1和1 380~1 460 cm-1,表明3種處理情況下西瓜皮水熱炭含有烷烴和脂肪族官能團[33];C=O伸縮振動位于1 690~1 720 cm-1,表明水熱炭中存在酮類和醛類等官能團[34]。
圖4顯示了原料和不同MHT條件下水熱炭的表觀特性。從圖4a中可以看出,在MHT溫度為130 ℃時,干燥處理的西瓜皮表面出現少量的微球,且大小不一。這些微球的形成可能是在MHT條件下,由于復雜的大分子(例如碳水化合物,蛋白質和脂質)分解成單體,然后發生沉淀、聚合和生長[26]。隨著MHT溫度的升高,干燥處理的西瓜皮的大塊狀結構斷裂成小塊,而且表面上的微球數量也越來越多。結合水熱炭的熱值考慮,其熱值的增加可能與這些微球的出現有關。然而,這些微球的物理化學性質仍然需要進一步分析。
酸處理所得的水熱炭在MHT溫度為130 ℃時,其表面上出現了數量更多,直徑更大的微球顆粒,如圖4b所示。研究表明,HMF可以沉積在多孔結構的水熱炭中,且其熱值高達22.06 MJ/kg[35-37]。對比不同處理方式的液相產物中HMF含量,如表1所示,微球顆粒的形成可能與HMF有關。這也是酸處理條件下所得水熱炭熱值較高的原因。

圖3 原料和水熱炭在不同微波水熱溫度下的FT-IR光譜
堿處理所得的水熱炭表面上幾乎沒有出現微球顆粒,如圖4c所示。與堿處理原料表觀特性相比,隨著MHT溫度的升高,水熱炭的表面出現多層次、多孔結構。因此,該處理條件下的水熱炭通過一定條件改性后,可能具有作為吸附材料的潛力[38]。
本研究在不同MHT條件下對液相產物pH值、總有機碳(total organic carbon, TOC)浸出率、HMF產量和FF產量進行分析,如表1所示。干燥處理和堿處理下pH值分別從4.30±0.02降到3.76±0.01,7.90±0.06降到5.34±0.24。其原因可能是隨著MHT溫度的升高,水的電離度增強以及水解反應、脫羧反應加劇,pH值降低[39]。而酸處理方式因其pH值低,所以pH值隨著MHT溫度的變化不明顯。干燥處理和酸處理下TOC浸出率隨著MHT溫度的升高,分別從27.35%±0.02%降低到14.96%± 0.59%,從28.30%±0.66%降低到16.23%± 0.36%。其原因可能是隨著MHT溫度的升高,脫羧反應加劇,更多的有機物轉化成CO2[40]。而堿處理下TOC浸出率較低,最高僅為5.41%±0.42%。說明堿處理后的西瓜皮在MHT條件下反應效果不理想。

圖4 不同處理下水熱炭以及原料掃描電鏡圖
HMF和FF是由西瓜皮中的纖維素、半纖維素在MHT條件下水解成單糖,繼而單糖脫水形成的[41]。表1顯示干燥處理、酸處理和堿處理所得液相產物中HMF、FF的含量隨著MHT溫度變化結果(表示1 g原料所能浸出的HMF、FF含量)。堿處理這種方式不適合生產HMF、FF。而干燥處理下HMF、FF結果與酸處理情況下有明顯差異。在MHT溫度范圍為130~190 ℃內,干燥處理所得HMF、FF產量總體上隨MHT溫度增加而增加。而酸處理下HMF含量是在MHT溫度為130 ℃時最大,其值為(333.73±15.18)mg/L,且隨著MHT溫度的升高而降低。造成這個現象的原因是酸對HMF在水解作用隨著溫度的升高而增強,導致生成HMF的下游產物乙酰丙酸[40]。另外,酸處理下FF的含量在MHT溫度為150 ℃是最高的,其值為(332.99±17.85)mg/L。可能原因是半纖維素在150 ℃時大量水解成FF的前體物質五碳糖,在酸性條件下又脫水形成FF[42]。隨著MHT溫度的繼續上升,FF的含量在190 ℃降低到(36.97±3.13)mg/L,可能原因也是稀鹽酸對其再水解作用[43]。因此,干燥處理方式適合在MHT溫度為170~190 ℃時生產HMF、FF,而酸處理方式生產HMF、FF的適宜MHT溫度為130~150℃。

表1 不同處理方式和溫度對西瓜皮微波水熱后液相產物的影響
注:ND表示未檢測到;TOC(%)是指液相產物中有機物的質量與原料質量之比。
Note: ND means not detected; TOC (%) means the ratio of the mass of organic matter in the liquid product to the mass of the raw material.
根據式(2),將HMF和FF含量折算成產率,分析其經濟價值。目前,中國工業HMF價格約為500萬元/t,而FF價格約為8 000元/t,相差近1 000倍[44]。因此,從HMF、FF以及水熱炭的價值角度分析,廢棄生物質在MHT條件下向HMF轉化最有利。本研究以HMF為目標物,通過與其他類似工藝進行對比,分析本工藝的經濟性,如表2所示。對比其他工藝能耗,本研究的工藝能耗較低,僅為1.2~1.5 MJ。更重要的是,本工藝所得HMF產率在酸處理條件下,MHT溫度為130 ℃時最高,達3.3%,對應能耗僅為1.2 MJ。這些反映了MHT工藝相對傳統水熱工藝的優越性。另外,本研究的液固比為12∶1 L/g,相當于西瓜皮的含水率為92%。而新鮮西瓜皮的含水率高達96%,實際應用中無需添加額外的水資源(酸處理情況下僅需添加少量的濃酸)。因此,與其他低含水率的生物質廢物作為生產HMF的原料相比,該原料具有節約淡水資源的潛力。
考慮到實際工藝生產效益以及3種處理方式的情況,本研究發現在酸處理情況下可以使炭化產物得以最有效利用。根據主要炭化產物HMF(3.3%)以及水熱炭(26%)的價值分析,處理1 t干燥的西瓜皮可以得到33 kg HMF以及260 kg具有燃料潛力的水熱炭,其總價值為165 182元(折算成處理1 t新鮮西瓜皮所得的價值約為6 607元)。將該條件下的能耗折算成電價成本,由于中國平均電價為0.5元/(kW·h)[48],本研究最終處理1 t新鮮西瓜皮的能耗約為66元。另外,實際工業生產應用中還需考慮藥劑的投入成本,HMF提取成本等方面。當前鹽酸的價格約為1 400元/t[49],因此,本工藝對應處理1 t新鮮西瓜皮所需藥劑成本約為7元。HMF提取工藝主要依靠有機溶劑進行萃取,提取后的純度高于70%。而且有研究報道添加適量的鹽不僅能有效提高HMF萃取率,還能使溶劑的回收率達90%,大幅降低提取成本[50]。
將生物質廢棄物作為飼料和發電用途,其經濟價值分別為500~1 400元/t,400~1 000元/t;傳統的填埋處理甚至需要花費約2 700元/t[51]。因此,本工藝對生物質廢棄物處理及利用方式的經濟價值較高,有實際應用前景。另外,本工藝能夠有效減量化廢棄物,節約水資源,能耗較小,符合當今“無廢城市”的新發展理念。

表2 生物質轉化為5-羥甲基糠醛的類似體系
注:假設反映開始前的溫度均為25 ℃,這些工藝能一次性處理100 g生物質廢物(干基);水熱條件依次為加熱功率,加熱速率,停留溫度以及停留時間;根據焦耳定律簡單計算處理1 kg原料的工藝能耗,計算方式:=6′10-5,其中為所需能量(MJ),為功率(W),為反應時間(min),6′10-5為單位轉化系數。
Note: It is assumed that the temperature before reaction is 25 ℃ and these processes can deal with 100 g of biomass waste (dry basis) at one time; the hydrothermal conditions are heating power, heating rate, holding temperature and holding time; simple calculation of process energy consumption for processing 1 kg raw material according to Joule's law, and the equation is:= 6×10-5, whereis the required energy (MJ),is the power (W),is the reaction time (min), and 6×10-5is a conversion factor.
干燥酸堿預處理下西瓜皮在溫度130~190 ℃進行微波水熱,采用產率、熱值分析、紅外光譜、掃描電鏡、高效液相色譜等手段分析炭化產物特性,得出如下結論:
1)從固相產物角度分析,微波水熱(microwave hydrothermal, MHT)條件下堿處理西瓜皮所得水熱炭的產率在MHT溫度為170 ℃時最高達86.01%,明顯高于干燥和酸處理情況(<0.05)。然而,其熱值小于17 MJ/kg,不具有作為燃料的潛力。干燥處理和酸處理所得水熱炭最高熱值分別為20.92 MJ/kg和23.79 MJ/kg,因其接近標煤熱值,具有作為燃料的潛力。
2)從液相產物角度分析,干燥處理、酸處理情況下能夠得到高附加值的5-羥甲基糠醛(5-hydroxymethyl-furural, HMF)和糠醛(furfural, FF)。對比干燥處理產物情況,酸處理方式能夠在MHT溫度為130 ℃時得到產率為3.3%的HMF,高于其他類似工藝。
3)從經濟性角度分析,MHT工藝在酸性條件下處理1 t新鮮西瓜皮可得炭化產物的價值約為6 607元,且該工藝能耗僅為66元/t(以新鮮西瓜皮計)。這體現了酸處理方式對西瓜皮資源化轉化的優越性。
[1] Demirbas A. Biorefineries: Current activities and future developments[J]. Energy Conversion and Management, 2009, 50(11): 2782-2801.
[2] Bozell Joseph J, Petersen Gene R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’ s “Top 10” revisited[J]. Green Chemistry, 2010, 12(4): 539-554.
[3] 馬常耕,蘇曉華. 生物質能源概述[J]. 世界林業研究, 2005, 18(6):32-38.Ma Changgeng, Su Xiaohua. The review on issues of biomass quality energy[J]. World Forestry Research, 2005, 18(6): 32-38. (in Chinese with English abstract)
[4] 周中仁,吳文良. 生物質能研究現狀及展望[J]. 農業工程學報,2005,21(12):12-15.Zhou Zhongren, Wu Wenliang. Status and prospects of biomass energy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(12): 12-15. (in Chinese with English abstract)
[5] 陳益華,李志紅,沈彤. 我國生物質能利用的現狀及發展對策[J]. 農機化研究,2006(1):25-27.Chen Yihua, Li Zhihong, Shen Tong. Current status and development countermeasures of biomass energy utilization in China[J]. Journal of Agricultural Mechanization Research 2006(1): 25-27. (in Chinese with English abstract)
[6] Chen X J, Lin Q M, He R D, et al. Hydrochar production from watermelon peel by hydrothermal carbonization[J]. Bioresource Technology, 2017, 241: 236-243.
[7] Bhatnagar A, Sillanpaa M, Witek-Krowiak A. Agricultural waste peels as versatile biomass for water purification: A review[J]. Chemical Engineering Journal, 2015, 270: 244-271.
[8] Lin Y S, Ma X Q, Peng X W, et al. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge[J]. Applied Thermal Engineering, 2015, 91: 574-582.
[9] Xu D H, Lin G K, Guo S W, et al. Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review[J]. Renewable & Sustainable Energy Reviews, 2018, 97: 103-118.
[10] Mumme J, Eckervogt L, Pielert J, et al. Hydrothermal carbonization of anaerobically digested maize silage[J]. Bioresource Technology, 2011, 102(19): 9255-9260.
[11] Saidatul S J, Jonathan R H.The effect of the hydrothermal carbonization process on palm oil empty fruit bunch[J]. Biomass & Bioenergy, 2012, 47(6): 82-90.
[12] Sevilla M, Fuertes Antonio B. Fuertes chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry - A European Journal, 2009, 15(16): 4195-4203.
[13] Xue Y W, Gao B, Yao Y, et al. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chemical Engineering Journal, 2012, 200 (34): 673-680.
[14] Naisse C, Alexis M, Plante A, et al. Can biochar and hydrochar stability be assessed with chemical methods?[J]. Organic Geochemistry, 2013, 60: 40-44.
[15] Basso D, Patuzzi F, Castello D, et al. Agro-industrial waste to solid biofuel through hydrothermal carbonization[J]. Waste management, 2016, 47: 114-121.
[16] Kambo H S, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 359-378.
[17] Erdogan E, Atila B, Mumme J, et al. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor[J]. Bioresource Technology, 2015, 196: 35-42.
[18] Afolabi O O D, Sohail M, Thomas C P L. Microwave hydrothermal carbonization of human biowastes[J]. Waste & Biomass Valorization, 2015, 6: 147-157.
[19] Elaigwu S E, Greenway G M. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 1-8.
[20] Guiotoku M, Rambo C R, Hansel F A, et al. Microwave-assisted hydrothermal carbonization of lignocellulosic materials[J]. Materials Letters, 2009, 63: 2707-2709.
[21] Shao Y C, Long Y Y, Wang H Y, et al. Hydrochar derived from green waste by microwave hydrothermal carbonization [J]. Renewable Energy, 2018, 135: 1327-1334.
[22] Shao Y C, Long Y Y, Zhou Y, et al. 5-Hydroxymethylfurfuralproduction from watermelon peel by microwave hydrothermal liquefaction[J]. Energy, 2019, 174: 198-205.
[23] 李云. 秸稈預處理水解液對酶解的影響及資源化利用研究[D]. 北京:中國科學院研究生院(過程工程研究所), 2016.
Li Yun. Effect of Rice Straw Prehydrolysate on Enzymatic Cellulose Hydrolysis and Its Resource Utilization[D]. Beijing: The University of Chinese Academy of Sciences (Institute of Process Engineering), 2016. (in Chinese with English abstract)
[24] 馮廣榮,魯厚芳,梁斌,等. 高效液相色譜法同時測定油菜秸稈水解液中的糠醛和5-羥甲基糠醛[J]. 可再生能源, 2017,35(7):949-956.Feng Guangrong, Lu Houfang, Liang bin, et al. Simultaneous determination of furfural and 5-hydroxymethylfurfural in the hydrolysate of rape straw by high performance liquid chromatography[J]. Renewable Energy Resources, 2017, 35(7): 949-956. (in Chinese with English abstract)
[25] Zhu S D, Wu Y X, Yu Z N, et al. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis[J]. Process Biochemistry, 2005, 40: 3082-3086.
[26] Kannan S, Gariepy Y, Raghavan G S V. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste[J]. Waste management, 2017, 65: 159-168.
[27] Dai L L, He C, Wang Y P, et al. Hydrothermal pretreatment of bamboo sawdust using microwave irradiation[J]. Bioresource Technology, 2018, 247: 234-241.
[28] Liu Z G, Balasubramanian R. Hydrothermal carbonization of waste biomass for energy generation[J]. Procedia Environmental Sciences, 2012, 16: 159-166.
[29] Kambo H S, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renewable & Sustainable Energy Reviews, 2015, 45: 359-378.
[30] Afolabi O O D, Sohail M, Thomas C P L. Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste[J]. Energy, 2017, 134: 74-89.
[31] Nizamuddin S, Mubarak N M, Tiripathi M, et al. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell[J]. Fuel, 2016, 163: 88-97.
[32] Zhu G K, Yang L, Gao Y, et al. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA[J]. Fuel, 2019, 244: 479-491.
[33] Ma J, Chen M G, Yang T X, et al. Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust[J]. Energy, 2019, 173: 732-739.
[34] Zhang M, Yang H, Liu Y N, et al. First identification of primary nanoparticles in the aggregation of HMF[J]. Nanoscale Research Letters, 2012, 7(1): 38.
[35] Becker R, Dorgerloh U, Helmis M, et al. Hydrothermally carbonized plant materials: Patterns of volatile organic compounds detected by gas chromatography[J]. Bioresource Technology, 2013, 130: 621-628.
[36] Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4: 160-177.
[37] Verevkin S P, Emel’yanenko V N, Stepurko E N, et al. Biomass-derived platform chemicals: Thermodynamic studies on the conversion of 5-hydroxymethylfurfural into bulk intermediates[J]. Industrial & Engineering Chemistry Research, 2009, 48: 10087-10093.
[38] Zhang Z K, Zhu Z Y, Shen B X, et al. Insights into biochar and hydrochar production and applications: A review[J]. Energy, 2019, 171: 581-598.
[39] Lin Y S, Ma X Q, Peng X W, et al. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge[J]. Applied Thermal Engineering, 2015, 91: 574-582.
[40] Afolabi O O D, Sohail M, Thomas C P L. Microwave hydrothermal carbonization of human biowastes[J]. Waste and Biomass Valorization, 2015, 6(2): 147-157.
[41] Yu I K M, Tsang D C W. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms[J]. Bioresource Technology. 2017, 238: 716-732.
[42] Vinueza N R, Kim E S, Gallardo V A, et al. Tandem mass spectrometric characterization of the conversion of xylose to furfural[J]. Biomass & Bioenergy, 2015, 74: 1-5.
[43] Danon B, van der Aa L, de Jong W. Furfural degradation in a dilute acidic and saline solution in the presence of glucose[J]. Carbohydrate Research, 2013, 375: 145-152.
[44] OLBASE [EB/OL]. [2019-5-12]. http://baike.molbase.cn/ cidian/552/.
[45] Iryani D A, Kumagai S, Nonaka M, et al. Production of 5-hydroxymethyl furfural from sugarcane bagasse under hot compressed water[J]. Procedia Earth and Planetary Science, 2013, 6: 441-447.
[46] Cai C M, Zhang T, Kumar R, et al. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass[J]. Green Chemistry, 2013, 15(11): 3140-3145.
[47] Nakason K, Panyapinyopol B, Kanokkantapong V, et al. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction[J]. Journal of the Energy Institute, 2018, 91(5): 786-796.
[48] GlobalPetrolPrices [EB/OL]. [2019-5-12]. https://www.glo-bal-petrol-prices.com/electricity_prices/.
[49] Alibaba [EB/OL]. [2019-5-12]. https://www.alibaba.com/ show-room/hydrochloric-acid-price. html.
[50] Tan L F, Sivoththaman S, Tan Z C. Solvent extraction of 5-HMF from simulated hydrothermal conversion product[J].Sustainable Environmental Research, 2014, 24: 149-157.
[51] Tuck C O, Perez E, Horvath I T, et al. Valorization of biomass: Deriving more value from waste[J]. Science, 2012, 337(6095): 695-699.
Effect of acid and alkali pretreatment on product characteristics of watermelon peel microwave hydrothermal carbonization
Shao Yuchao, Long Yuyang※, Zhou Ying, Jin Zhiyuan, Zhou Dan, Shen Dongsheng
(,,310018,)
Watermelon peelis a typical biomass waste, which is stacking with a speed of 70 million tons per year in China. While at the same time, watermelon peel is mainly disposed by landfilling or incinerating with other waste, leading to secondary pollution and a squandering of resources. Therefore, using advanced green technology, biomass wastes represented by watermelon peel can be effectively transformed into environmentally friendly alternative resources. In this study, watermelon peel was selected as typical biomass waste to explore the resource potential of microwave hydrothermal (MHT) treatment under drying, acid and alkali treating process. This work simultaneously considered the solid phase products and liquid phase products after MHT treatment. Results showed that when the MHT temperatures were between 130 ℃ and 190 ℃, the yield of hydrochar could reach 86.01% after alkali treatment (170 ℃), significantly higher than that in drying treatment and acid treatment. However, its calorific value was lower than 17 MJ/kg, which means it had no potential to be a fuel. Meanwhile, drying and acid treatment could not only obtain hydrochar conforming to standard coal whose high heating value is in range of 17-28 MJ/kg, but more importantly, high value-added 5-hydroxymethylfurfural (HMF) and furfural (FF) could be obtained in liquid phase products. The yields of HMF and FF in these treatments were significantly affected by MHT temperature. The results of Fourier Transform infrared spectroscopy indicated that the watermelon peel was hydrolyzed and decarboxylated under MHT conditions after drying and acid treatment, and became more intense with increasing temperature. The decrease of pH and the leaching efficiency of total organic carbon with the increase of MHT temperature can also reflect the intensification of hydrolysis reaction and decarboxylation reaction. In addition, the SEM image showed that a large number and size of microspheres appeared on the surface of the hydrochar obtained by the drying treatment and the acid treatment, which may affect the performance of the hydrochar and the yield of HMF. Moreover, the acid treatment can obtain a higher HMF yield of 3.3 % under MHT temperature of 130 ℃ at a low energy consumption as compared with the drying treatment. This means that 33 kg of HMF can be obtained by treating one ton of dried watermelon peel under this condition. According to the market price of HMF, the value is 165 182 yuan which means that the economic value of processing a ton of fresh watermelon peel is 6 607 yuan. In addition, the hydrochar yield of 25.96% obtained by acid treatment under corresponding MHT temperature also showed its economic value due to the market price of standard coal (700 yuan per ton). In addition, the simple economic calculation shows that the energy consumption of the process for treating 1 ton of fresh watermelon peel is only 66 yuan. The superiority of acid treatment on the transformation of watermelon peel resources was explained. Therefore, from the perspective of comprehensive economic output and input, the process has great potential for industrial application.
biochar; carbonization; temperature; microwave hydrothermal; watermelon peel; 5-hydroxymethylfurfural
10.11975/j.issn.1002-6819.2019.10.027
TK6
A
1002-6819(2019)-10-0214-07
2018-12-29
2019-04-21
國家自然科學基金項目(51778579)
邵宇超,主要從事生物質轉化與利用研究。Email:l8368090536@163.com
龍於洋,教授,主要從事固體廢物處理與資源化研究。 Email:longyy@zjgsu.edu.cn
邵宇超,龍於洋,周穎,金之源,周丹,沈東升.酸堿預處理對西瓜皮微波水熱炭化產物特性的影響[J]. 農業工程學報,2019,35(10):214-220. doi:10.11975/j.issn.1002-6819.2019.10.027 http://www.tcsae.org
Shao Yuchao, Long Yuyang, Zhou Ying, Jin Zhiyuan, Zhou Dan, Shen Dongsheng.Effect of acid and alkali pretreatment on product characteristics of watermelon peel microwave hydrothermal carbonization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 214-220. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.027 http://www.tcsae.org