強 虹,楊祎楠,李 娜,宋亞楠,李玉友
金霉素濃度對雞糞中溫厭氧消化特性及抗生素降解的影響
強 虹1,楊祎楠1,李 娜1,宋亞楠1,李玉友2
(1. 西北農林科技大學資源環境學院,楊凌 712100;2.日本東北大學工學部,仙臺 980-8579)
針對抗生素污染對雞糞厭氧消化影響不明的問題,該文利用批次試驗探究了不同質量濃度金霉素(chlortetracycline,CTC)(4~200 mg/L)對雞糞中溫厭氧消化過程、產氣效率及抗生素降解的影響。結果表明,低濃度的CTC(質量濃度≤20 mg/L)促進了雞糞中溫厭氧消化作用,其對累積水解、酸化、乙酸化及甲烷化的最大促進率較對照(質量濃度0 mg/L)分別提高了12.69%,11.55%,11.31%和9.82%,厭氧消化有效降解了雞糞中的CTC,降解率為59.87%~71.95%,這是因為厭氧污泥胞外聚合物(extracellular polymeric substances,EPS)由結合態(松散結合態(loosely bound EPS,LB-EPS)和緊密結合態(tightly bound EPS,TB-EPS))轉化為黏液態(slime EPS,S-EPS)促進了水解作用,另外,CTC降解提供的碳源進一步促進了甲烷的生成。高濃度CTC(質量濃度≥60 mg/L)抑制了雞糞中溫厭氧消化作用,且抑制率隨CTC質量濃度的增大而升高,對累積水解、酸化、乙酸化及甲烷化的最大抑制率分別為16.48%,18.54%,18.96%和19.94%,CTC的降解率為43.4%~51.44%;在此條件下污泥EPS較對照提高了13.81%~39.23%,其中EPS蛋白濃度由943.01 mg/L增加為1 083.69~1 338.20 mg/L。中溫條件下CTC對雞糞厭氧消化抑制閾值為22.16 mg/L。消化結束后,沼液和沼渣中的CTC分別占總量的0.46%~3.13%和96.87%~99.54%,表明CTC絕大部分殘留在沼渣中,存在較大環境風險,所以應對沼渣進一步無害化處理后才可還田使用。
厭氧消化;抗生素;糞;甲烷產量;金霉素;胞外聚合物
隨著中國肉雞、蛋雞集約化養殖的發展,雞糞產量不斷增加。據不完全統計,2015年全國雞糞(包括尿液量)排放量高達3.93億t[1]。大量未經處理的雞糞直接排放,對水體、土壤、大氣等環境造成嚴重污染[2]。目前,畜禽糞便處理處置主要有3種方式:存儲后集中利用、堆肥處理、厭氧消化處理。在畜禽養殖業,厭氧發酵技術被認為是合乎環境可持續發展要求、最具有前景的發展技術之一,目前被普遍應用于養殖場的糞污處理[3]。尤其中溫條件下的厭氧消化因節能與穩定而具有良好的工程應用前景。截至2012年末全國大中型豬場沼氣工程的覆蓋率已達52.6%(約為1.28萬處)[4]。國務院印發的《“十二五”時期國家戰略性新興產業發展規劃》有關生物質能產業的發展目標中,到2020年,沼氣產量將提高到500億m3[5]。
厭氧消化的核心是實現雞糞中富含的有機質的高效能源化[6]。據估算,2015年雞糞產沼潛力為275億m3,折標天然氣達172億m3[7]。同時發酵產生的沼液營養成分速緩兼備,養分可利用率高,是多元、衛生的速效復合肥料和生物農藥,可以增加產量、提高品質、增強抗性、抑制病害、改良土壤,具有較高的應用價值。沼液作為肥料在農田施用是一種傳統的、經濟有效的處置方式[8],另外,基于無害化處理達標排放與高附加值產品開發的沼液資源的回收利用,將對中國資源不足問題起到一定的緩解作用[9]。所以,產生的沼液經過合理處理與處置后不僅不會造成二次污染,而且還會從中回收有用的資源。
但規模化養雞中普遍采用添加抗生素來促進生長、預防和治療疾病[10-11]。據報道,中國各種類型的獸用抗生素的殘留濃度均高于世界其他國家,特別是四環素類抗生素[12]。中國北方地區一只雞的金霉素(chlortetracycline,CTC)年使用量為磺胺類、大環內酯類等其他抗生素的5~500倍[13],加之雞的消化道較短,約有80%~95%的藥物通過糞便和尿液排出體外[14],導致雞糞中CTC殘留濃度高(563.8 mg/kg[15])。伴隨著施肥CTC會造成土壤污染[16],影響農作物生長;經過富集、吸附和淋溶后被作物吸收或遷移至地表水和地下水體[17]。此外,由抗生素誘導產生的抗性基因(antibiotic resistance genes,ARGs)在各介質中累積和傳播[3],嚴重威脅公共健康和生態平衡。向農田施用未經無害化處理的糞肥會引起動植物的生態毒性,集約化畜禽養殖造成的獸用抗生素嚴重污染已經引起人們的廣泛關注[18]。國際獸藥協調委員會(veterinary international conference on harmonization,VICH)規定,抗生素在土壤中的生態安全觸發值為100g/kg[19],而中國約有50%施用雞糞肥的農田土壤樣品中CTC殘留量高于觸發值[15,20],存在一定潛在風險。
厭氧消化不僅是畜禽糞便資源化利用的有效方式,其對抗生素的削減作用也很顯著[21]。但這種削減作用除與抗生素種類、濃度有關外,也受發酵基質類型的影響。如牛糞中的泰樂菌素經過4 d的厭氧發酵幾乎能夠全部去除,但其在豬糞中卻難以降解[22-23]。中溫條件下(35 ℃)豬糞中CTC在厭氧消化21 d后的去除率高達92.5%[24],而相同溫度條件下牛糞經33 d厭氧消化后CTC的去除率僅為75%[25]。
盡管在厭氧條件下CTC能部分降解,但由于其本身的抗菌特性影響著消化系統中的厭氧微生物,從而抑制有機物的生物降解和發酵效率。Stone等[26]研究發現,豬糞中的CTC降低了兩種乙酸型產甲烷菌的相對豐度,抑制了甲烷的產生。Sanz等[27]報道CTC是古細菌的有效抑制劑,高濃度的CTC可顯著抑制嗜乙酸甲烷菌的活性,使產甲烷受到一定抑制。牛糞中20 mg/LCTC、泰樂菌素和磺胺二甲嘧啶聯合可在消化初期導致產甲烷下降了35.6%[28];但也有僅CTC質量濃度高于80 mg/kg時才會降低豬糞甲烷產量[29]的報道。
沼氣工程基本成為中國規模養殖場的“標配”,但CTC對雞糞厭氧產氣的影響和厭氧消化對雞糞中CTC的生物降解還不清楚,制約了畜禽糞污中抗生素在厭氧生物處理系統中遷移轉化規律的研究和強化去除方法的開發;再者,盡管許多研究表明抗生素對厭氧消化具有明顯抑制作用,但是CTC對雞糞厭氧消化抑制規律還少見報道。目前發酵殘留物(即沼液和沼渣)總量超過1.30×109t,大部分未經處理就直接還田或排放[4],明確消化液中CTC殘留水平,以及固/液相中的分布特征對深入無害化處理工藝的選擇和控制抗生素向環境的輸出具有重要意義。
本研究采用批次試驗探究不同濃度CTC對雞糞中溫厭氧消化產氣效率和消化過程的影響,明確CTC對厭氧消化促進/抑制、厭氧消化對CTC的生物降解規律,以及消化液中CTC固液分布特征,研究結果將有助于排除抗生素對厭氧生物處理的障礙,避免和消除抗生素在厭氧消化中的抑制作用,以期為雞糞厭氧消化工程中抗生素去除提供理論支撐,并對沼渣、沼液處置風險評估提供參考。
1.1.1 抗生素
抗生素為金霉素鹽酸鹽(CTC)粉劑,購于北京百靈威科技有限公司,化學式為C22H23ClN2O8·HCl,相對分子質量為515.34,純度≥97%,配制成0.1 g/L的金霉素標準溶液備用。
1.1.2 基質
試驗所用新鮮雞糞取自陜西省楊凌示范區某養雞場,使用時揀出雞毛、石子等雜物,利用高速粉碎機將其粉碎成勻漿狀,為避免高固體雞糞發酵過程中可能產生的氨氮抑制問題,加水調配至總固體(total solid,TS)為4%的基質。
1.1.3 接種污泥
接種污泥取自實驗室連續穩定運行120 d的雞糞中溫厭氧發酵罐。基質和接種污泥的理化性質如表1所示。選擇的雞糞是沒有受到CTC污染的。

表1 基質和接種污泥特性
先通過預試驗掌握了CTC在低濃度和高濃度下對雞糞厭氧消化的影響規律。為了研究不同CTC質量濃度對雞糞厭氧消化作用的影響(包括促進和抑制作用),本試驗中將研究報道中已有雞糞中的CTC殘留濃度(563.8 mg/kg[15])包含其間,試驗添加的CTC質量分數為0、100、200、500、1 500、3 000、5 000 mg/kg(相對應的基質中的質量濃度為0、4、8、20、60、120、200 mg/L)。因為許多研究表明CTC對厭氧消化具有抑制作用[5],但CTC對雞糞厭氧消化的抑制規律還未見報到。所以設置CTC為1 500、3 000、5 000 mg/kg較高濃度條件是為了研究CTC對雞糞厭氧消化的抑制規律。試驗設計如表2所示。通過添加CTC于基質中,配置不同CTC濃度的7組處理R1~R7,其中R1為對照組。為扣除接種污泥產氣的影響,空白處理R8僅添加接種污泥。試驗采用250 mL血清瓶,有效容積為200 mL。基質與接種污泥按照1∶3質量比混合,立即充氮氣約1 min,排去瓶中頂空部分氧氣后,迅速塞上橡膠塞,扣上鋁蓋,用封口鉗封緊瓶口,放入35 ℃恒溫水浴振蕩槽中振蕩,定期測定瓶中產氣量及氣體含量。各處理分別設置3組平行,每組平行設置3個重復。其中1組平行用于氣體測量,另外2組平行樣用于發酵中間破壞性取樣,分別在發酵2、4、7、10、14、20 d采用注射針取樣,測定消化液pH值、溶解性有機物(soluble chemical oxygen demand,SCOD)、堿度、揮發性脂肪酸(volatile fatty acid,VFAs)濃度,在消化第2天和第20天時測定消化液胞外聚合物(extracellular polymeric substances,EPS)濃度,試驗反應完全結束后,開啟瓶蓋,測定消化液中CTC濃度。
總固體(total solid,TS),揮發性固體(volatile solid,VS)采用重量法測定[30]。pH值采用pH計測定(賽多利斯PB-10,德國)。化學需氧量(chemical oxygen demand,COD)采用APHA(1995)標準方法測定[31]。SCOD,VFAs:消化液在15 000,4 ℃高速冷凍離心機中離心20 min,取上清液,過0.45m玻璃纖維濾膜后測定。VFAs和CH4含量采用氣相色譜儀測定(島津GC-2014,stablilwax-DA色譜柱,30 m×0.32 mm× 0.50m,FID檢測器;P-Q填充柱,2 m×2 mm,TCD檢測器)[32]。產氣量采用注射針筒測量。蛋白質和多糖分別采用Lowry法和苯酚-硫酸法測定[33]。

表2 批次試驗設計
厭氧污泥黏液態(slime EPS,S-EPS)、松散結合態(loosely bound EPS,LB-EPS)、緊密結合態(tightly bound EPS,TB-EPS)污泥胞外聚合物(EPS)的提取參照文獻[34],以S-EPS(或LB-EPS和TB-EPS)中蛋白質和多糖之和表示S-EPS(或LB-EPS和TB-EPS)總量。
殘留CTC濃度(T-CTC濃度)測定采用固相萃取-超高液相色譜法[35-36]:消化液加入8 mL EDTA-McIlvaine緩沖液,旋振30 s,40 kHz,300 W下超聲30 min,于4 ℃下5 000 r/min離心10 min,取上清液備用,反復提取2次,將上清液混合,取5 mL進行固相萃取凈化。
固相萃取柱采用HLB小柱(3 mL/60 mg,Bioco-mma)。依次用5 mL甲醇和5 mL超純水將HLB柱活化,然后取5 mL樣品提取液以約1 mL/min的速度過柱,以5 mL超純水進行淋洗,以5 mL甲醇緩慢洗脫。收集洗脫液經氮氣吹干后,用1.5 mL流動相來溶解殘留物,經0.22m有機濾膜過濾,保存于棕色自動進樣瓶待測。
色譜條件:采用日本島津Nexera UHPLC LC-30A色譜儀,Shim-Pack XR-ODS色譜柱(50 mm×2.0 mm,1.6m)和光電二極管陣列紫外可見光檢測器進行分析。柱溫40 ℃,樣品室溫度15 ℃,進樣量5L。流動相A相為0.1%的甲酸,B相為V(甲醇):V(乙腈)=2:3,V(A):V(B)=2:1進行洗脫,共運行4 min。流速均為0.2 mL/min,紫外檢測波長為375 nm。
液相CTC濃度(L-CTC濃度)測定方法為:消化液在15 000,4 ℃高速冷凍離心機中離心20 min, 取上清液過0.22m玻璃纖維濾膜,采用上述方法分別測定。
固相CTC濃度(S-CTC濃度)=T-CTC濃度-L-CTC濃度。
1.4.1 甲烷生成量計算
相鄰2次測定間隔產生的甲烷體積按式(1)計算[37]。

1.4.2 累積水解、酸化、乙酸化和甲烷化計算
厭氧消化過程中有機物依次經過水解、酸化、乙酸化最終轉化為甲烷。在完全混合體系中這4個階段是無法實現過程分離的,但在該過程中有機物依次轉化為SCOD、VFAs和乙酸,并最終轉化為甲烷,所以可以通過公式(2)~(5)分別計算出厭氧消化過程中累積水解、酸化、乙酸化及甲烷化的總量。厭氧消化過程中累積水解(cumulative hydrolysis,Hydr,g/g)、酸化(cumu-la-tive acidogenesis,Acid,g/g)、乙酸化(cumulative acet-og-enesis,Acet,g/g)和甲烷化(cumulative me-tha-no-ge-ne-si-s,Meth,g/g)量由各過程以SCOD為基準的累積曲線表示。具體計算方法如式(2)~(5)所示[37]。




1.4.3 累積曲線動力學參數分析
為進一步探討CTC對雞糞中溫厭氧消化的影響機制,利用修正的Gompertz 公式(6)[38],對不同CTC濃度下雞糞厭氧消化Hydr,Acid,Acet和Meth曲線進行動力學擬合。采用 Origin 8.0 非線性擬合獲得厭氧消化Hydr,Acid,Acet和Meth曲線動力學參數。

式中為底物的轉化率,g/g;0為轉化潛力,g/g;max為最大轉化速率,g/(g·d);0為滯留時間,d;為發酵時間,d;e為2.718。
1.4.4 降解率、L-CTC殘留率和S-CTC殘留率的計算



式中為CTC添加質量濃度,mg/L;1為加入基質的體積,50×10-3L;2為血清瓶有效容積,200×10-3L;TS為消化液總固體質量分數,%。
1.4.5 數據統計與分析
不同CTC濃度條件下累積甲烷產量、EPS濃度和CTC降解率、以及CTC液、固相分布之間的差異顯著性通過SPSS19.0軟件進行單因素方差分析(<0.05);采用Origin 8.0作圖。
本試驗中不同CTC濃度雞糞中溫厭氧消化累積產甲烷量變化如圖1所示。從圖1可知,消化前期(0~3 d),R1累積產甲烷量始終高于R2~R7,4d后R2~R3累積產甲烷量逐漸超過R1,消化結束時累積產甲烷量分別為273.14和279.72 mL,比R1累積甲烷產量255.26 mL分別顯著增加了7.01%和9.58%(<0.05),表明CTC質量濃度≤8 mg/L時,在消化前期具有輕微抑制作用,隨著消化的進行,微生物經過適應性馴化后活性不但逐漸恢復,而且得到增強,隨著CTC濃度的增加,對消化的促進作用增加。Wang等[39]針對CTC污染豬糞的厭氧消化研究也發現,經過21 d的適應期,厭氧消化功能菌潛力被激發,使總產氣量提高了21.6%。

注:R1~R7含義見表2,下同,R1~R7的累積產甲烷量為扣除污泥背景(R8)后的值。
消化結束時R4的累積產甲烷量為256.64 mL,僅比R1提高了0.54%。R5~R7累積產甲烷量分別為231.50、217.86和200.80 mL,比R1分別顯著減少了9.31%、14.65%和21.34%(<0.05),表明CTC質量濃度高于60 mg/L時累積產甲烷受到抑制,且對消化的抑制率隨CTC濃度的升高而增大,這是由于CTC可對部分革蘭氏陰性的厭氧消化產甲烷菌產生抑制作用所致。隨著CTC濃度的增加,細菌豐富度值逐漸降低[5],因而對產氣的抑制作用增大。Yin等[29]對含CTC豬糞中溫厭氧消化的研究也表明,較高濃度CTC對產甲烷具有抑制作用。CTC對雞糞高溫厭氧消化的毒性抑制質量濃度為0.4 mg/L[40],對抑制率或促進率隨CTC濃度變化曲線的數值擬合表明,中溫條件下CTC的抑制閾值為22.16 mg/L(圖2),表明中溫條件下微生物對CTC的毒性抗性更強。這是由于中溫條件下微生物種群更為豐富,所以系統更穩定所致[21]。

圖2 不同CTC質量濃度條件下產甲烷促進/抑制率變化
水解,酸化,乙酸化和甲烷化是有機物質厭氧分解要經歷的4個主要階段,其相對獨立,又相互制約,對厭氧消化起著至關重要的作用。為了進一步明確不同CTC濃度對雞糞中溫厭氧消化各個階段的影響,采用修正的Gompertz 方程對厭氧消化Hydr,Acid,Acet和Meth曲線進行擬合,結果如圖3所示。
由圖3可知,在厭氧消化前期(0~3 d),R2~R7促進了水解,但抑制了酸化、乙酸化和甲烷化,表明水解產物向酸和乙酸轉化過程受阻,可能是由于消化前期產乙酸菌和乙酸型產甲烷菌對CTC的暫時性不適應而導致的微生物活性不強所致[41]。
不同CTC濃度下雞糞中溫厭氧消化Hydr,Acid,Acet和Meth曲線動力學參數如表3所示,在R1~R7中,max(Hydr)>max(Acid)>max(Acet)=max(Meth),表明雞糞中固態有機物很容易水解為溶解性的有機物,而后者酸化過程較慢,這可能與雞糞富含的蛋白質類物質(表1)轉化較慢有關。由于各CTC濃度下酸化過程發生較為明顯的滯后現象(1.6~2.1 d)(表3Acid的R1~R7中的0范圍),造成水解產物的累積,累積水解產物的最終集中酸化導致酸化速率(max(Acid)大于乙酸化(max(Acet)和甲烷化速率(max(Meth)。R2~R7中max(Hydr)和max(Acid)大于R1中的相應值;R2~R4中max(Acet)和max(Meth)大于R1中的,表明CTC促進了雞糞的水解和酸化,并且當CTC質量濃度≤20 mg/L時,同樣促進了雞糞厭氧消化中的乙酸化和甲烷化作用。
R1~R7條件下,在Hydr,Acid,Acet和Meth各過程中0(R2~R4)>0(R1)>0(R5~R7),表明CTC質量濃度≤20 mg/L時,對雞糞厭氧消化各過程均產生促進作用,較對照R1的促進率為1.23%~12.69%,其中R3對Hydr,Acid,Acet和Meth的促進作用最大,分別為12.69%,11.55%,11.31%和9.82%。與此不同,當CTC濃度高于60 mg/L時,對厭氧消化各過程均產生抑制作用,且抑制程度隨CTC濃度的提高而增大,抑制率為5.12%~19.94%,其中R7對Hydr,Acid,Acet和Meth抑制率最大,分別為16.48%,18.54%,18.96%和19.94%。R1~R7條件下,0(Hydr)>0(Acid)≈0(Acet)≈0(Meth),表明厭氧消化過程中只有約72%的水解產物轉化為有機酸,而有機酸最終幾乎全部轉化為乙酸,進而轉化為甲烷,說明各CTC濃度條件下酸化是限制雞糞厭氧消化的關鍵步驟。

圖3 利用修正的高斯方程對不同CTC濃度雞糞中溫厭氧消化累積水解C.Hydr,酸化C.Acid,乙酸化C.Acet和甲烷化C.Meth曲線擬合

表3 不同CTC濃度下雞糞中溫厭氧消化C.Hydr,C.Acid,C.Acet和C.Meth曲線動力學參數
注:0為轉化潛力,g·g-1,max為最大轉化速率,g·g-1·d-1;t為滯留時間,d;2為決定系數
Note:0is the conversion potential, g·g-1;maxis the maximum conversion rate, g·g-1·d-1;0is the lag time, d;2is the coefficients of determination.
EPS作為活性污泥的重要組成部分,是由微生物在一定條件下分泌、附著在污泥細胞表面的有機物質,是功能微生物應對有毒物質潛在威脅的第一道屏障[42],因此明確CTC對厭氧污泥EPS的影響對探究厭氧菌對CTC的毒性響應機制具有重要意義。
圖4為CTC濃度對雞糞厭氧消化EPS的影響。由圖4a可知,消化前期(第2天),CTC添加導致厭氧污泥EPS濃度較對照(0)顯著提高了99.41%~128.16%(<0.05),這可能是消化前期微生物對CTC的耐受性較差,CTC刺激微生物分泌出更多的生物高聚體,并形成網狀結構以吸附或延緩CTC的擴散來保護自身的正常生理活動[43]。張微[44]針對四環素與EPS相互作用的研究中證明了反應器中好氧活性污泥EPS隨四環素濃度的升高而迅速增加。通過對EPS構成的分析,發現CTC添加條件下EPS蛋白在厭氧污泥EPS中的比例高達92.13%~93.73%,較對照顯著增加了12.59%~14.19%(<0.05),表明CTC的添加促進了厭氧污泥中胞外蛋白的釋放。蛋白質是保護細胞的主要物質,其變化主要受微生物代謝活性影響[45]。Wang等[46]采用熒光光譜技術,在活性污泥EPS與頭孢噻肟(claforan)的相互作用機理研究中指出,頭孢噻肟對EPS中2個蛋白峰在所有溫度下均具有靜態淬滅作用,說明抗生素與EPS產生了不發熒光的絡合物,由此推測本研究中厭氧微生物增加蛋白質的分泌有可能與金霉素發生了絡合,以防止細胞受到CTC迫害。

圖4 CTC濃度對雞糞中溫厭氧消化胞外聚合物的影響
圖4b為消化結束時(第20天)添加不同CTC的厭氧污泥中EPS變化情況。由圖可知,CTC質量濃度高于60 mg/L時,厭氧污泥EPS質量濃度較對照顯著增加了13.81%~39.23%(<0.05),由于在該條件下產甲烷受到抑制(圖1),說明EPS質量濃度的增加是由于厭氧微生物為應對環境毒性而產生的自我保護,也有可能是長期暴露于高濃度抗生素下的細胞發生了大量裂解和死亡所致[43]。進一步分析發現EPS蛋白質量濃度由943.01 mg/L增加為1 083.69~1 338.20 mg/L,表明抑制條件下微生物通過增加胞外聚合物分泌來增強對CTC的生物毒性抵抗力,很有可能通過胞外蛋白與CTC的絡合來降低其毒性傷害。當CTC質量濃度低于20 mg/L時,厭氧污泥EPS濃度與對照無顯著性差異(0.05);但對EPS形態的分析發現,LB-EPS和TB-EPS在EPS中的比例分別顯著下降了4.10%~5.28%和2.88%~3.48%(<0.05),而S-EPS在EPS中所占的比例顯著上升了7.58%~8.16%(<0.05),說明3種形態EPS分布發生了變化。黏液態(S-EPS)和結合態(LB-EPS和TB-EPS)EPS的層層包裹維持著微生物活性,表明該條件下EPS由結合態向黏液態的轉化在一定程度上促進了水解及消化,這與R2~R4對累積產甲烷量的促進作用相一致(圖1)。
消化結束時不同CTC濃度雞糞中溫厭氧消化CTC的降解率及消化液中CTC固、液相殘留分布如圖5所示。CTC降解率隨添加濃度增加而降低(圖5a)。當CTC濃度≤20 mg/L時,厭氧消化對CTC的降解率為59.87%~71.95%。已有研究表明CTC結構中的氨基、羥基等活性基團提供了接枝點,使其易于生物降解[47]或者被非特異性分解酶以共代謝作用去除[48],降解的CTC可為微生物的生長提供碳源和能量[43],從而促進了R2~R4的甲烷產量。
本研究雖然對厭氧消化中CTC代謝產物的濃度未做測定,但是已經有研究表明CTC在厭氧發酵中可能生成異構金霉素(ICTC)和或差向金霉素(ECTC)等產物,ECTC在體系中能很快被降解[25]。由此可見,厭氧發酵能在一定程度上消減母體藥物,形成毒性更低的產物,從而實現藥物解毒。
消化結束時,隨CTC添加濃度的增大,L-CTC和S-CTC提高,CTC在液相中的殘留濃度為18.13~143.82g/L,在固相中的殘留濃度為18.42~2 026.08 mg/kg(圖5b),L-CTC殘留率由3.13%降低為0.46%,而S-CTC殘留率由96.87%增加為99.54%(圖5c)。表明CTC絕大部分殘留于固相中,這是由于高濃度CTC條件下EPS分泌增加,增強了厭氧污泥對殘留CTC的吸附作用所致。所以CTC濃度≥60 mg/L時,CTC的降解率顯著減小為43.4%~51.44%(<0.05),這意味著高濃度CTC條件下沼渣中殘留的高濃度CTC對環境存在較大風險。

圖5 不同CTC濃度雞糞中溫厭氧消化CTC的降解率及液、固殘留分布
1)當金霉素(chlortetracycline,CTC)濃度≤20 mg/L時,厭氧微生物在消化前期受到短暫抑制,隨后活性逐漸恢復并增強。累積甲烷產量隨CTC濃度增加而增加(0.54%~9.58%),這是由于厭氧污泥胞外聚合物(extracellular polymeric substances,EPS)由松散結合態EPS(loosely bound EPS,LB-EPS)和緊密結合態EPS(tightly bound EPS,TB-EPS)向黏液態EPS(slime EPS,S-EPS)的轉化,對水解的促進作用及CTC降解提供的碳源所致。厭氧消化對CTC的降解率較高(59.87%~71.95%)。
2)CTC濃度≥60 mg/L時產氣受抑制,且抑制率隨CTC濃度升高而增大,對累積水解、酸化、乙酸化以及甲烷化過程最大抑制率分別為16.48%,18.54%,18.96%和19.94%。CTC降解率為43.4%~51.44%。EPS蛋白由943.01 mg/L增加為1 083.69~1 338.20 mg/L。表明抑制條件下微生物通過增加胞外聚合物分泌來增強對CTC的生物毒性抵抗力。
3)發酵結束后0.46%~3.13%的CTC殘留在沼液中,而96.87%~99.54%的CTC殘留在沼渣中。表明沼渣對環境存在較大威脅,需進一步無害化處理后才可作為有機肥還田使用。
4)各CTC濃度條件下酸化是限制雞糞厭氧消化的關鍵步驟。中溫條件下CTC對雞糞厭氧消化抑制閾值為22.16 mg/L。
[1] 劉茹飛,陳剛,王明超,等.我國典型禽畜糞便資源化技術研究[J].再生資源與循環經濟,2017,10(3):37-40. Liu Rufei, Chen Gang, Wang Mingchao, et al. Research on resource utilization technology of livestock and poultry manure in China[J]. Recyclable Resources and Circular Economy, 2017, 10(3): 37-40. (in Chinese with English abstract)
[2] 潘君廷,馬俊怡,郜天磊,等.膨潤土改善雞糞厭氧消化產酸產甲烷特性[J].農業工程學報,2016,32(8):246-252. Pan Junting, Ma Junyi, Gao Tianlei, et al. Improving production characteristics of methane and organic acid during anaerobic batch digestion of poultry manure by adding bentonite[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 246-252. (in Chinese with English abstract)
[3] 支蘇麗,周婧,趙潤,等.畜禽糞便厭氧發酵過程抗生素抗性基因歸趨及驅動因子分析[J].農業工程學報,2019,35(1):195-202.Zhi Suli, Zhou Jing, Zhao Run, et al. Analysis of antibiotic resistance genes fate and its drivers during anaerobic digestion of animal manure[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2019, 35(1): 195-202. (in Chinese with English abstract)
[4] 許彩云,靳紅梅,杜靜,等.水力停留時間對豬糞厭氧發酵殘留物中磺胺類抗生素分布的影響[J].農業環境科學學報,2016,35(11):2187-2194.Xu Caiyun, Jin Hongmei, Du Jing, et al. Effects of hydraulic retention time on sulfonamides distributions in anaerobic digestates of swine manure[J]. Journal of Agro-Environment Science, 2016, 35(11): 2187-2194. (in Chinese with English abstract)
[5] 尹福斌,季超,董紅敏,等.畜禽糞便中殘留抗生素對厭氧消化影響的研究進展[J].中國農業科技導報,2016,18(5):171-177.Yin Fubin, Ji Chao, Dong Hongmin, et al. Research progress on effect of antibiotic on anaerobic digestion treatment in animal manure[J]. Journal of Agricultural Science and Technology, 2016, 18(5): 171-177. (in Chinese with English abstract)
[6] 馬旭光,江滔,唐瓊,等.油菜秸稈和雞糞比例及含固率對其發酵產甲烷特性的影響[J].農業工程學報,2018,34(12):236-244. Ma Xuguang, Jiang Tao, Tang Qiong, et al. Effect of total solid content on biogas production from rape stalk and chicken manure with different mixing ratios[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans-act---i---ons of the CSAE), 2018, 34(12): 236-244. (in Chinese with English abstract)
[7] 張心如,毛長青,杜干英,等.成都市農村有機廢棄污染物沼氣潛力測算[J].畜禽業,2017,28(5):69-71.
[8] 李偉,吳樹彪,Hamidou Bah,等.沼氣工程高效穩定運行技術現狀及展望[J].農業機械學報,2015,46(7):187-196, 202. Li Wei, Wu Shubiao, Hamidou Bah, et al. Status analysis and development prospect of biogas engineering technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 187-196, 202 (in Chinese with English abstract)
[9] 張春,鄭利兵,郁達偉,等.沼液處理與資源化利用現狀與展望[J].中國沼氣,2018,36(5):36-46. Zhang Chun, Zheng Libing, Yu Dawei, et al. Current situation and prospect of biogas slurry treatment and its resource utilization[J]. China Biogas, 2018, 36(5): 36-46. (in Chinese with English abstract)
[10] Elmund G K, Morrison S M, Grant D W, et al. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste[J]. Bulletin of Environmental Contamination & Toxicology, 1971, 6(2): 129-132.
[11] Zhang M, He L Y, Liu Y S, et al. Fate of veterinary antibiotics during animal manure composting[J]. Science of the Total Environment, 2019, 650: 1363-1370.
[12] 曾巧云,丁丹,檀笑.中國農業土壤中四環素類抗生素污染現狀及來源研究進展[J].生態環境學報,2018,27(9):1774-1782.Zeng Qiaoyun, Ding dan, Tan Xiao. Pollution status and sources of tetracycline antibiotics in agricultural soil in China: A review[J]. Ecology and Environmental Sciences, 2018, 27(9): 1774-1782. (in Chinese with English abstract)
[13] 凌文翠,范玉梅,方瑤瑤,等.京津冀地區畜禽養殖業抗生素污染現狀分析[J].環境工程技術學報,2018,8(4):390-397.Ling Wencui, FanYumei, FangYaoyao, et al. Antibiotics pollution of livestock and poultry breeding in Beijing-Tianjin-Hebei region[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 390-397. (in Chinese with English abstract)
[14] Peng P C, Wang Y, Liu L Y, et al. The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycycline residues in layer chicken manure[J]. Poultry Science, 2016, 95(5): 1033-1041.
[15] 張志強.設施菜田土壤四環素類抗生素污染與有機肥安全施用[D].北京:中國農業科學院,2013.Zhang Zhiqiang. Study on Soil Tetracyclines Antibiotics Pollution and Safe Application of Manure in Greenhouse Vegetable Field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract)
[16] 王攀攀,袁巧霞,周文兵.光催化降解沼液中四環素類抗生素效果及反應動力學研究[J].農業工程學報, 2018,34(23):193-198. Wang Panpan, Yuan Qiaoxia, Zhou Wenbing. Study on photocatalytic degradation and reaction kinetics of tetracycline antibiotics in biogas slurry [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 193-198. (in Chinese with English abstract)
[17] Cheng D, Liu X, Wang L, et al. Seasonal variation and sediment–water exchange of antibiotics in a shallower large lake in North China[J]. Science of The Total Environment, 2014, 476: 266-275.
[18] Karina Y, Ekaterina P, Fernando P, et al. Assessment of three antimicrobial residue concentrations in broiler chicken droppings as a potential risk factor for public health and environment[J]. Environmental Research and Public Health, 2019, 16(1): 24-36.
[19] Karcy A, Balcyoelu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey[J]. Science of the Total Environment, 2009, 407(16): 4652-4664.
[20] 王良,劉思路,代光勝,等.洱海流域畜禽飼料·糞便·土壤中四環素類抗生素殘留分析[J].安徽農業科學,2017,45(18):70-72, 76.Wang Liang, Liu Silu,Dai Guangsheng, et al. Analysis of residue of tetracyclines antibiotics in livestock manures and soil in Erhai-Lake Basin[J]. Journal of Anhui Agricultural Sciences, 2017, 45(18): 70-72, 76. (in Chinese with English abstract)
[21] 鄭佳倫,劉超翔,劉琳,等.畜禽養殖業主要廢棄物處理工藝消除抗生素研究進展[J].環境化學,2017,36(1):37-47.Zheng Jialun, Liu Chaoxiang, Liu Lin, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry: A review[J]. Environmental Chemistry, 2017, 36(1): 37-47. (in Chinese with English abstract)
[22] Mitchell S M, Ullman J L, Teel A L, et al. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion[J]. Bioresource Technology, 2013, 149: 244-252.
[23] Kolz A C, Moorman T B, Ong S K, et al. Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons[J]. Water Environment Research, 2005, 77(1): 49-56.
[24] Alvarez J A, Otero L, Lema J M, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresource Technology, 2010, 101(22): 8581-8586.
[25] Arikan O A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves[J]. Journal of Hazardous Materials, 2008, 158(2):485-490.
[26] Stone J J, Clay S A, Zhu Z, et al. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion[J]. Water Research, 2009, 43(18): 4740-4750.
[27] Sanz J L, Rodríguez N, Amils R. The action of antibiotics on the anaerobic digestion process[J]. Applied Microbiology & Biotechnology, 1997, 46:587-592.
[28] Withey J M, Mugo S M, Zhou T, et al. Depletion of hormones and antimicrobials in cattle manure using thermophilic anaerobic digestion[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(9):2404-2411.
[29] Yin F, Dong H, Chao J, et al. Effects of anaerobic digestion on chlortetracycline and oxytetracycline degradation efficiency for swine manure[J]. Waste Management, 2016, 56: 540-546.
[30] 喬瑋,熊林鵬,畢少杰,等.梯度提高進料濃度對雞糞連續中溫發酵產甲烷的影響[J].農業工程學報,2018,34(9):233-239. Qiao Wei, Xiong Linpeng, Bi Shaojie, et al. Effect of gradually raising feeding total solid on methane production during continuous mesophilic fermentation of chicken manures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 233-239. (in Chinese with English abstract)
[31] APHA. Standard methods for the examination of water and waste water[S]. Washington DC: American Public Health Association, 1995.
[32] 強虹,李玉友,裴夢富.COD/SO42-對青霉素菌渣厭氧消化影響[J].環境科學,2018,39(7):3443-3451. Qiang Hong, Li Yuyou, Pei Mengfu. Effect of COD/SO42-ratio on anaerobic digestion of penicillin bacterial residue[J]. Environmental Science, 2018, 39(7): 3443-3451. (in Chinese with English abstract)
[33] Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758.
[34] Zhen G Y, Lu X Q, Li Y Y, et al. Innovative combination of electrolysis and Fe(II)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136(3): 654-663.
[35] 羅慶,孫麗娜,胡筱敏. 固相萃取-高效液相色譜法測定畜禽糞便中羅紅霉素和3種四環素類抗生素[J].分析試驗室,2014,33(8):885-888. Luo Qing, Sun Lina, Hu Xiaomin. Simultaneous determination of roxithromycin and three tetracyclines in manure by high-performance liquid chromatography with a diode-array detector[J]. Chinese Journal of Analysis Laboratory, 2014, 33(8): 885-888. (in Chinese with English abstract)
[36] 張惠艷,李艷菊,顧金剛,等.高效液相色譜法測定藥渣中殘留金霉素[J].分析試驗室,2014,33(10):1130-1134.Zhang Huiyan, Li Yanju, Gu Jingang, et al. Residual chlortetracycline measurement by high performance liquid chromatography[J]. Chinese Journal of Analysis Laboratory, 2014, 33(10): 1130-1134. (in Chinese with English abstract)
[37] Li Q, Qiao W, Wang X, et al. Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge[J]. Waste Management, 2015, 36: 77-85.
[38] Lay J J, Li Y Y, Noike T. Mathematical model for methane production from landfill bioreactor[J]. Journal of Environm-ental Engineering, 1998, 124(8): 730-736.
[39] Wang R, Zhang J, Liu J, et al. Effects of chlortetracycline, Cu and their combination on the performance and microbial community dynamics in swine manure anaerobic digestion[J]. Journal of Environmental Sciences, 2018, 67(5): 206-215.
[40] 范超,王欣,劉偉,等.抗生素對雞糞厭氧發酵過程影響的實驗研究[J].黑龍江科學,2016,7(22):1-3,19. Fan Chao, Wang Xin, Liu Wei, et al. Study on the impact of the antibiotics on fowl manure anaerobic fermentation[J]. Heilongjiang Science, 2016, 7(22): 1-3,19. (in Chinese with English abstract)
[41] Reyes-Contreras C, Vidal G. Methanogenic toxicity evaluation of chlortetracycline hydrochloride[J]. Electronic Journal of Biotechnology, 2015, 18(6): 445- 450.
[42] 宋悅,魏亮亮,趙慶良,等.活性污泥胞外聚合物的組成與結構特點及環境行為[J].環境保護科學,2017,43(2):35-40. Song Yue, Wei Liangliang, Zhao Qingliang, et al. Chemical structure and environmental behavior of extracellular polymeric substances in Sludge: A review[J]. Environmental Protection Science, 2017,43(2): 35-40. (in Chinese with English abstract)
[43] Lu X, Zhen G, Liu Y, et al. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2014, 169(5): 644-651.
[44] 張微.四環素與胞外聚合物的相互作用及其對污泥耐藥性的影響[D].上海:東華大學,2014.Zhang Wei. Interaction between Tetracycline and Extracellular Polymers Substance(EPS) and its Effect on Activated Sludge Drug Resistance[D]. Shanghai: Donghua University, 2014. (in Chinese with English abstract)
[45] 李冬,吳青,梁瑜海,等.不同基質條件對亞硝化污泥胞外聚合物的影響[J].哈爾濱工業大學學報,2015,47(4):81-86. Li Dong, Wu Qing, Liang Yuhai, et al. Effect of substrate concentration and type on the content of extracellular polymeric substances in the nitrification sludge[J]. Journal of Harbin Institute of Technology, 2015, 47(4): 81-86. (in Chinese with English abstract)
[46] Wang Q, Li J J, Yu H G, et al. Interaction mechanism between stratified extracellular polymeric substances (EPS) from activated sludge and claforan in domestic wastewater[J]. Desalination and Water Treatment. 2018, 125: 271-277.
[47] Qi X, Gunawan P, Xu R, et al. Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties[J]. Chemical Engineering Science, 2012, 84(52): 552-556.
[48] 張翔宇,李茹瑩,季民.污水生物處理中抗生素的去除機制及影響因素[J].環境科學,2018,39(11):5276-5288. Zhang Xiangyu, Li Ruying, Ji Min. Mechanisms and influencing factors of antibiotic removal in sewage biological treatment[J]. Environmental Science, 2018, 39(11): 5276-5288. (in Chinese with English abstract)
Effect of chlortetracycline concentration on mesophilic anaerobic digestion characteristics and antibiotic degradation of chicken manure
Qiang Hong1, Yang Yinan1, Li Na1, Song Yanan1, Li Yuyou2
(1.,712100,2.980-8579,)
Anaerobic digestion is a promising robust technology, which can not only reduce pollution of chicken manure but also produce energy, especially mesophilic anaerobic digestion of chicken manure has been widely used due to energy saving and long-term stability. In recent years, excess amount of antibiotics has been used in raising broilers to promote fast growth and prevent from diseases. The antibiotics residues problem in China rising day by day as compared to other countries, of which tetracycline antibiotic residues has been considered dangerous for living organisms. In China, it is reported that chlortetracycline residues especially in chicken manure was 563.8 mg/kg. Although, the toxicity threshold of antibiotics in soil regulated by Veterinary International Conference on Harmonization is 100g/kg, it has been found that, the chlortetracycline residues more than 50% of the soil sample in China has been found higher than the threshold. Anaerobic digestion technology plays an important role in degrading antibiotics resides, this process not only wasaffected by the antibiotics concentration and category, but also more importantly by substrate category. Chicken manure has greatly potential to produce higher biogas production per organic matter than swine and cattle manure, but the effect of chlortetracycline contamination on biogas production of mesophilic anaerobic digestion of that is still unclear, removal of chlortetracycline during anaerobic digestion of chicken manure also unknown. The effect of chlortetracycline on hydrolysis, acidogenesis, acetogenesis and methanogenesis during anaerobic digestion of chicken manure has not been deeply studied yet. Therefore, this study aimed to explore the effects of antibiotics on mesophilic anaerobic digestion of chicken manure. Influence of a wide range of chlortetracycline concentrations (4-200 mg/L CTC) on anaerobic digestion of chicken manure were investigated by batch experiments. The obtained results indicated that mesophilic methane production was increased when CTC concentration was less than 20 mg/L. More specifically, the ultimate increase rates of hydrolysis, acidogenesis, acetogenesis and methanogenesis for methane production were 12.69%, 11.55%, 11.31% and 9.82%, respectively. Indeed, the removal efficiency of CTC was increased from 59.87% to 71.95%. Further analysis showed that methane production was increased as a result of the transformation of extracellular polymer substances (EPS) from bound EPS (LB-EPS and TB-EPS) to slime EPS (S-EPS), which promoted the hydrolysis, In addition, the degradation of CTC produced the carbon sources for microorganisms. However, mesophilic methane production was inhibited when CTC concentration was higher than 60 mg/L. Moreover, the inhibition rate was increased with raising CTC concentration, among them the inhibitory effect of 200 mg/LCTC concentration was the strongest than others, the largest inhibition rate of 200 mg/L CTC concentration for hydrolysis, acidogenesis, acetogenesis and methanogenesis was 16.48%, 18.54%, 18.96% and 19.94%, respectively, and the removal efficiency of CTC reduced up to 43.4%-51.44%. EPS increased by 13.81%-39.23% compared with control, of which the concentration of EPS protein increased from 943.01 mg/L to 1 083.69-1 338.20 mg/L, it is assumed that bacterial resistance for CTC was increased by stimulating EPS secretion. Analysis of the distribution of residual CTC within the digester indicted that 0.46%-3.13% of CTC was existed in liquid digester, while 96.87%-99.54% of CTC was found in solid digester, which posed a significant threat to the environment. Further safe treatment was needed before solid digester used as organic fertilizer into field.
anaerobic digestion; antibiotic; manure; methane production; chlortetracycline; extracellular polymeric substances
10.11975/j.issn.1002-6819.2019.10.023
S216.4
A
1002-6819(2019)-10-0181-10
2018-12-17
2019-04-15
陜西省重點研發計劃項目資助(2018NY-004);國家自然科學基金資助項目(51308460)
強虹,副教授,主要研究方向為廢棄物以及污水資源化處理及利用。Email:qiangh2003@hotmail.com
強 虹,楊祎楠,李 娜,宋亞楠,李玉友. 金霉素濃度對雞糞中溫厭氧消化特性及抗生素降解的影響[J]. 農業工程學報,2019,35(10):181-190. doi:10.11975/j.issn.1002-6819.2019.10.023 http://www.tcsae.org
Qiang Hong, Yang Yinan, Li Na, Song Yanan, Li Yuyou. Effect of chlortetracycline concentration on mesophilic anaerobic digestion characteristics and antibiotic degradation of chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 181-190. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.023 http://www.tcsae.org