孫 良,沈嘉豪,周譽株,葉治政,俞高紅,武傳宇
非圓齒輪-連桿組合傳動式蔬菜缽苗移栽機構設計
孫 良1,2,沈嘉豪1,周譽株1,葉治政1,俞高紅1,武傳宇1※
(1. 浙江理工大學機械與自動控制學院,杭州 310018;2. 浙江省種植裝備技術重點實驗室,杭州 310018)
針對現有的單行星架輪系機構無法實現取栽一體式蔬菜移栽機構所需的作業軌跡和姿態問題,該文基于曲柄搖桿機構的變速擺動和非圓齒輪的不等速傳動特性相結合的思想,提出一種雙行星架非圓齒輪與連桿機構組合傳動的取栽一體式蔬菜缽苗移栽機構。該機構的副行星架相對主行星架作變速擺動,移栽臂相對副行星架作回轉運動。采用三次非均勻B樣條擬合非圓齒輪節曲線建立移栽機構運動學模型。結合西芹移栽株距220 mm、苗高100~150 mm和穴缽深度40 mm的移栽農藝要求,優選出一組適合西芹缽苗取栽一體作業的尖嘴形軌跡和姿態。軌跡取苗段長度33 mm,植苗點距離行星架殼體運動最低點距地面高度55 mm,取苗角23°,取苗過程變化角16°,推苗角65°,軌跡整體高度355 mm,動軌跡環口高度125 mm。通過對比分析仿真軌跡、試驗軌跡與理論分析的軌跡基本一致,驗證了移栽機構作業軌跡的正確性和設計方案的可行性,該研究可為實現兼顧軌跡高度、取苗深度和作業姿態的取栽一體式蔬菜缽苗移栽機構設計提供技術參考。
農業機械;移栽;設計;變速擺動;非圓齒輪;齒輪-連桿;缽苗移栽
蔬菜缽苗移栽具有成活率高,促進作物早熟,提高土地利用率等優點[1]。蔬菜缽苗機械化移栽目前有半自動移栽和全自動移栽。半自動移栽主要由人工將苗喂入植苗器(分為撓性圓盤式、鏈夾式、導苗管式、吊杯式等)進行作業,效率低、勞動強度大,不利于大田作業[2-4]。全自動移栽機主要采用多套機構分別完成取苗、輸送、植苗等系列動作[5-7]。如澳大利亞的HD144全自動移栽機[8]采用針扎的方式取苗,放入轉運苗杯進行投苗栽植,結構復雜,造價高昂。英國皮爾遜公司的全自動移栽機,穴盤水平放置,采用整行取苗的方式實現多行移栽,整機系統復雜,對苗盤和育苗的要求苛刻。意大利法拉利公司生產的FUTURA系列全自動移栽機[9]采用頂桿頂苗的方式取苗,然后把缽苗送入旋轉輸送杯中,整機成本高,且必須采用硬質專用盤。日本洋馬農機株式會社研制的全自動蔬菜移栽機,取苗機構的動作由行星輪系和滑道機構組合完成,作業時需要取苗機構和栽植機構交替完成動作,滑道容易磨損,工作效率偏低(60株/min)。久保田的A-500型自動移栽機、鴨嘴式全自動膜上移栽機以及井關的PR2和PVR-200型自動移栽機,同樣存在結構復雜,對育苗和整地要求高的缺點[10]。孫廷琮等[11]研究了空氣整根育苗技術并研制了空氣整根營養缽育苗全自動移栽機,能實現根系較發達的小苗移栽,但用于蔬菜移栽時,易使莖葉折斷,且苗盤成本較高。韓綠化等[12]研制出了2行棉花穴盤苗自動移栽機構,取苗機構由連桿機構、行星齒輪機構和凸輪機構組合而成,通過供苗裝置和栽植機構的配合實現2行移栽。俞高紅等[13-14]提出了取栽分離的旋轉式蔬菜缽苗移栽機構,單行星架取苗機構采用“鷹嘴形”軌跡完成取苗動作,然后行星輪系栽植機構采用大環扣軌跡完成栽植動作,機構結構不夠緊湊,移栽速度提高時2套機構還存在配合失誤等問題。
針對上述問題,若采用取栽一體式移栽機構不僅可以降低作業機構的復雜性,而且可使機構作業空間更加緊湊,消除多套機構配合作業的銜接問題,提高作業效率。同時,可以采用先開溝,然后在放苗的同時覆土的移栽方式(覆土輪在移栽臂將苗運輸到溝,在未推苗之前完成覆土,然后移栽臂推苗并復位)解決取栽一體式移栽機構的植苗問題,實現一套機構完成取苗、輸送、植苗等系列動作[15-16]。但由于蔬菜缽苗移栽作業工作軌跡復雜,姿態要求多,要求機構的傳動比具有大幅值變化[17-19],單行星架輪系機構中的非圓齒輪節曲線易于出現異形,不利于設計、制造且影響傳動性能[20-22]。為此,基于組合機構原理,本文提出一種新型的齒輪-連桿組合式蔬菜缽苗移栽機構,將曲柄搖桿機構的變速擺動與非圓齒輪的不等速傳動相疊加來獲得蔬菜缽苗取栽一體式移栽所需的大幅值傳動比。通過對移栽機構進行運動學建模分析和參數優化,獲得合理的非圓齒輪及理想的軌跡和姿態,并進行樣機軌跡試驗,以期獲得一種具有高軌跡,長尖嘴特性(適合取栽一體)的雙行星架蔬菜缽苗移栽機構,也為同類機構設計問題提供參考。
移栽機構的傳動部分由行星輪系機構和曲柄搖桿機構組成(圖1)。其中,行星輪系機構由鉸接在主行星架6上的7個非圓齒輪和分別鉸接在2個副行星架上的6個圓齒輪組成;曲柄搖桿機構的連桿5鉸接在中間非圓齒輪上,搖桿7與副行星架9固定。移栽機構工作時,2個移栽臂所經過的空間位置重合,因此取單個移栽臂的運動進行分析。太陽輪1固定不動,當移栽機構旋轉時,輸入軸帶動主行星架轉動,與太陽輪嚙合的中間非圓齒輪I帶動同一軸上的中間非圓齒輪II轉動,與連桿5鉸接的搖桿7帶動副行星架擺動,與中間非圓齒輪II嚙合的行星非圓齒輪4帶動同一軸上的中心圓齒輪8轉動,與中心圓齒輪8嚙合的中間圓齒輪10帶動與其嚙合的行星圓齒輪11轉動,行星圓齒輪11帶動與行星軸固定的移栽臂12轉動,完成缽苗移栽的取苗、送苗、植苗動作。
主行星架作勻速轉動,通過內部齒輪和連桿的傳動,將非圓齒輪系的不等速傳動和曲柄搖桿機構的周期性變速擺動疊加起來,使得副行星架相對主行星架變速擺動,移栽臂相對副行星架轉動,從而獲得實現復雜移栽軌跡與姿態所需的傳動比。

1.太陽輪 2.中間非圓齒輪I 3.中間非圓齒輪II 4.行星非圓齒輪 5.連桿 6.主行星架 7.搖桿 8.中心圓齒輪 9.副行星架 10.中間圓齒輪 11.行星圓齒輪 12.移栽臂
移栽機構中非圓齒輪的節曲線采用三次非均勻B樣條擬合13個型值點的方法得到[23]。
顯然,除非圓齒輪節曲線型值點外,影響移栽軌跡形狀和作業姿態的還有行星架初始角、偏置角、非圓齒輪中心距等機構參數,具體的參數符號及其含義見表1。

表1 移栽機構模型參數
雙行星架移栽機構通過非圓齒輪系和曲柄搖桿機構的差速運動實現要求的移栽軌跡和姿態,因此建立機構運動學模型的關鍵是建立差速模型,如圖2所示。





1.太陽輪 2.中間非圓齒輪I 3.中間非圓齒輪II 4.行星非圓齒輪 5.連桿 6.主行星架 7.搖桿


由式(3)解得



因為移栽機構2個移栽臂結構對稱,運動規律相差180°,故取單臂進行運動學分析,運動學模型如圖3所示。


行星非圓齒輪回轉中心的位移方程為

曲柄和連桿鉸接處鉸鏈點的位移方程為

搖桿和連桿鉸接處鉸鏈點的位移方程為

中間圓齒輪回轉中心的位移方程為

行星圓齒輪旋轉中心的位移方程為

夾片尖點的位移方程為

1.中心圓齒輪 2.中間圓齒輪 3.副行星架 4.行星圓齒輪 5.移栽臂
1.Central circular gear 2.Intermediate circular gear 3.Sub planetary carrier 4.Planetary circular gear 5.Transplanting arm
圖3 移栽機構結構圖
Fig.3 Structure diagram of transplanting mechanism
為了實現移栽機構夾取缽苗、輸送缽苗和栽植缽苗的運動軌跡并且滿足移栽臂姿態要求[27-28],以西芹為例,對移栽機構進行參數優化,西芹缽苗移栽過程如圖4所示。結合西芹缽苗移栽作業的農藝要求(苗齡60 d左右,苗高10~15 cm,4~6片葉子;缽穴尺寸:頂部30 mm×30 mm,底部20 mm×20 mm,深度40 mm),移栽機構的優化目標如下:
1)取苗深度> 30 mm
2)取苗過程變化角1滿足10°<1< 20°
3)取苗角2滿足2>20°
4)推苗角3滿足3>50°
5)移栽軌跡與缽盤的距離>10 mm
6)推苗角與取苗角差值Δ滿足40°< Δγ <50°
7)移栽機構距地面高度2> 50 mm

注:h1是行星軸中心與機構回轉半徑的差值,mm;h2為移栽機構距地面高度,mm;m為取苗深度,mm;n為移栽軌跡到秧箱的距離,mm;γ1為取苗過程變化角,(°);γ2為取苗角,(°);γ3為推苗角,(°);δ為秧箱與水平方向的夾角,(°)。
移栽機構的軌跡和姿態優化是一個多參數、強耦合的復雜優化問題。涉及主要優化參數36個,其中節曲線型值參數24個,結構參數12個。基于所建立的運動學模型,利用MATLAB軟件中的GUI模塊編寫輔助設計軟件[29-31],軟件界面如圖5所示,結合優化目標要求,通過調整設計變量,尋找優化目標的變化規律,從而獲得理想移栽軌跡和姿態所對應的各優化參數值。

圖5 移栽機構優化程序界面
由于本文中的非圓齒輪節曲線是用樣條曲線對12個型值點(首末點重合)進行擬合獲得。太陽輪1的節曲線型值點向徑表示為1,i(=1, 2, … , 12)。其他非圓齒輪的節曲線型值點向徑可表示為2,i,3,i,…依次類推。
分析發現,當改變第一級非圓齒輪向徑值時,向徑值1,1與1,11對移栽軌跡的形狀影響較大,如圖6a所示。在其余機構參數不變的情況下,向徑值1,1和1,11增大時,移栽軌跡的尖嘴軌跡長度增加,軌跡整體上移。向徑值1,1和1,11減小時,尖嘴軌跡長度減小,軌跡整體下移。
第二級非圓齒輪向徑值3,12是造成雙臂干涉的重要因素。在其他參數保持不變的條件下,當向徑值3,12減小時,軌跡整體上移,尖嘴軌跡部分插入缽穴和退出缽穴的軌跡線分離;當向徑值3,12增大時,軌跡整體下移,同時移栽軌跡變得不光滑,如圖6b所示。根據設計要求,行星圓齒輪中心軌跡最低點距移栽軌跡最低點距離過小會導致副行星架碰傷已移栽的缽苗或與地面產生干涉。
當曲柄初始角減小時,尖嘴段軌跡的2條曲線分離,影響取苗成功率。當曲柄初始角增大時,尖嘴軌跡出現交叉,夾片在缽穴內的縱向位移過大,容易導致缽土被夾片攪碎,如圖6c所示。
當主行星架初始安裝角增大時,軌跡繞機構轉動中心逆時針轉動。當主行星架初始安裝角減小時,軌跡繞機構轉動中心順時針轉動,如圖6d所示。因此,可以通過改變主行星架初始安裝角來調整移栽臂的姿態。
通過分析各參數對移栽軌跡形狀和姿態的影響,借助蔬菜缽苗移栽機構輔助設計軟件的可視化界面,優選滿足西芹取栽一體式移栽機構參數時,結合非圓齒輪凸性、大傳動比、軌跡形狀、作業姿態等要求獲得如表2所示的非圓齒輪節半徑和機構參數。

表2 移栽機構參數較優值
注:1,i(=1, 2, …, 12)為太陽輪型值點處的向徑值,mm;r3,i(=1, 2, …, 12)為中間非圓齒輪3型值點處的向徑值,mm。
Note:1,i(=1, 2, …, 12)is the radial diameter at the data point of sun gear, mm;3,i(=1, 2, …, 12)is the radial diameter at the data point of intermediate non-circular gear 3, mm.
根據表2中移栽機構參數得到的作業軌跡如圖7所示。面向西芹的移栽機構的優化目標參數如下:推苗角3=65°,取苗角2= 23°,取苗過程變化角16°取苗與推苗角度差Δ= 42°,移栽機構距地面高度2= 55 mm,可以保證齒輪箱與地面不接觸;移栽軌跡到缽盤的距離= 19 mm,避免取出的缽苗與秧盤的碰撞;取苗深度=33 mm,均達到了3.1節中的預期要求。西芹移栽的株距為220 mm,此時動軌跡的環扣高度= 125 mm,可防止移栽臂將已栽植好的缽苗撞倒。

圖6 機構參數對移栽軌跡的影響

注:D為西芹移栽株距,mm;h為移栽機構回轉中心距離地面高度,mm;,d為動軌跡的環扣高度,mm。
根據以上參數得到的移栽機構的總傳動比如圖8a所示,從圖中可以看出該移栽機構的總傳動比幅值可以達到4以上,實現了傳動比的大幅值變化,而且其傳動比出現了負值,此時移栽臂出現局部反轉現象(曲柄搖桿機構引起)。大幅變化的傳動比難以用傳統的單行星架輪系機構實現,可分解為曲柄搖桿機構傳動比(圖8b)和非圓齒輪系傳動比(圖8c),并由此得到滿足凸性要求的非圓齒輪節曲線,如圖9所示。因此非圓齒輪-連桿組合式蔬菜缽苗移栽機構可以在保證非圓齒輪節曲線凸性要求的同時獲得較長取苗尖嘴(33 mm)和低植苗點(距離轉動中心200 mm),實現取栽一體式移栽。
根據優化得到的移栽機構設計參數,進行機構結構設計與建模,各零件之間添加相應的約束,設置輸入轉速為360°/s,仿真時間1 s,進行運動軌跡仿真,得到如圖10所示的移栽機構工作軌跡。可以看出,仿真軌跡形狀以及取苗推苗等關鍵位置與前文的理論軌跡基本一致,證明了移栽機構理論分析的正確性。

圖8 移栽機構傳動比

圖9 非圓齒輪節曲線

圖10 仿真軌跡
為了進一步驗證理論設計的正確性,進行移栽機構臺架試驗。試驗設備有:Point Grey工業相機,自制試驗臺架,高速攝影分析軟件Blaster’s MAS。
將移栽機構安裝在臺架上并調試至初始位置,在移栽臂夾片尖點處作黑色標記,并放置色差明顯的背景,開啟電機,移栽機構的轉速為60 r/min,待運轉平穩,利用Point Grey工業相機拍攝移栽機構的運轉視頻。選取移栽機構運轉1個完整周期的視頻導入高速攝影分析軟件Blaster’s MAS中,在夾片尖點添加標記點,通過追蹤標記點將標記點順次連接得到移栽機構的試驗運動軌跡,如圖11所示。對比試驗軌跡與仿真軌跡(圖10),持苗軌跡部分的最大誤差約7 mm,取苗段與推苗段軌跡與仿真軌跡基本重合,誤差在2 mm之內,能夠滿足移栽作業的要求。試驗軌跡存在的誤差主要由制造安裝間隙和高速攝像軌跡跟蹤等原因引起。

圖11 試驗軌跡
從高速攝影分析軟件中選取機構取苗和推苗位置的圖像,如圖12所示,測量移栽機構在工作過程中的取苗角、推苗角,取苗過程變化角,判斷是否滿足移栽機構的姿態要求。在苗箱和水平面夾角=56°時,經測量得出移栽機的取苗角2= 23.55°,推苗角3= 66.57°,取苗過程變化角1= 16°,對比設計要求(10°<1< 20°,20°<2< 25°,3> 50°),物理樣機的運動軌跡和運動姿態達到了預期目標,同時也驗證了非圓齒輪-連桿組合式蔬菜缽苗移栽機構設計的合理性。

圖12 移栽姿態角度
1)根據蔬菜缽苗移栽的要求,針對現有單行星架輪系移栽機構的局限性,提出一種非圓齒輪行星輪系和連桿機構組合傳動的移栽機構。利用曲柄搖桿機構的變速擺動特性和非圓齒輪系的不等速傳動特性,實現取栽一體式的尖嘴形移栽軌跡。
2)建立非圓齒輪-連桿組合式蔬菜缽苗移栽機構的數學模型編寫了人機交互式機構輔助設計程序,分析了非圓齒輪節曲線型值點參數對軌跡形狀、姿態的影響,并獲得1組符合西芹缽苗取栽一體移栽要求的機構參數:移栽臂長度30 mm、秧針長度130 mm、曲柄長度24 mm、連桿長度20 mm、搖桿長度42 mm、主行星架初始安裝角41.2°、主行星架偏置角60°、2個行星架的初始安裝夾角20°、副行星架偏置角-25°、曲柄初始安裝角60°、移栽臂初始安裝角-30°。
3)設計完成移栽機構并進行樣機研制,對比分析仿真軌跡與臺架試驗軌跡,取苗段與推苗段軌跡與仿真軌跡基本重合,誤差在2 mm之內,滿足移栽作業的要求,驗證了非圓齒輪-連桿組合式蔬菜缽苗移栽機構設計方案的合理性和可行性。
[1] 肖體瓊,何春霞,崔思遠,等. 蔬菜生產機械化作業工藝研究[J]. 農機化研究,2016,38(3):259-262. Xiao Tiqiong, He Chunxia, Cui Siyuan, et al. Study on mechanization planting process of vegetable[J]. Agricultural Mechanization Research, 2016, 38(3): 259-262. (in Chinese with English abstract)
[2] 張波屏. 現代種植機械工程[M]. 北京:機械工業出版社,1997.
[3] 王盛春,鄭耘杰. 我國農業機械發展趨勢分析[J]. 河北農機,2012(6):44-52.
[4] 張冕,姬江濤,杜新武. 國內外移栽機研究現狀與展望[J]. 農業工程,2012,2(2):21-23. Zhang Mian, Ji Jiangtao, Du Xinwu. Status and prospect of transplanter at home and abroad[J]. Agricultural Engineering, 2012, 2(2): 21-23. (in Chinese with English abstract)
[5] 張雪琪,弋景剛,張秀花,等. 國內外蔬菜移栽機研究現狀及發展[J]. 河北農機,2018(4):39-40.
[6] Jin Xin, Ji Jiangtao, Huang Zizhai, et al. Seedling pick-up mechanism of five-bar combined with ordinary gear train[J]. International Agricultural Engineering Journal, 2017, 26(2): 151-158.
[7] 金鑫,姬江濤,劉衛想,等. 基于缽苗運動動力學模型的鴨嘴式移栽機結構優化[J]. 農業工程學報,2018,34(9):58-67.Jin Xin, Ji Jiangtao, Liu Weixiang, et al. Structural optimization of duckbilled transplanter based on dynamic model of pot seedling movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 58-67. (in Chinese with English abstract)
[8] 趙勻,劉星,薛向磊,等. 茄子缽苗全自動移栽機構優化設計與試驗[J]. 農業機械學報,2018,49(5):152-160.
Zhao Yun, Liu Xing, Xue Xianglei, et al. Optimal design and experiment of fully-automated potted eggplant seedling transplanting mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 152-160. (in Chinese with English abstract)
[9] 趙雄,沈明,陳建能,等. 棉花移栽機旋轉式取苗機構的運動學分析及虛擬試驗[J]. 農業工程學報,2014,30(8):13-20. Zhao Xiong, Shen Ming, Chen Jianneng, et al. Kinematic analysis and virtual experiment of rotary pick-up mechanism on cotton transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 13-20. (in Chinese with English abstract)
[10] 周梅芳,俞高紅,趙勻,等. 橢圓齒輪行星輪系蔬菜缽苗取苗機構的參數優化與試驗[J]. 農業工程學報,2014,30(18):13-21. Zhou Meifang, Yu Gaohong, Zhao Yun, et al. Parameter optimization and test on pick-up mechanism of planetary gear train with ellipse gears for vegetable plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 13-21. (in Chinese with English abstract)
[11] 孫廷琮,黃國彥,吳文福,等. 苗株全自動移栽機:CN1078847A[P]. 1993-12-01.
[12] 韓綠化,毛罕平,繆小花,等. 基于穴盤苗力學特性的自動取苗末端執行器設計[J]. 農業機械學報,2013,44(11):260-265. Han Lühua, Mao Hanping, Miao Xiaohua, et al. Design of automatic picking up seedling end-effector based on mechanical properties of plug seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 260-265. (in Chinese with English abstract)
[13] 俞高紅,廖振飄,徐樂輝,等. 大株距行星輪系蔬菜缽苗栽植機構優化設計與試驗[J]. 農業機械學報,2015,46(7):38-44. Yu Gaohong, Liao Zhenpiao, Xu Lehui, et al. Optimization design and test of large spacing planetary gear train for vegetable pot-seedling planting mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 38-44. (in Chinese with English abstract)
[14] 葉秉良,李麗,俞高紅,等. 蔬菜缽苗旋轉式取苗機構動力學分析與試驗[J]. 農業機械學報,2014,45(6):70-78. Ye Bingliang, Li Li, Yu Gaohong, et al. Dynamics analysis and test of rotary pick-up mechanism for vegetable pot-seedling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 70-78. (in Chinese with English abstract)
[15] 周梅芳,徐建軍,童俊華,等. 花卉穴盤苗取栽一體式自動移栽機構設計與試驗[J]. 農業工程學報,2018,34(20):44-51. Zhou Meifang, Xu Jianjun, Tong Junhua, et al. Design and experiment of integrated automatic transplanting mechanism for taking and planting of flower plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 44-51. (in Chinese with English abstract)
[16] 趙勻,樊福雷,宋志超,等. 反轉式共軛凸輪蔬菜缽苗移栽機構的設計與仿真[J]. 農業工程學報,2014,30(14):8-16. Zhao Yun, Fan Fulei, Song Zhichao, et al. Design and simulation of inverted vegetable pot seedling transplanting mechanism with conjugate cam[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14):8-16. (in Chinese with English abstract)
[17] Sun L, Mao S, Zhao Y, et al. Kinematic analysis of rotary transplanting mechanism for wide-narrow row pot seedlings[J]. Transactions of the ASABE, 2016, 59 (2): 475-485.
[18] Zhou M, Sun L, Du X, et al. Optimal design and experiment of rice pot seedling transplanting mechanism with planetary bezier gears[J]. Transactions of the ASABE, 2014, 57(6): 1537-1548.
[19] Xin L, Lv Z, Wang W, et al. Optimal design and development of a double-crank potted rice seedling transplanting mechanism[J]. Transactions of the ASABE, 2017, 60 (1): 31-40.
[20] 徐高偉,劉宏新,薦世春,等. 基于五桿機構的丹參膜上移栽機構設計與試驗[J]. 農業機械學報,2018,49(9):55-65. Xu Gaowei, Liu Hongxin, Jian Shichun, et al. Design and test of transplanting mechanism on mulch-film of salvia miltiorrhiza based on five-bar mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 55-65. (in Chinese with English abstract)
[21] Riaza H F Q, Nebot S J. The synthesis of an N-Lobe noncircular gear using Bézier and B-spline nonparametric curves in the design of its displacement law[J]. Journal of Mechanical Design, 2007, 129(9): 981-985.
[22] Figliolini G, Angeles J. Synthesis of the base curves for N-Lobed elliptical gears[J]. Journal of Mechanical Design, 2005, 127(5): 997-1005.
[23] 夏成林,鄔弘毅,鄭興國,等. 帶多個形狀參數的三次均勻B樣條曲線的擴展[J]. 工程圖學學報,2011,32(2):73-79. Xia Chenglin, Wu Hongyi, Zheng Xingguo, et al. Extension of uniform cubic B-Spline curves with multiple shape parameters[J]. Journal of Engineering Graphics, 2011, 32(2): 73-79. (in Chinese with English abstract)
[24] 孫良,祝建彬,陳建能,等. 基于球面曲線的空間非勻速行星輪系分插機構逆向設計[J]. 農業工程學報,2014,30(7):9-17.Sun Liang, Zhu Jianbin, Chen Jianneng, et al. Reverse design of transplanting mechanism with spatial planetary gear train based on spherical curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 9-17. (in Chinese with English abstract)
[25] 徐亞丹,孫良,武傳宇,等. 基于碼值矩陣的移栽用周轉輪系功能圖自動生成[J]. 農業機械學報,2018,49(8):91-99.Xu Yadan, Sun Liang, Wu Chuanyu, et al. Automatic generation of functional schematic of epicyclic gear trains for transplanting based on code value matrix[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 91-99. (in Chinese with English abstract)
[26] 趙勻. 機構數值分析與綜合[M]. 北京:機械工業出版社,2005.
[27] 俞高紅,俞騰飛,葉秉良,等. 一種旋轉式穴盤苗取苗機構的設計[J]. 機械工程學報,2015,51(7):67-76. Yu Gaohong, Yu Tengfei, Ye Bingliang, et al. Design of a rotary plug seedling pick-up mechanism[J]. Journal of Mechanical Engineering, 2015, 51(7): 67-76. (in Chinese with English abstract)
[28] 趙雄,王川,楊茂祥,等. 非圓齒輪行星輪系自動取苗機構逆向設計分析[J]. 農業工程學報,2015,31(16):30-36.
Zhao Xiong, Wang Chuan, Yang Maoxiang, et al. Reverse design and analysis of automatic seedling pick-up mechanism with non-circular gear planetary train[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 30-36. (in Chinese with English abstract)
[29] 張國鳳,胡群威. 基于滿意度原理的旋轉式分插機構多目標優化設計[J]. 農業工程學報,2012,28(9):22-28.Zhang Guofeng, Hu Qunwei. Multi-objective optimization design of rotary transplanting mechanism based on satisfactory degree theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(9): 22-28. (in Chinese with English abstract)
[30] Sun L, Chen X, Wu C Y, et al. Synthesis and design of rice pot seedling transplanting mechanism based on labeled graph theory[J]. Computers and Electronics in Agriculture, 2017, 143: 249-261.
[31] 李革,李輝,方明輝,等. 旋轉式分插機構非圓齒輪參數反求法求解[J]. 農業機械學報,2011,42(8):46-49. Li Ge, Li Hui, Fang Minghui, et al. Non-circular gear parameters of rotary transplanting mechanism calculated by reverse method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 46-49. (in Chinese with English abstract)
Design of non-circular gear linkage combination driving type vegetable pot seedling transplanting mechanism
Sun Liang1,2, Shen Jiahao1, Zhou Yuzhu1, Ye Zhizheng1, Yu Gaohong1, Wu Chuanyu1※
(1.,,310018,;2.,310018,)
Vegetable pot seedling transplantation has many advantages, such as high survival rate, promoting crop early maturity and improving land use rate. Mechanized transplanting of vegetable can be divided into semi-automatic transplanting and fully-automatic transplanting. Semi-automatic transplanting is mainly carried out by feeding the seedlings into the seedling transplanter manually, which has low efficiency and high labor intensity, and it is not conducive to field operations. At present, the automatic transplanting machine mainly adopts multiple mechanisms to complete a series of actions such as picking up seedling, conveying and planting, but it has the disadvantages of complex structure, high cost and low efficiency. In order to simplify the structure, the way to complete the transplanting operation with a single mechanism is proposed. However, due to the complicated working trajectory of transplanting vegetable seedling and much posture requirements, the transmission ratio of the mechanism is required to be changed greatly, which resulting in the irregular shape of the non-circular gear section of the single planetary gear is not conducive to processing and affects the transmission performance of the gear. A double-planetary non-circular gears linkage of vegetable pot seedling transplanting mechanism is proposed to solve the problem mentioned above in this paper. The transmission part of transplanting mechanism is composed of planetary gear train mechanism and crank rocker mechanism, The main planetary frame rotates at a uniform speed, through the transmission of internal gears and connecting rods, the unequal transmission of non-circular gear system and the periodic variable-speed swing of crank-rocker mechanism are superimposed, which makes the sub-planetary frame swing with respect to the main planetary frame and the transplanting arm rotate with respect to the sub-planetary frame, thus the transmission ratio needed to realize the complex transplanting trajectory and posture is obtained. Non-uniform B-spline curve is applied to fit the pitch curve of non-circular gear to obtain closed, smooth and continuous pitch curves, and the mathematical model of gear train is established based on coordinate transformation theory. Based on the development platform of Matlab, an optimization program is compiled to analyze the effect of transmission case noncircular gear pitch curve and crank rocker mechanism on the shape of trajectory. Further, the effects of the structure and position parameters of the gears and transplanting arm on the target parameters of the transplanting trajectory are analyzed. According to the requirements of 220 mm planting spacing, 120 mm seedling height and 40 mm deep pot for celery transplantation, a set of sharp beak trajectory that satisfies the requirements of the operation posture of picking up seedling and planting is optimized. The optimizing values are that the length of the picking up seedling trajectory is 33 mm, the distance from the lowest point of the trajectory to the lowest point of the planet carrier is 55 mm, the angle of picking up seedlings is 23°, the angle of change in the process of picking up seedlings is 16°, the angle of planting seedlings is 65°, the whole height of the trajectory is 355 mm, and the height of the buckle of the moving trajectory is 125 mm. A three-dimensional model of the mechanism is built and a virtual simulation is performed based on the optimization result. The results show that the simulated trajectory and velocity of the transplanting mechanism are basically consistent with the theoretical results. The trajectory and postures of the transplanting arm are analyzed by a test bench, industrial camera and image processing software. The results show that the trajectory of seedling-taking and seedling-pushing sections coincides with the simulation trajectory basically and the theoretical data, and the error is within 2 mm, which can meet the requirements of transplanting operation, the transplanting mechanism designed is reasonable and feasible.
agricultural machinery; transplants; design; variable speedswing; non-circular gear; gear-linkage; pot seedling transplanting
10.11975/j.issn.1002-6819.2019.10.004
S223.9
A
1002-6819(2019)-10-0026-08
2019-01-29
2019-02-26
國家重點研發計劃(2018YFD0700703);國家自然科學基金項目(51675487);浙江省自然科學基金項目(LY19E050021);浙江省151人才培養計劃項目;浙江省高校中青年學科帶頭人培養項目
孫 良,博士,副教授,主要從事農業機構設計與優化研究。Email:liangsun@zstu.edu.cn
武傳宇,博士,教授,主要從事農業機器人機構學研究。Email:cywu@zstu.edu.cn
孫 良,沈嘉豪,周譽株,葉治政,俞高紅,武傳宇. 非圓齒輪-連桿組合傳動式蔬菜缽苗移栽機構設計[J]. 農業工程學報,2019,35(10):26-33. doi:10.11975/j.issn.1002-6819.2019.10.004 http://www.tcsae.org
Sun Liang, Shen Jiahao, Zhou Yuzhu, Ye Zhizheng, Yu Gaohong, Wu Chuanyu. Design of non-circular gear linkage combination driving type vegetable pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 26-33. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.004 http://www.tcsae.org