楚天舒,韓魯佳,楊增玲
?
考慮種養平衡的黃淮海小麥-玉米模式下畜禽承載量估算
楚天舒,韓魯佳,楊增玲※
(中國農業大學工學院,北京 100083)
黃淮海地區作為中國種植業與養殖業優勢區,隨著國家對農作物秸稈和畜禽糞便所帶來農村環境問題的日益重視,研究該區域“以種定養”、實現種養業廢棄物資源化利用、踐行綠色發展理念顯得尤為重要。以區域種植業實際生產情況為基礎,確定典型種植模式下可施用畜禽糞便類有機肥量,經推導計算后確定區域畜禽養殖種類與數量。該文選取河北、河南和山東為黃淮海地區典型代表,在保障糧食產量和滿足農田環境風險評估的基礎上,研究小麥-玉米生產模式中,畜禽糞便類有機肥每年可施用量,經推導得到高溫好氧堆肥處理前的畜禽糞污資源量,進而計算得到每年可承載的不同種類畜禽養殖量。這樣既可滿足種植業生產的肥料需求,也能緩解養殖業糞污帶來的環境壓力。研究結果表明:黃淮海地區小麥-玉米生產模式中,每公頃農田每年可利用6頭奶牛或18頭肉牛或47~51頭生豬或731~789只蛋雞或8 062~8 705只肉雞糞便N量。在實際生產中,土壤肥力和土壤微生物等多因素影響有機肥可施用量,不同種類畜禽的農田承載量還需進一步優化。該研究為促進黃淮海地區種養結合提供一定的理論基礎。
作物;糞便;黃淮海地區;畜禽養殖;畜禽承載量
黃淮海地區作為中國主要種植業與養殖業優勢區,在種植業方面,黃淮海地區為小麥-玉米的輪作區[1]。據《中國統計年鑒2018》數據可知,2017年河北、河南和山東3省的小麥和玉米產量分別為7 704.4和6 867.8萬t,約占全國總產量的57%和27%。在養殖業方面,3省的豬肉、牛肉、羊肉、牛奶和禽蛋產量分別為1 185.8、166.5、92.2、807.4和1 229.7萬t,約占全國總產量的22%、26%、20%、27%和40%。該區域每年生產大量的農畜產品,但也帶來農作物秸稈和畜禽糞便等農村突出環境問題。2015年農業部印發《到2020年化肥使用量零增長行動方案》中指出“合理利用有機養分資源,用有機肥替代部分化肥”。2017年農業部印發《畜禽糞污資源化利用行動方案(2017—2020年)》中也指出“以種定養,根據土地承載能力確定畜禽養殖規模”。因此,在保障糧食產量和滿足農田環境風險評估的情況下,將適量的畜禽糞便資源化利用轉化成有機肥,替代生產中所需的部分化肥,即滿足小麥-玉米生產需求,也能推進畜禽糞便資源化利用,實現以種定養,有望成為治理該區域農村突出環境問題、踐行綠色發展[2]的途徑之一。
黃淮海地區農作物秸稈[3]和畜禽糞便[4-6]資源量的評估結果顯示,該地區農作物秸稈和畜禽糞便的資源量大、分布集中和農田環境污染風險大。在有機肥替代化肥的研究中,晁贏等[7]在中國農業科學院山東禹城試驗基地試驗發現,有機肥替代50%的氮肥(以N作為折算標準)能逐步提高小麥-玉米產量和經濟系數。張運龍[8]在中國農業大學曲周試驗站試驗發現,有機肥替代30%氮肥可維持小麥-玉米產量,提升土壤肥力,同時減少農田氮淋洗的風險。以上研究都證實了,黃淮海地區小麥-玉米生產模式中,有機肥替代部分氮肥,不影響糧食生產。在種養業協調方面,侯世忠等[9]對山東種養業廢棄物循環利用情況進行調研,發現其種植與養殖規模不匹配,還需進行科學規劃布局。石鵬飛等[10]以河北津龍循環農業園區為例,分析農場水平氮素流動情況,建議其降低氮肥施用、調整作物結構。因此,需要深入研究黃淮海地區種植業與養殖業的廢棄物循環利用,促進其協調發展。
目前為止,仍然缺乏針對黃淮海地區“以種定養”相關研究。因此,本文在保障糧食產量與滿足農田環境風險評估的情況下,以黃淮海地區小麥-玉米生產模式下可施用的有機肥為基礎,推導計算與分析出單位面積所能承載的不同種類畜禽養殖量,為其實現種養平衡,提供一定的理論基礎。
由于北京和天津農畜產品產量相對低,并且走都市型現代農業發展道路[11-12]。所以,本文選取河北、河南和山東三省為黃淮海地區的典型代表進行研究分析。
本文核心思路:本文以“以種定養”為研究核心思路。即在保障糧食產量和滿足農田環境風險評估的情況下,確定小麥-玉米生產可施用的有機肥量,計算出經過高溫好氧堆肥處理前的畜禽糞便量,進而推算出不同種類畜禽養殖量。
“以種定養”計算過程:首先,本文以河北、河南和山東的小麥和玉米生產技術標準、實地調研肥料施用量為基礎,確定三省小麥-玉米生產的氮肥施用量。進而,整理黃淮海地區有機肥替代氮肥的相關研究,在保障糧食產量的基礎上,找出適宜的有機肥替代氮肥的比例。以N為計算標準,確定有機肥N量。并且,考慮到農田環境風險防控,從農田養分平衡的角度出發,進行農田N環境風險分析。利用高溫好氧堆肥技術處理畜禽糞便產生有機肥,進而求得未資源化利用前的畜禽糞便N量。按照標準化規模畜禽養殖結構、產污系數和臨時堆積N損失率,求得不同種類畜禽的農田承載量。詳見下圖1。

圖1 研究思路簡圖
1.3.1 小麥-玉米生產模式下N肥用量
本文采用實地走訪、現場訪談和文獻調研的方法對河北、河南和山東小麥-玉米的生產現狀進行調研。近幾年,課題組成員在夏收和秋收期間,連續實地走訪了河北(石家莊、保定)、河南(安陽、濮陽、新鄉、周口)和山東(煙臺、淄博、泰安、棗莊)共計12個區(縣)25個村,與當地合作社負責人、種植大戶和農戶進行現場訪談詳細了解小麥-玉米實際生產現狀。并且,通過檢索地方標準數據庫,獲取河北[13-18]、河南[19-22]和山東[23-27]的小麥和玉米生產技術規程。就此,梳理出黃淮海地區小麥-玉米生產的簡要流程及肥料施用情況:耕整地(深松作業、施用基肥、旋耕)→小麥播種→田間管理(灌溉、除草、病蟲害防治)→小麥機械收獲與秸稈處理(機械粉碎還田)→玉米免耕播種(施肥)→田間管理(灌溉、除草、病蟲害防治)→玉米機械收獲與秸稈處理(機械粉碎還田)。并且,實際生產施用的肥料以化肥為主,其純N肥施用量詳見下表1。

表1 小麥-玉米生產N肥施用量
1.3.2有機肥替代N肥比例
本文通過對黃淮海地區小麥-玉米生產模式下有機肥替代N肥試驗結果進行整理歸納,該地區有機肥替代N肥比例25%~50%[8-9,28-32]。詳見表2。在保障糧食產量基礎上,兼顧現有各類研究成果,本研究選取有機肥替代比例為30%,施肥方式為秋施基肥[33]。

表2 黃淮海地區小麥-玉米生產模式下有機肥替代N肥試驗結果
有機肥N量計算公式如下
=×1(1)
式中為N肥總量,kg/hm2;為有機肥N量,kg/hm2;1為有機肥替代N肥比例,30%。
1.3.3 農田N環境風險分析
有機肥的施用對小麥-玉米生產有穩產、土壤培肥[34-37]的效果,但是同樣會帶來農田N素流失的風險[38]。蓋霞普等[39]在國家褐潮土肥力與肥料效益監測基地,進行了27 a的小麥-玉米的不同施肥處理試驗,同樣證實了有機肥的施用存在養分流失風險。因此,需要對小麥-玉米生產模式下農田N環境風險進行評價。采用現有標準方法[40]對農田N素輸入和輸出進行評估。黃淮海地區小麥-玉米生產過程中,N素的輸入量(包括N肥、有機肥、種子、秸稈還田、大氣干濕沉降和灌溉水)與N素的輸出量(籽粒和秸稈)的差值。若差值≤200 kg/hm2,無環境風險;200 kg/hm2<差值≤300 kg/hm2,低風險;300 kg/hm2<差值≤400 kg/hm2,中風險;差值>400 kg/hm2,高風險。
1.3.4 畜禽糞便量
本文采用高溫好氧堆肥工程技術將畜禽糞便轉化成有機肥,但在工程處理中存在N素損失的情況。通過對歸納與整理相關高溫好氧堆肥研究成果發現,豬糞氮損失42.62%,雞糞氮損失41.70%,牛糞氮損失43.16%,3種畜禽糞便N損失率不存在顯著性差異(=0.976),因此,取均值42.26%為畜禽糞便經過高溫好氧堆肥處理N損失率。詳見下表3。

表3 3種畜禽糞便高溫好氧堆肥處理N損失率
因此,高溫好氧堆肥處理前的畜禽糞便N量計算公式如下

式中為高溫好氧堆肥處理前的畜禽糞便N量,kg/hm2;2為高溫好氧堆肥處理N損失率,42.26%。
1.3.5 畜禽養殖量
根據標準化規模養殖生產模式,確定奶牛、肉牛、生豬、蛋雞和肉雞的種群結構[65]、飼養周期[66-67]、畜禽養殖產污系數[68]和畜禽糞便臨時堆積過程N損失率[69]。由于考慮到各個參數的可得性,奶牛飼養分為產奶與育成階段,肉牛飼養為育成階段,生豬飼養分為育肥、保育和妊娠階段,蛋雞飼養為產蛋與育成階段,肉雞飼養為育肥階段,詳見表4。
首先,由于不同畜禽的飼養周期等參數不一致,計算出某種畜禽的畜禽糞便初始N量。進而,利用高溫好氧堆肥前的畜禽糞便N量,反向求得對應不同種類畜禽的養殖量計算的公式如下


式中為畜禽糞便初始N量,kg;為畜禽飼養量,頭;c為畜禽的第飼養階段的比例,%;e為第飼養階段的畜禽糞便N量,kg/d;為第飼養階段的飼養周期,d;=1,2,3;為畜禽糞便臨時堆積過程N損失率,37.8%[69]。

表4 畜禽養殖量計算參數
由表1可知,河北、河南和山東的小麥-玉米生產模式下,N肥總量分別為532.5、562.5和575 kg/hm2。按照有機肥替代30%N肥,通過式(1)計算可得到,有機肥N量分別為159.75、168.75和172.5 kg/hm2。再按照“1.3.3農田N環境風險分析”中的方法對河北、河南和山東的小麥-玉米生產模式下農田N環境風險進行評價,種子量[13-27]、種子N含量[70-71]、大氣干濕沉降[72-74]、灌溉水用量[13-27]、灌溉水N含量[75-78]、籽粒產量[13-27]、籽粒N含量[70-71]、秸稈產量(通過籽粒產量與草谷比[79]換算可得)、秸稈N含量[80]等數據帶入計算,得到風險評價結果:河北、河南和山東均為中等環境風險,結果詳見下表5。

表5 農田N環境風險評價結果
由于河北、河南和山東3省農田N環境風險均處于中等風險等級,因此,需分析3省的農田N輸入現狀,為后續找尋降低環境風險的備選方案提供基礎資料。從3省農田N輸入比例圖(圖2)可知,3省農田N輸入結構相似,3省平均化肥約占46.3%,秸稈還田約占27.5%,有機肥約占19.8%,大氣干濕沉降約占4.0%,灌溉水約占2.0%,種子約占0.4%。由此可見,農田N輸入主要是由肥料N和秸稈還田N構成。

圖2 農田N輸入比例圖
由于肥料N直接關系到農作物生產與產量,因此,本文考慮從農作物秸稈還田N著手分析。在農田調查與農戶訪談中,不少種植戶和農機合作社負責人反映農作物秸稈還田增加土壤有機質,這與相關研究結果相符合[81]。但與此同時,秸稈還田也帶來下茬作物病蟲害增加,導致農藥施用量與次數增多,進而農資投入與機械作業成本增加。尤其玉米秸稈量大,處理難度也大。鑒于當下政策導向和缺乏其他輕簡化秸稈處理途徑,大部分種植戶采用秸稈還田的措施處理農作物秸稈,但對農作物秸稈離田處理同樣支持。因此,基于上文研究的有機肥替代30%N肥的施肥情況下,本文模擬分析不同秸稈還田量下農田環境風險變化趨勢。將玉米秸稈和小麥秸稈還田比例分別設定為100%、50%和0,進而計算得到對應的農田N環境風險評價結果,詳見下表6。從3省農田N環境風險評價結果可分析得知,減少小麥秸稈和玉米秸稈還田量,進而減少秸稈還田N輸入量,可將農田N環境風險從中風險降至低風險或無風險。因此,部分秸稈還田處理,并施用適量的有機肥,是具有一定的理論可行性的方案,但仍需進行大田試驗分析與驗證。

表6 不同模擬方案下農田N環境風險評價結果
在有機肥替代30%N肥的情況下,按照式(2)計算可得,河北、河南和山東的畜禽糞便N量分別為286.60、302.74和309.47 kg/hm2。進而,按照式(3)和式(4)計算可得到:黃淮海地區小麥-玉米生產模式下,每公頃農田可利用6頭奶牛或18頭肉牛或47~51頭生豬或731~789只蛋雞或8 062~8 705只肉雞的畜禽糞便N量,詳見下表7。每公頃農田可承載禽類(蛋雞和肉雞)的養殖量明顯多于畜類(奶牛、肉牛和生豬),這主要受到畜類生產周期長與日畜禽糞便排放量大的影響。其中,肉雞養殖量最大,主要是由于其45 d的飼養周期相對最短。

表7 有機肥替代30%N肥情況下農田可承載畜禽養殖量
查閱《中國統計年鑒2018》數據可知,2017年河北、河南和山東3省小麥-玉米種植面積約為1 037.24萬hm2。因此,可推算出2017年黃淮海地區小麥-玉米生產模式下,若采用有機肥替代30%N肥,該地區農田可承載約6 479.68萬頭奶牛或18 927.89萬頭肉牛或51 972.37萬頭生豬或798 617.10萬只蛋雞或8 801 743.97萬只肉雞。
當下研究[82-84]常采用某個地區種植業與養殖業的統計數據推算出該地區畜禽糞便量與農田承載力,即從省或市(縣)的大尺度上,研究其種養業是否平衡。而本文以“以種定養”的思路為基礎,從種植業的角度出發,在農田尺度上,選擇黃淮海地區典型的小麥-玉米生產模式為研究對象,分析在保障糧食產量的情況下,有機肥替代N肥的量,進而求得農田可承載的不同種類畜禽量。其關鍵在于種植業中有機肥替代化肥量的確定,本文將30%的有機肥替代化肥比例作為黃淮海地區小麥-玉米生產模式的推薦參考值,但在實際生產中由于不同農田土壤肥力(土壤養分[85]、土壤物理性狀[86])、土壤微生物種類與數量[87-89]和氣候條件[90]等因素影響,有機肥可施用量有所變化。因此,在實際生產中,有機肥替代比例還需要根據生產基礎條件進一步優化,進而可計算得到更加準確的不同種類畜禽的農田承載量。
本文對黃淮海地區小麥-玉米生產模式下,構建“以種定養”計算過程,并歸納總結現有研究成果確定了有機肥替代量和高溫好氧堆肥處理N損失率等計算系數,進而計算與分析得到對應所能承載的各類畜禽養殖量,得到以下結論:
在保障糧食產量和滿足農田環境風險評估的情況下,黃淮海地區小麥-玉米生產模式中,每公頃農田可承載6頭奶牛或18頭肉牛或47~51頭生豬或731~789只蛋雞或8 062~8 705只肉雞。在實際生產中,土壤肥力和土壤微生物等多因素影響有機肥可施用量,不同種類畜禽的農田承載量還需進一步優化。
[1] 戈大專,龍花樓,李裕瑞,等.城鎮化進程中我國糧食生產系統多功能轉型時空格局研究:以黃淮海地區為例[J]. 經濟地理,2018,38(4):147-156,182.
Ge Dazhuan, Long Hualou, Li Yurui, et al. The spatio-temporal pattern of multifunctional transformation of China's grain production system in the process of urbanization: The case of Huang-Huai-Hai plain[J]. Economic(in Chinese with English abstract)
[2] 新華網. 中央農村工作會議在北京舉行習近平作重要講話[EB/OL]. (2017-12-29) [2018-11-01] http://www.xinhuanet.com/ politics/leaders/2017-12/29/c_1122187923.htm.
[3] 方放,李想,石祖梁,等. 黃淮海地區農作物秸稈資源分布及利用結構分析[J]. 農業工程學報,2015,31(2):228234.
Fang Fang, Li Xiang, Shi Zuliang, et al. Analysis on distribution and use structure of crop straw resources in Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 228234. (in Chinese with English abstract)
[4] 趙路. 黃淮海地區畜禽糞尿氮素資源利用及其環境效應研究[D]. 保定:河北農業大學,2009.
Zhao Lu. The Utilization and Environmental Effects of Livestock Waste Nitrogen in Huang Huaihai[D]. Baoding: Hebei Agricultural University, 2009. (in Chinese with English abstract)
[5] 侯世忠,張淑二,戰汪濤,等. 山東畜禽糞便產生量估算及其環境效應研究[J]. 中國人口·資源與環境,2013,23(S2):7881.
Hou Shizhong, Zhang Shuer, Zhan Kuangtao, et al. Estimated yield and environmental effect of dung produced by poultry and livestock in Shandong Province[J]. China Population Resources and Environment, 2013, 23(S2): 7881. (in Chinese with English abstract)
[6] 付強,吳根義,潘鵬,等. 2000-2014年河南畜養產污核算及規律分析[J]. 農業環境科學學報,2017,36(7):1323-1329.
Fu Qiang, Wu Genyi, Pan Peng, et al. Analysis of livestock and poultry waste generation from 2000-2014 in Henan[J]. Journal of Agro-Environment Science, 2017, 36(7): 13231329. (in Chinese with English abstract)
[7] 晁贏,李絮花,趙秉強,等. 有機無機肥料長期配施對作物產量及氮素吸收利用的影響[J]. 山東農業科學,2009,47(3):71-75.
Chao Ying, Li Xuhua, Zhao Bingqiang, et al. Effects of long-term combined application of organic and inorganic fertilizers on crop yield and nitrogen uptake[J]. Shandong Agricultural Sciences, 2009, 47(3): 71-75. (in Chinese with English abstract)
[8] 張運龍. 有機肥施用對冬小麥—夏玉米產量和土壤肥力的影響[D]. 北京:中國農業大學,2017.
Zhang Yunlong. Effect of Organic Fertilizer on Yield of Winter Wheat-Summer Maize and Soil Fertility[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)
[9] 侯世忠,楊景晁,曲緒仙,等. 山東種養業廢棄物循環利用情況調查與對策分析[J]. 中國畜牧雜志,2016,52(24):30-34.
Hou Shizhong, Yang Jingchao, Qu Xuxian, et al. Investigation and analysis on planting and breeding situation of recycling waste management in Shandong province[J]. Chinese Journal of Animal Science, 2016, 52(24): 3034. (in Chinese with English abstract)
[10] 石鵬飛,趙平,趙吉祥,等.種養一體化循環農業園區的接口技術及其生態經濟效益分析[J]. 中國農業資源與區劃,2016,37(12):167172.
Shi Pengfei, Zhao Ping, Zhao Jixiang, et al. Analysis of interfacing technology and eco-economic benefits of the integrated agricultural industry park[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(12): 167172. (in Chinese with English abstract)
[11] 北京市農村工作委員會. 北京市“十二五”時期都市型現代農業發展規劃[EB/OL]. (2012-06-15)[2018-11-01] http://www.bjnw.gov.cn/zfxxgk/ghjh/201206/t20120615_299284.html.
[12] 李瑾,鞏前文. 新形勢下天津都市型現代農業發展思路研究[J]. 中國農業資源與區劃,2011,32(1):44-50.
Li Jin, Gong Qianwen. Development Thought on modern agriculture in Tianjin urban under the new situation[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(1): 44-50. (in Chinese with English abstract)
[13] 河北省質量技術監督局.小麥玉米節水、豐產一體化栽培技術規程第1部分:山前平原區:DB13/T924.1-2008[S]. 2008-03-26.
[14] 河北省質量技術監督局.小麥玉米節水、豐產一體化栽培技術規程第2部分:黑龍港地區:DB13/T924.2-2008[S]. 2008-03-26.
[15] 河北省質量技術監督局. 小麥玉米節水、豐產一體化栽培技術規程第3部分:冀東地區:DB13/T924.3-2008 [S]. 2008-03-26.
[16] 河北省質量技術監督局. 冬小麥、夏玉米全程機械化技術規程:DB13/T2004-2014[S]. 2014-01-25.
[17] 河北省質量技術監督局. 冬小麥-夏玉米一年兩熟制高產田土壤耕作技術規程:DB13/T2217-2015[S]. 2015-11-06.
[18] 河北省質量技術監督局. 冬小麥-夏玉米生育期優化配置生產技術規程:DB13/T2285-2015[S]. 2015-12-25.
[19] 河南省質量技術監督局.豫北灌區小麥玉米一體化高產高效栽培技術規程:DB41/T 871-2013[S]. 2013-12-25.
[20] 河南省質量技術監督局.豫中南補灌區小麥玉米一體化高產高效栽培技術規程:DB41/T 872-2013[S].2013-12-25.
[21] 河南省質量技術監督局.玉米全程機械化栽培技術規程:DB41/T 1397-2017 [S].2017-07-07.
[22] 河南省質量技術監督局.豫東地區小麥抗逆應變栽培技術規程:DB41/T 1399-2017 [S].2017-07-07.
[23] 山東省質量技術監督局.小麥玉米周年標準化生產技術規程:DB37/T 2940-2017 [S].2017-04-14.
[24] 山東省質量技術監督局.小麥、玉米一年兩熟保護性耕作技術規程:DB37/T 2919-2017 [S].2017-02-10.
[25] 山東省質量技術監督局.夏玉米機械化生產技術規程:DB37/T 2284-2013 [S].2013-04-01.
[26] 山東省質量技術監督局.冬小麥-夏玉米節水省肥高產高效生產技術規程:DB37/T 2270-2013 [S].2013-04-01.
[27] 山東省質量技術監督局.小麥玉米一體化高產高效生產技術規程:DB37/T 1889-2011 [S].2011-06-01.
[28] 李燕青,林治安,溫延臣,等.不同類型有機肥與化肥配施對小麥品質的影響[J].植物營養與肥料學報,2016,22(6):1513-1522.
Li Yanqing, Lin Zhian, Wen Yanchen, et al. Effects of combined application of chemical fertilizers with different sources of organic manure on the grain quality of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1513-1522. (in Chinese with English abstract)
[29] 邢鵬飛,高圣超,馬鳴超,等. 有機肥替代部分無機肥對華北農田土壤理化特性、酶活性及作物產量的影響[J]. 中國土壤與肥料,2016,53(3):98-104.
Xing Pengfei, Gao Shengchao, Ma Mingchao, et al. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in the north China plain.[J].Soil and Fertilizer Sciences in China, 2016, 53(3): 98-104. (in Chinese with English abstract)
[30] 李占. 有機肥和化肥不同配施比例對冬小麥—夏玉米產量和品質的影響[D]. 泰安:山東農業大學,2013.
Li Zhan. Effects of Combined Application of Organic and Chemical Fertilizers on Yield and Quality of Winter Wheat and Summer Maize[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[31] 孫文彥,趙秉強,田昌玉,等. 氮肥類型和用量對冬小麥品質的影響[J]. 植物營養與肥料學報,2013,19(6):1297-1311.
Sun Wenyan, Zhao Bingqiang, Tian Changyu, et al. Effects of nitrogen fertilizer types and input rates on winter wheat quality[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1297-1311. (in Chinese with English abstract)
[32] 黃婷,荀衛兵,張瑞福.長期不同施肥對北方旱地輪作土壤有機質和作物產量影響的抽樣調查[J]. 浙江農林大學學報,2017,34(2):253-260.
Huang Ting, Xun Weibing, Zhang Ruifu. Soil organic matter and crop yield with long-term fertilization schemes for an upland crop rotation in northern China[J]. Journal of Zhejiang A&F University, 2017, 34(2): 253-260. (in Chinese with English abstract)
[33] 何翠翠,李貴春,尹昌斌. 華北冬小麥-夏玉米系統有機態氮替代的產量及肥料效應[J]. 中國土壤與肥料,2018,55(1):43-48.
He Cuicui, Li Guichun, Yin Changbin. Manure nitrogen substitution in autumn base fertilizer improved grain yields of winter wheat summer maize system[J]. Soil and Fertilizer Sciences in China, 2018, 55(1): 43-48. (in Chinese with English abstract)
[34] 李忠芳,徐明崗,張會民,等. 長期施肥下中國主要糧食作物產量的變化[J]. 中國農業科學,2009,42(7):2407-2414.
Li Zhongfang, Xu Minggang, Zhang Huimin, et al. Grain yield trends of different food crops under long-term fertilization in China[J]. Scientia Agricultura Sinica, 2009, 42(7): 2407-2414. (in Chinese with English abstract)
[35] 賈中濤,王文亮,湯建華,等. 畜禽糞便有機肥與氮肥配施對玉米土壤性狀的影響[J]. 環境科學與技術,2015,38(S1):34-39.
Jia Zhongtao, Wang Wenliang, Tang Jianhua, et al. Effect of animal manure organic fertilizer and nitrogen combined application on maize soil physical & chemical properties[J]. Environmental Science & Technology, 2015, 38(S1): 34-39. (in Chinese with English abstract)
[36] 劉世亮,劉晨旭,劉紅恩,等. 畜禽糞便有機肥與氮肥配施對小麥土壤理化性狀及酶活性影響[J]. 西北農業學報,2014,23(8):45-51.
Liu Shiliang, Liu Chenxu, Liu Hongen, et al. Effect of animal manure organic fertilizer and nitrogen combined application on maize soil physical & chemical properties[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(8): 45-51. (in Chinese with English abstract)
[37] 劉恩科,趙秉強,胡昌浩,等. 長期施氮、磷、鉀化肥對玉米產量及土壤肥力的影響[J].植物營養與肥料學報,2007,13(5):789-794.
Liu Enke, Zhao Bingqiang, Hu Changhao, et al. Effects of long-term nitrogen, phosphorus and potassium fertilizer applications on maize yield and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 789-794. (in Chinese with English abstract)
[38] 徐云連,馬友華,吳蔚君,等. 農田中有機肥氮磷流失的研究[J]. 中國農學通報,2017,33(14):75-80.
Xu Yunlian, Ma Youhua, Wu Weijun, et al. Nitrogen and phosphorus loss under organic fertilizer application in farmland[J]. Chinese Agricultural Science Bulletin, 2017, 33(14): 75-80. (in Chinese with English abstract)
[39] 蓋霞普,劉宏斌,翟麗梅,等. 長期增施有機肥/秸稈還田對土壤氮素淋失風險的影響[J]. 中國農業科學,2018,51(12):2336-2347.
Gai Xiapu, Liu Hongbin, Zhai Limei, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. (in Chinese with English abstract)
[40] 北京市質量技術監督局.農田氮磷環境風險評價:DB11/T 749-2010[S]. 2010-09-25.
[41] 趙秋,張明怡,劉穎,等. 豬糞堆肥過程中氮素物質轉化規律研究[J]. 黑龍江農業科學,2008,30(2):58-60.
Zhao Qiu, Zhang Mingyi, Liu Ying, et al. Study on the nitrogen transforming regulation during the pig dung compost[J]. Heilongjiang Agricultural Sciences, 2008, 30(2): 58-60. (in Chinese with English abstract)
[42] 姜繼韶,黃懿梅,黃華,等. 豬糞秸稈高溫堆肥過程中碳氮轉化特征與堆肥周期探討[J]. 環境科學學報,2011,31(11):2511-2517.
Jiang Jishao, Huang Yimei, Huang Hua, et al. Carbon and nitrogen dynamics and stabilization time of a straw compost[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2511-2517. (in Chinese with English abstract)
[43] 姜繼韶. 豬糞秸稈高溫堆肥添加劑的選擇及其保氮機理的研究[D]. 楊凌:西北農林科技大學,2012.
Jiang Jishao. Study on Selection and Mechanism of Nitrogen Conservation Additives During Swine Manure-Straw Composts[D]. Yanglin: Northwest A&F University, 2012. (in Chinese with English abstract)
[44] 羅一鳴,李國學,Frank Schuchardt,等. 過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J]. 農業工程學報,2012,28(22):235-242.
Luo Yiming, Li Guoxue, Frank Schuchardt, et al. Effect of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 235-242. (in Chinese with English abstract)
[45] 秦莉,沈玉君,李國學,等. 不同C/N比對堆肥腐熟度和含氮氣體排放變化的影響[J]. 農業環境科學學報,2009,28(12):2668-2673.
Qin Li, Shen Yujun, Li Guoxue, et al. The impact of composting with different C/N on maturity variation and emission of gas concluding N[J]. Journal of Agro-Environment Science, 2009, 28(12): 2668-2673. (in Chinese with English abstract)
[46] 史春梅,王繼紅,李國學,等. 不同化學添加劑對豬糞堆肥中氮素損失的控制[J]. 農業環境科學學報,2011,30(5):1001-1006.
Shi Chunmei, Wang Jihong, Li Guoxue, et al. Control of different chemical additives on nitrogen loss during composting of pig manure[J]. Journal of Agro-Environment Science, 2011, 30(5): 1001-1006. (in Chinese with English abstract)
[47] 李丹陽,李恕艷,李國學,等.添加劑對豬糞秸稈堆肥的氮素損失控制效果[J]. 農業工程學報,2016,32(增刊2):260-267.
Li Danyang, Li Shuyan, Li Guoxue, et al. Effects of additive on nitrogen loss during composting of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 260-267. (in Chinese with English abstract)
[48] 江滔,常佳麗,馬旭光,等. 堆肥中不同氮素原位固定劑的綜合比較研究[J]. 農業環境科學學報,2018,37(2):369-375.
Jiang Tao, Chang Jiali, Ma Xuguang, et al. Comprehensive comparison of different nitrogen in situ conservation agents during composting[J]. Journal of Agro-Environment Science, 2018, 37(2): 369-375. (in Chinese with English abstract)
[49] 張生偉,黃旺洲,姚拓,等. 高效微生物除臭劑在畜禽糞便堆制中的應用效果及其除臭機理研究[J]. 草業學報,2016,25(9):142-151.
Zhang Shengwei, Huang Wangzhou, Yao Tuo, et al. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism[J]. Acta Prataculturae Sinica, 2016, 25(9): 142-151. (in Chinese with English abstract)
[50] 姜繼韶,堯倩. 酸性物質對豬糞秸稈堆肥過程中氮素轉化的影響[J]. 環境科學,2017,38(3):1272-1278.
Jiang Jishao, Yao Qian. Effects of acidic materials on the N transformations during the composting of pig manure and wheat straw[J]. Environmental Science, 2017, 38(3): 1272-1278. (in Chinese with English abstract)
[51] 曹云,黃紅英,孫金金,等. 超高溫預處理對豬糞堆肥過程碳氮素轉化與損失的影響[J]. 中國環境科學,2018,38(5):1792-1800.
Cao Yun, Huang Hongying, Sun Jinjin, et al. Effect of hyperthermerphilic pretreatment on transformation and losses of C and N during pig manure composting[J]. China Environmental Science, 2018, 38(5): 1792-1800. (in Chinese with English abstract)
[52] 胡明勇,劉強,榮湘民,等. 物理調理劑在豬糞堆肥中的除臭及保氮效果研究[J]. 湖南農業科學,2008,37(3):85-89.
[53] 胡明勇,劉強,陳雄鷹,等. 兩種鈣化合物在豬糞-稻草堆肥中除臭及保氮效果研究[J]. 湖南農業科學,2009,38(7):51-54.
[54] 翁俊基. 過磷酸鈣在豬糞堆肥過程中的保氮效果研究[J].安徽農業科學,2012,40(8):4528-4529,4617.
Weng Junji. Nitrogen conservation of calcium superphosphate in swine manure compost[J]. Journal of Anhui Agri Sci, 2012, 40(8): 4528-4529, 4617. (in Chinese with English abstract)
[55] 魏宗強,羅一鳴,吳紹華,等. 添加沸石對雞糞高溫堆肥磷鉀徑流及淋洗損失的影響[J].農業環境科學學報,2012,31(12):2486-2492.
Wei Zongqiang, Luo Yiming, Wu Shaohua, et al. Effects of zeolite addition on the loss of phosphorus and potassium through runoff and leaching in poultry manure composting[J]. Journal of Agro-Environment Science, 2012, 31(12): 2486-2492. (in Chinese with English abstract)
[56] 魏宗強,李吉進,吳紹華. 露天雞糞好氧堆肥氮素的徑流及淋洗損失[J]. 水土保持學報,2011,25(2):44-47.
Wei Zongqiang, Li Jijin, Wu Shaohua. Nitrogen loss in chicken manure compost through runoff and leaching[J]. Journal of Soil and Water Conservation, 2011, 25(2): 44-47. (in Chinese with English abstract)
[57] 葉素萍. 農牧業固體廢棄物堆肥化處理過程中氮素損失調控技術的研究[D]. 北京:中國農業大學,2000.
Ye Suping. Studies on the Technologies of Control Nitrogen Loss During Composting of Solid Wastes of Agriculture and Domestic Animal[D]. Beijing: China Agricultural University, 2000. (in Chinese with English abstract)
[58] 黃懿梅,曲東,李國學. 調理劑在雞糞鋸末堆肥中的保氮效果[J]. 環境科學,2003,24(2):156-160.
Huang Yimei, Qu Dong, Li Guoxue. Effect of Adding Amendments on Preserving Nitrogen during Chicken Manure and Saw Composting[J]. Environmental Science, 2003, 24(2): 156-160. (in Chinese with English abstract)
[59] 賀琪,李國學,張亞寧,等. 高溫堆肥過程中的氮素損失及其變化規律[J]. 農業環境科學學報,2005,25(1):169-173.
He Qi, Li Guoxue, Zhang Yaning, et al. N Loss and its characteristics during high temperature composting[J]. Journal of Agro-Environment Science, 2005, 25(1): 169-173. (in Chinese with English abstract)
[60] 張生偉,黃旺洲,姚拓,等. 高效微生物除臭劑在畜禽糞便堆制中的應用效果及其除臭機理研究[J]. 草業學報,2016,25(9):142-151.
Zhang Shengwei, Huang Wangzhou, Yao Tuo, et al. Effects of efficient microbial deodorizer in livestock manure composting and its deodorizing mechanism[J]. Acta Prataculturae Sinica, 2016, 25(9): 142-151. (in Chinese with English abstract)
[61] 魏宗強,李吉進,鄒國元,等. 不同覆蓋措施對雞糞堆肥氨揮發的影響[J]. 水土保持學報,2009,23(6):108-111.
Wei Zongqiang, Li Jijin, Zou Guoyuan, et al. Influence of different cover materials on NH3volatilization from chicken manure composting[J]. Journal of Soil and Water Conservation, 2009, 23(6): 108-111. (in Chinese with English abstract)
[62] 閆榮榮. 雞糞堆肥過程中的氮素轉化及損失控制[J]. 山西大同大學學報:自然科學版,2016,32(3):44-47.
Yan Rongrong. Nitrogen transformation and loss control in composting of chicken manure[J]. Journal of Shanxi Datong University: Natural Science Edition, 2016, 32(3): 44-47. (in Chinese with English abstract)
[63] 李吉進. 畜禽糞便高溫堆肥機理與應用研究[D]. 北京:中國農業大學,2004.
Li Jijin. Study on Mechanism of High Temperature Composting of Livestock Manure and Its Application[D]. Beijing: China Agricultural University, 2004. (in Chinese with English abstract)
[64] 朱海生,左福元,董紅敏,等. 堆體規模對牛糞堆肥氨氣和溫室氣體排放的影響[J]. 西北農林科技大學學報:自然科學版,2018,46(5):77-84.
Zhu Haisheng, Zuo Fuyuan, Dong Hongmin, et al. Effect of pile scale on emissions of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A & F University: Natural Science Edition, 2018, 46(5): 77-84. (in Chinese with English abstract)
[65] 姚繼廣. 畜禽標準化規模養殖[M]. 北京:中國農業科學技術出版社,2011.
[66] 林源,馬驥,秦富. 中國畜禽糞便資源結構分布及發展展望[J]. 中國農學通報,2012,28(32):1-5.
Lin Yuan, Ma Ji, Qin Fu. The structure distribution and prospect of china manure resource[J]. Chinese Agricultural Science Bulletin, 2012, 28(32): 1-5. (in Chinese with English abstract)
[67] 王方浩,馬文奇,竇爭霞,等. 中國畜禽糞便產生量估算及環境效應[J]. 中國環境科學,2006,26(5):614-617.
Wang Fanghao, Ma Wenqi, Dou Zhengxia, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614-617. (in Chinese with English abstract)
[68] 農業部. 第一次全國污染源普查畜禽養殖業產排污系數手冊[Z]. 2009.
[69] 賈偉,李宇虹,陳清,等. 京郊畜禽糞肥資源現狀及其替代化肥潛力分析[J]. 農業工程學報,2014,30(8):156-167.
Jia Wei, Li Yuhong, Chen Qing, et al. Analysis of nutrient resources in livestock manure excretion and its potential of fertilizers substitution in Beijing suburbs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 156-167. (in Chinese with English abstract)
[70] 中國疾病預防控制中心營養與食品安全所. 中國食物成分表第一冊·第2版[M]. 北京:北京大學醫學出版社,2009.
[71] 中國農業科學院北京畜牧獸醫研究所.中國飼料成分及營養價值表(第28 版)[EB/OL]. (2017-10-10) [2018-11-01] http://www.chinafeeddata.org.cn/picture/pdf/CFIC2017.pdf.
[72] 宋敏. 增加降水及大氣氮沉降對黃淮海平原棄耕地地表節肢動物的影響[J]. 應用生態學報,2016,27(11):3682-3688.
Song Min. Effects of increased precipitation and nitrogen deposition on ground-active arthropods in an old-field of Huang-huai-hai Plain[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3682-3688. (in Chinese with English abstract)
[73] 尹興,張麗娟,劉學軍,等. 河北平原城市近郊農田大氣氮沉降特征[J]. 中國農業科學,2017,50(4):698-710.
Yin Xing, Zhang Lijuan, Liu Xuejun, et al. Nitrogen deposition in suburban croplands of Hebei Plain[J]. Scientia Agricultura Sinica, 2017, 50(4): 698-710. (in Chinese with English abstract)
[74] 張穎,劉學軍,張福鎖,等. 華北平原大氣氮素沉降的時空變異[J]. 生態學報,2006,26(6):1633-1639.
Zhang Ying, Liu Xuejun, Zhang Fusuo, et al. Spatial and temporal variation of atmospheric nitrogen deposition in North China Plain[J]. Acta Ecologica Sinica, 2006, 26(6): 1633-1639. (in Chinese with English abstract)
[75] 胡春勝. 中國生態系統定位觀測與研究數據集·農田生態系統卷·河北欒城站[M]. 北京:中國農業出版社,2011.
[76] 歐陽竹.中國生態系統定位觀測與研究數據集·農田生態系統卷·山東禹城站[M]. 北京:中國農業出版社,2010.
[77] 張佳寶,汪金舫. 中國生態系統定位觀測與研究數據集·農田生態系統卷·河南封丘站[M]. 北京:中國農業出版社,2010.
[78] 王和洲. 中國生態系統定位觀測與研究數據集·農田生態系統卷·河南商丘站[M]. 北京:中國農業出版社,2010.
[79] 國家發展和改革委員會. 國家發展改革委辦公廳農業部辦公廳關于印發編制“十三五”秸稈綜合利用實施方案的指導意見的通知[EB/OL]. (2017-11-24) [2018-11-01] http://www.ndrc.gov.cn/zcfb/zcfbtz/201612/t20161207_829417.html.
[80] 牛文娟. 主要農作物秸稈組成成分和能源利用潛力[D].北京:中國農業大學,2015.
Niu Wenjuan. Physicochemical Composition and Energy Potential of Main Crop Straw and Stalk[D]. Being: China Agricultural University, 2015. (in Chinese with English abstract)
[81] 張靜,溫曉霞,廖允成,等. 不同玉米秸稈還田量對土壤肥力及冬小麥產量的影響[J]. 植物營養與肥料學報,2010,16(3):612-619.
Zhang Jing, Wen Xiaoxia, Liao Yuncheng, et al. Effects of different amount of maize straw returning on soil fertility and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(3): 612-619. (in Chinese with English abstract)
[82] 鄭莉,張晴雯,張愛平,等. 山東省畜禽糞污土地承載力時空分異特征分析[J]. 農業環境科學學報,2019,38(4):882-891.
Zheng Li, Zhang Qingwen, Zhang Aiping, et al. The spatial and temporal distribution features of the land bearing capacity for livestock manure in Shandong Province, China[J]. Journal of Agro-Environment Science, 2019, 38(4): 882-891. (in Chinese with English abstract)
[83] 劉剛,張春義,趙福平,等. 黃土高原畜禽養殖結構及土地承載力分析[J]. 家畜生態學報,2017,38(12):73-77.
Liu Gang, Zhang Chunyi, Zhao Fuping, et al. Analysis on structure of livestock and poultry farming and land carrying capacity of Loess Plateau: Taking Qingyang city of Gansu province as an example[J]. Acta Ecologiae Animalis Domastici, 2017, 38(12): 73-77. (in Chinese with English abstract)
[84] 馬良,邱寒峰,張曉萍,等. 桐鄉市畜禽養殖糞便產生量估算及農田承載力分析[J]. 浙江農業科學,2017,58(10):1798-1800.
[85] 焦利衛. 施肥對小麥-玉米輪作條件下土壤養分、微生物和酶活性的影響[D]. 天津:河北工業大學,2010.
Jiao Liwei. Effects of Fertilization on Soil Nutrients, Soil Microbes and Soil Enzyme Activities of Wheat-Maize Rotation[D]. Tianjin: Hebei University of Technology, 2010. (in Chinese with English abstract)
[86] 陸太偉,蔡岸冬,徐明崗,等. 施用有機肥提升不同土壤團聚體有機碳含量的差異性[J]. 農業環境科學學報,2018,37(10):2183-2193.
Lu Taiwei, Cai Andong, Xu Minggang, et al. Variation in sequestration of organic carbon associated with differently sized aggregates after organic manure application[J]. Journal of Agro-Environment Science, 2018, 37(10): 2183-2193. (in Chinese with English abstract)
[87] 艾超. 長期施肥下根際碳氮轉化與微生物多樣性研究[D].北京:中國農業科學院,2015.
Aichao. Carbon and Nitrogen Transformations and Microbial Diversity in the Rhizosphere Soil under Long-term Fertilization Practices[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[88] 劉振香,劉鵬,賈緒存,等. 不同水肥處理對夏玉米田土壤微生物特性的影響[J]. 應用生態學報,2015,26(1):113-121.
Liu Zhenxiang, Liu Peng, Jia Xucun, et al. Effects of irrigation and fertilization on soil microbial properties in summer maize field[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 113-121. (in Chinese with English abstract)
[89] 武曉森,杜廣紅,穆春雷,等. 不同施肥處理對農田土壤微生物區系和功能的影響[J]. 植物營養與肥料學報,2014,20(1):99-109.
Wu Xiaosen, Du Guanghong, Mu Chunlei, et al. Effects of different fertilization on structure and function of soil bacterial community[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 99-109. (in Chinese with English abstract)
[90] 王慧穎,徐明崗,馬想,等. 長期施肥下我國農田土壤微生物及氨氧化菌研究進展[J]. 中國土壤與肥料,2018,55(2):1-12.
Wang Huiying, Xu Minggang, Ma Xiang, et al. Research advances of microorganism and ammonia oxidizing bacteria under long term fertilization in Chinese typical cropland[J]. Soil and Fertilizer Sciences in China, 2018, 55(2): 1-12. (in Chinese with English abstract)
Livestock carrying capacity estimation in wheat-corn production model of Huang-Huai-Hai Region considering planting-raising balance
Chu Tianshu, Han Lujia, Yang Zengling※
(100083)
Huang-Huai-Hai region is the major superiority area of planting industry and breeding industry in China. With the increasing attention to the rural environment problems caused by crop straw and livestock manures, it is important to analyze “raising by planting” in Huang-Huai-Hai region, realize agricultural waste comprehensive utilization, and implement green development. “Raising by planting” was the core idea of this paper. The “raising by planting” calculation methods were as follow. First, technical regulations for production of wheat-corn and field research results in Hebei, Henan and Shandong provinces were used to summarize production model of wheat-corn in Huang-Huai-Hai region. So the conventional fertilization could be defined. According to test results of researches, this paper determined the amount of partial replacement of chemical fertilizer by organic manures. At the same time, thermophilic aerobic composting was chosen as techniques of livestock manure comprehensive utilization. The untreated amount of livestock manures was calculated. Then, the quantities of different species of livestock and poultry were calculated. According to the technical regulations, the amount of nitrogenous fertilizer were 532.5, 562.5 and 575 kg/hm2in Hebei, Henan and Shandong provinces. The ratio of partial replacement of chemical fertilizer by organic manures was 30%. So the amount of replacement were 159.75, 168.75 and 172.5 kg/hm2. At the same time, there were no influence on grain security after the replacement of chemical fertilizer by organic manures. Due to the additional application of organic manures promoted soil nitrogen leaching risk, the environmental risk assessment of nitrogen in arable farmland was used. Nitrogen input mainly consisted of nitrogenous fertilizer, organic manure converted from livestock manures, seed, straw returning, atmospheric dry and wet deposition and irrigation water. Nitrogen output mainly consisted of grain and straw. Grade of environment risk in farmland in Hebei, Henan and Shandong provinces were all medium risk. Nitrogen loss rate of thermophilic aerobic composting fromlivestock and poultry manures was 42.26%. Other calculation parameters of livestock and poultry production, such as feeding period, population structure, were defined by many research papers. So in production model of wheat-corn in Huang-Huai-Hai Region, 6 dairy cows, or 18 beef cattle, or 47 to 51 swine, 731 to 789 laying hens or 8062 to 8705 broilers per hectare were land carrying capacity. Besides, at the field scale, various factors, such as soil fertility and soil microbial, might affect the ratio of partial replacement of chemical fertilizer by organic manures. So more researches were needed in the amount of replacement. On account of medium environment risk in farmland, lowering the risks was necessary. Nitrogen input structure: 46.3% chemical fertilizer, 27.5% straw returning, 19.8% organic manure, 4.0% atmospheric dry and wet deposition, 2.0% irrigation water and 0.4% seed. So reducing straw returning was one of risk solutions. In simulation results, reducing corn stalk or wheat straw both lowered environment risk effectively. The results provide a reference for planting and raising combination in Huang-Huai-Hai region.
crop; manures; Huang-Huai-Hai region; livestock and poultry breeding; livestock carrying capacity
2018-11-04
2019-05-28
國家奶牛產業技術體系(CARS36);教育部創新團隊發展計劃項目(IRT-17R105);國家重點研發計劃(2016YFE0204600)
楚天舒,博士生,主要從事生物質工程研究。Email:chuts@cau.edu.cn
楊增玲,教授,博士,博士生導師,主要從事生物質工程研究。Email:yangzengling@cau.edu.cn
10.11975/j.issn.1002-6819.2019.11.025
S19
A
1002-6819(2019)-11-0214-09
楚天舒,韓魯佳,楊增玲. 考慮種養平衡的黃淮海小麥-玉米模式下畜禽承載量估算[J]. 農業工程學報,2019,35(11):214-222. doi:10.11975/j.issn.1002-6819.2019.11.025 http://www.tcsae.org
Chu Tianshu, Han Lujia, Yang Zengling. Livestock carrying capacity estimation in wheat-corn production model of Huang-Huai-Hai Region considering planting-raising balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 214-222. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.025 http://www.tcsae.org