張蘭河,鄭 晶,田 蕊,陳子成,郭靜波,賈艷萍,李 正,張 健
?
Na+和K+共存對A2/O工藝脫氮除磷效果及污泥性質的影響
張蘭河1,2,鄭 晶1,田 蕊1,陳子成1※,郭靜波3,賈艷萍1,李 正1,張 健1
(1. 東北電力大學化學工程學院,吉林 132012; 2.吉林建筑大學松遼流域水環境教育部重點實驗室,長春 130118;3. 東北電力大學建筑工程學院,吉林 132012)
為了揭示多種金屬離子共存的含鹽廢水生物處理系統污染物的去除機制和污泥特性,考察Na+、K+共存對A2/O工藝污染物去除率、污泥性質和微生物群落的影響,采用高通量測序技術分析了厭氧區、缺氧區和好氧區的微生物群落結構,結合脫氮除磷效果和污泥性質的變化,探討不同Na+/K+摩爾比下A2/O工藝優勢種群的演替規律,以期從微生物角度明確Na+、K+共存對含鹽廢水污染物去除率的影響。結果表明:當進水Na+/K+摩爾比分別為2、1和0.5時,A2/O工藝的COD去除率分別為80%、84%和86%,TN去除率分別為73%、77%和80%,K+濃度的提高緩解了Na+對COD和TN去除率的抑制作用;厭氧區釋磷率分別為70%、73%和74%,缺氧區吸磷率分別為53%、55%和58%,好氧區吸磷率分別為70%、72%和75%。隨著進水Na+/K+摩爾比的降低,厭氧區、缺氧區和好氧區微生物群落的豐富度和多樣性降低,微生物群落差異顯著,變形菌門的相對豐度均升高約30%,擬桿菌門和綠彎菌門相對豐度逐漸降低。陶氏菌屬和固氮弧菌屬作為優勢菌屬,其相對豐度逐漸增大,有利于氮磷污染物的去除。通過增加K+的濃度有利于提高氮、磷去除率,增強污泥的生物絮凝性和反硝化聚磷菌的活性。
金屬離子;廢水;污泥;生物反應器;微生物群落結構;鹽度
食品加工、制革、紡織、水產養殖和石油生產等過程中均會產生大量的含鹽廢水[1]。含鹽廢水進入污水處理廠與活性污泥接觸后,影響活性污泥的沉降性、微生物活性和群落結構,導致污染物去除率發生變化。Na+是污水中最常見的低價鹽類離子,高Na+鹽度能夠大大降低微生物的豐富度和多樣性,導致酸類、酯類等有機污染物去除率和活性污泥的沉降性能下降,低Na+鹽度下的微生物群落與高Na+鹽度下的微生物群落差異性顯著[2-4]。低Na+鹽度對A2/O工藝缺氧區污泥的絮凝性產生促進作用,亞硝酸氧化菌(nitrite-oxidizing bacteria,NOB)對Na+鹽度的耐受能力低于氨氧化菌(ammonia-oxidizing bacteria,AOB);無論是Na+鹽度升高或降低時,亞硝酸鹽積累率均升高[5-6],Na+鹽度影響自養菌的硝化作用[2]。采用膜生物反應器處理水產養殖廢水時發現,Na+鹽度逐漸增大會使膜生物反應器的處理能力變差,導致短程硝化反硝化現象的發生,但是有利于提高耐鹽微生物的豐度[7]。
一些學者也研究了K+對活性污泥的影響。在廢水中溫厭氧消化時,K+能減緩Na+鹽度對厭氧菌的抑制作用,有效提高厭氧消化的甲烷產量和化學需氧量(chemical oxygen demand,COD)去除率,保持厭氧微生物的形態,提高厭氧微生物的活性[8]。當Na+和K+鹽度均為30 g/L時,升流式厭氧污泥床反應器中COD降解受到抑制[9-10],K+和Na+降低了顆粒污泥和絮狀污泥的產甲烷活性,Na+的鹽抑制常數高于K+。低濃度的K+不會抑制酶活性,有利于污染物去除率的提高[11]。在SBR反應器中,當K+添加量為40 mg/L時,可以促進廢水中COD的去除;當K+添加量為100 mg/L時,可以促進廢水中氨氮的去除[12]。這些研究主要分析了單一運行條件下Na+、K+對好氧微生物或厭氧微生物活性和污染物去除率的影響,但是關于不同Na+/K+摩爾比、不同運行條件下(厭氧、缺氧和好氧)的微生物群落如何變化,以及Na+、K+共存條件下影響有機物去除和脫氮作用的主要菌群及其分布規律尚不明確。
A2/O工藝由厭氧區、缺氧區和好氧區組成,通過溶解氧的不斷變化可實現同步脫氮除磷[13]。本研究分別提取不同Na+/K+摩爾比條件下A2/O工藝厭氧、缺氧和好氧區的活性污泥總DNA,并對其16S rDNA V4區進行了PCR擴增和擴增產物的高通量測序分析,研究不同Na+/K+摩爾比條件下A2/O工藝厭氧區、缺氧區和好氧區微生物群落的變化,分析鹽類金屬離子對COD去除和脫氮除磷效率的影響,探索含鹽廢水生物脫氮除磷機理。
活性污泥取自吉林市污水處理廠二沉池。A2/O反應器(圖1)采用有機玻璃制成,有效容積為48 L,其中厭氧區和缺氧區有效容積均為12 L,好氧區有效容積為24 L。厭氧區和缺氧區配有攪拌器,好氧區底部安裝曝氣頭,采用折流方式運行。裝置內部由隔板分為6部分,其中1個厭氧區,2個缺氧區,4個好氧區,好氧區的部分混合液回流至缺氧區。采用豎流式二沉池,容積為5 L。A2/O反應器連續運行,污泥回流比為50%,硝化液回流比為100%;混合液懸浮固體(mixed liquor suspended solids,MLSS)為3 000~4 000 mg/L,水力停留時間(hydraulic retention time,HRT)為8 h,溫度為17~25 ℃。污泥馴化過程中按C:N:P=100:5:1的比例加入營養物質,以滿足微生物的生長需求。當污染物達到穩定去除效果后,采用逐步增加鹽度負荷的方法進行耐鹽污泥的培養,以降低鹽度沖擊對微生物造成的毒害。

圖1 A2/O工藝流程示意圖
試驗用水采用模擬城市生活污水,實際城市生活污水COD、TN和TP一般為250~800、20~70和3~12 mg/L,故配水的主要成分為:無水乙酸鈉(1.2 g/L)、氯化銨(0.25 g/L)、磷酸二氫鉀(0.05 g/L)、硫酸鎂(0.05 g/L)和氯化鈣(0.01 g/L)。培養微生物所需的微量元素,主要成分為:氯化鈷(0.42 mg/L)、鉬酸鈉(0.15 mg/L)、硫酸錳(0.13 mg/L)、氯化鐵(0.37 mg/L)和硫酸銅(0.1 mg/L)。本研究進水NaCl濃度保持穩定,Na+濃度為0.2 mol/L;K+濃度采用KCl調控,K+濃度分別為0.1、0.2和0.4 mol/L,不同K+濃度下的進水pH值均為7.5~8.0。在Na+/K+摩爾比分別為2、1和0.5條件下,考察Na+/K+對A2/O工藝反硝化除磷效果和生物絮凝性的影響。
1.2.1 樣品采集
反應器達到穩定運行后,對污泥進行取樣分析。當進水Na+/K+為2、1和0.5時,YM2、YM1和YM0.5分別代表厭氧區的污泥樣品,QM2、QM1和QM0.5分別代表缺氧區的污泥樣品,HM2、HM1和HM0.5分別代表好氧區的污泥樣品。
1.2.2 樣品測定
采用CTAB法提取活性污泥樣品中的DNA,利用瓊脂糖凝膠電泳檢測DNA純度和濃度。以稀釋后的樣品基因組DNA作為模板,采用515F-806R對16S rDNA的V4區進行PCR擴增,擴增產物采用Illumina Miscq平臺進行測序。所用酶和緩沖液均采用New England Biolabs公司生產的Phusion? High-Fidelity PCR Master Mix with GC Buffer;反應條件:98 ℃預變性1 min,然后30個循環(98 ℃變性10 s,50 ℃退火30 s,72 ℃延伸30 s),最后72 ℃延伸5 min。利用New England Biolabs公司生產的NEB Next? UltraTMDNA Library Prep Kit for Illumina試劑盒進行文庫構建,再經過Qubit定量和文庫檢測合格后,利用HiSeq進行上機測序,分析污泥樣品的微生物群落結構。
1.2.3 數據分析
利用Uparse (V7.0.1001)軟件進行聚類分析;利用Qiime(V1.9.1)軟件計算Chao1、ACE、Shannon、Simpson等指數[14]。
Chao1指數采用式(1)計算。

式中1為Chao1指數;obs為測序分析得到的物種數;1為樣本中數量為1的數目;2為樣本中數量為2的數目。
ACE指數采用式(2)、(3)計算。


式中ACE為ACE指數;rare為含有“abund”條序列或少于“abund”條序列的OTU(optical transform unit)數目;n為含有條序列的OTU數目;abund為多于“abund”條序列的OTU數目;abund默認為10。
Shannon指數采用式(4)計算。

式中為Shannon指數;P為樣品中屬于第種個體的比例。
Simpson指數采用式(5)計算。

式中為Simposon指數;為物種數目。
利用R(V2.15.3)軟件進行Beta多樣性指數組間差異分析。
采用多參數水質測定儀(北京連華永興科技發展公司,LH-3BA)分析COD、TN和TP濃度;采用原子吸收光譜儀(日本島津公司,AA-7000)分析污水中Na+、K+濃度;Zeta電位采用微電泳儀(上海中晨數字技術設備有限公司,JS94H2)檢測;脫氫酶活性采用TTC比色法測定[15];在反應器的每個運行周期結束,利用缺氧區的活性污泥分析不同條件下反硝化聚磷菌與聚磷菌(DPAOs/PAOs)的比例[16-17],首先取1 L缺氧區污泥置于三角瓶中,沉降10 min后棄去上清液,污泥再經過2.5 h厭氧攪拌后,平均分成2份:①投加KNO3,缺氧條件下運行3 h;②好氧條件下運行3 h。試驗過程中,每隔30 min取樣分析PO43--P和NO3--N的變化,最大缺氧吸磷速率與最大好氧吸磷速率的比值(PURanmax/PURomax),即為DPAOs/PAOs比例。
厭氧區釋磷率采用式(6)計算。

式中S為厭氧區釋磷率,%;TPY為厭氧區總磷濃度,mg/L;TPJ為進水總磷濃度,mg/L。
缺氧區吸磷率采用式(7)計算。

式中X為缺氧區吸磷率,%;TPQ為缺氧區總磷濃度,mg/L。
好氧區吸磷率采用式(8)計算。

式中X為好氧區吸磷率,%;TPH為好氧區總磷濃度,mg/L。
厭氧區COD去除率計算方法

缺氧區COD去除率計算方法

好氧區COD去除率計算方法

Na+、K+共存對A2/O工藝污染物去除率的影響,如圖2所示。隨著進水K+濃度的提高,COD去除率增大。當進水Na+/K+摩爾比為2時,總COD去除率為80%,厭氧區、缺氧區和好氧區COD去除率分別為43%、35%和47%,Na+對COD去除率產生明顯的抑制作用。Na+在維持細胞滲透壓和膜電位平衡等方面起著重要作用,過高的鹽濃度會導致細胞膜電位的紊亂[18]。外界環境Na+濃度過高,微生物胞內滲透壓低于胞外,細胞失水,從而影響微生物胞內酶的活性,細胞失活。當進水Na+/K+摩爾比為1時,總COD去除率為84%,厭氧區、缺氧區和好氧區COD去除率分別為47%、36%和51%,隨著K+濃度的升高,嗜鹽微生物通過吸收K+來平衡外界的Na+鹽度環境;當進水Na+/K+摩爾比為0.5時,總COD去除率為86%,厭氧區、缺氧區和好氧區COD去除率繼續升高,分別為50%、40%和53%。在維持微生物細胞的滲透壓方面,K+對細胞膜通透性的影響大于Na+,一些耐鹽微生物的蛋白質和酶需要較高的K+濃度才能維持正常的功能和結構[19]。微生物主要通過細胞內積累大量的K+排出Na+[20],保持細胞內外的滲透壓平衡和離子平衡,減緩高濃度Na+對細胞結構和功能的破壞[21],進而實現微生物的耐鹽,K+的增加有利于COD的去除。

圖2 Na+、K+共存對A2/O工藝污染物去除率的影響
當進水Na+/K+摩爾比為2時,TN去除率為73%,厭氧區、缺氧區和好氧區TN去除率分別為47%、36%和30%;當進水Na+/K+摩爾比為1時,TN去除率升高至77%,厭氧區、缺氧區和好氧區分別為50%、38%和32%,較高的K+濃度(>50 mg/L)可以減輕Na+對脫氮微生物的抑制作用[22],當進水Na+/K+摩爾比為0.5時,TN去除率達到80%,厭氧區、缺氧區和好氧區的TN去除率升高至53%、39%和35%。本課題組的前期研究表明,Na+濃度的增大(0、10、40 g/L)對硝化和反硝化過程均產生抑制作用[2]。本研究中,隨著進水K+濃度的升高,TN去除率呈增大趨勢,適量的K+可起到促進硝化菌和反硝化菌生長的作用,有效提升微生物的脫氮能力,K+的增加有利于TN的去除。
隨著進水Na+/K+摩爾比的降低,A2/O工藝TP去除率逐漸增大。當Na+/K+摩爾比為2時,TP去除率為60%,厭氧區釋磷率為70%,缺氧吸磷率和好氧吸磷率分別為53%和70%;當Na+/K+摩爾比為1時,TP去除率為62%,厭氧區釋磷率為73%,缺氧吸磷率和好氧吸磷率分別為55%和72%;當Na+/K+摩爾比為0.5時,TP去除率為65%,厭氧區釋磷率為74%,缺氧吸磷率和好氧吸磷率分別為58%和75%。有研究表明,隨著鹽度的增加,聚磷菌受到的抑制作用增大[23]。本研究發現,隨著Na+/K+摩爾比的降低,反硝化聚磷菌所占比例增加,反硝化除磷效率提高。K+濃度的提高有利于反硝化聚磷菌數量的增加,缺氧區反硝化除磷污泥的活性逐漸增強,Na+/K+為2、1、0.5時,DPAOs/PAO分別為43%、45%、和46%。
在不同Na+/K+條件下,厭氧區、缺氧區和好氧區污泥脫氫酶活性的變化,如圖3所示。可以看出,同時投加Na+、K+抑制脫氫酶活性,但隨著進水Na+/K+摩爾比的降低,脫氫酶活性呈上升趨勢。當進水Na+/K+摩爾比為2時,厭氧區、缺氧區和好氧區脫氫酶活性分別為58.3、58.7和59.4 mg/(L·h),仍低于無Na+、K+運行條件下的厭氧區、缺氧區和好氧區脫氫酶活性(分別為62.5、62.3和63.6 mg/(L·h))[24]。當進水Na+/K+摩爾比為1時,脫氫酶活性升高,厭氧區、缺氧區和好氧區脫氫酶活性分別為56.3、59.1和60.3 mg/(L·h);當進水Na+/K+摩爾比為0.5時,脫氫酶活性分別為57.1、59.9和60.7 mg/(L·h)。K+濃度的增加有利于缺氧區和好氧區脫氫酶活性的提高,污染物去除率上升。

圖3 不同Na+/K+摩爾下A2/O厭氧區、缺氧區和好氧區污泥的脫氫酶活性
Na+/K+摩爾比對Zeta電位的影響,如表2所示。可以看出,隨著進水Na+/K+摩爾比的下降,厭氧區、缺氧區和好氧區污泥的Zeta電位均呈上升趨勢。有研究表明,K+比Na+更容易被吸附,隨著進水K+的逐漸增多,污泥絮體所吸附的正電荷增多,引起Zeta電位的升高[25]。圖4表明,隨著進水K+濃度的增大,粒徑與重絮凝(flocculation ability,FA)呈增長趨勢,污泥生物絮凝性逐漸增強,Na+對污泥的解絮能力受到抑制[26-27]。

表2 不同Na+/K+摩爾比條件下Zeta電位的變化

圖4 Na+/K+摩爾比對A2/O反應器不同區域污泥粒徑和重絮凝的影響
2.3.1 Na+、K+共存對微生物多樣性的影響
本課題組的前期研究表明,Na+質量濃度的增大(0、10、40 g/L)導致微生物多樣性逐漸降低,微生物群落生長受到抑制[2]。不同Na+/K+摩爾比下A2/O工藝厭氧區、缺氧區和好氧區微生物多樣性的變化,如表3所示。Chao指數和ACE指數可以表示物種豐富度的高低,數值越高,豐富度越高;Shannon指數和Simpson指數可以表示物種多樣性的變化,數值升高,多樣性升高。隨著進水Na+/K+摩爾比的下降,厭氧區、缺氧區和好氧區中Chao指數、ACE指數、Shannon指數和Simpson指數均降低,群落豐富度和物種多樣性降低,各區常見物種均減少。這可能是因為進水K+濃度升高導致不能適應K+鹽度變化的微生物被淘汰,微生物多樣性降低;但是,污染物去除率并未降低(圖2所示)。由此可見,微生物多樣性并不一定是含鹽污水污染物去除的主要制約因素。有研究表明,K+鹽度增加,微生物群落生長受到抑制,微生物多樣性逐漸降低[28-30]。

表3 微生物多樣性的變化
注:YM2、YM1、YM0.5、QM2、QM1、QM0.5、HM2、HM1和HM0.5分別代表Na+/K+為2、1、0.5時采集的厭氧區、缺氧區、好氧區的污泥樣品,下同。
Note: YM2, YM1, YM0.5, QM2, QM1, QM0.5, HM2, HM1 and HM0.5 represent sludge samples collected in anaerobic, anoxic and oxic zones when the Na+/K+molar ratios are 2, 1 and 0.5, respectively, the same below.
2.3.2 Na+、K+共存對A2/O工藝微生物差異性的影響
當進水Na+/K+摩爾比分別為2、1和0.5時,厭氧區、缺氧區和好氧區污泥樣品間的微生物群落差異,如圖5所示。通過主坐標分析(principal coordinate analysis,PCo A)和非度量多維尺度分析(non-metric multidimensional scaling,NMDS)比較不同生態系統的Beta多樣性變化,反映單個樣品間是否存在群落差異[31-32]。每一個點代表一個樣本,一個區域表示一個分組,兩點之間距離越近表明兩者的群落結構差異越小。根據圖5a、b,隨著進水Na+/K+摩爾比的降低,樣品間距離加大,樣品分布在不同空間位置上,表明污泥樣品微生物群落間具有顯著差異。
根據OTU聚類和微生物豐度對樣品進行聚類分析,結果如圖5c所示。隨著進水Na+/K+摩爾比的降低,微生物群落出現分支,K+的增加導致微生物群落之間的差異性增大,這與Beta多樣性分析結果相一致;結合A2/O工藝對污染物去除率的變化(圖2)可知,進水Na+/K+摩爾比對污染物去除率和微生物群落具有顯著影響。
2.3.3 Na+、K+共存對A2/O工藝微生物群落優勢菌的影響
選取門、屬2個級別對微生物群落結構進行分析。A2/O工藝不同區域活性污泥在門水平上的微生物群落相對豐度,如圖6a所示。在所有污泥樣品中,變形菌門()均為優勢菌門,相對豐度最高。當進水Na+/K+摩爾比為2、1和0.5時,厭氧區、缺氧區和好氧區中變形菌門的相對豐度升高(升高約30%);擬桿菌門()相對豐度逐漸降低,厭氧區擬桿菌門相對豐度由20.6%降低至9.6%,缺氧區擬桿菌門相對豐度由18.2%降低至8.5%,好氧區擬桿菌門相對豐度由20.0%降低至7.1%,擬桿菌門不僅在水環境中廣泛存在[33],還是厭氧消化的主要菌門之一。綠彎菌門()作為具有較強污染物降解能力的主要菌門,其相對豐度降低,厭氧區綠彎菌門相對豐度由9.5%下降至2.0%,缺氧區綠彎菌門相對豐度由4.3%下降至3.6%,好氧區綠彎菌門相對豐度由7.6%下降至1.9%。為優勢菌門之一,厭氧區相對豐度由2.8%下降至1.0%,缺氧區相對豐度由1.9%下降至0.9%,好氧區相對豐度由2.7%下降至0.7%。

圖5 微生物群落結構的差異性

圖6 微生物物種相對豐度
圖6b為優勢菌屬水平上的微生物群落分析。隨著進水Na+/K+的變化,厭氧區、缺氧區和好氧區陶氏菌屬()的相對豐度逐漸增大,始終為各區域的優勢菌屬。當Na+/K+摩爾比分別為2、1和0.5時,厭氧區陶氏菌屬的相對豐度分別為17.4%、29.3%和43.2%,缺氧區陶氏菌屬的相對豐度分別為22.6%、41.3%和42.9%,好氧區陶氏菌屬的相對豐度分別為18.8%、37.6%和51.1%。陶氏菌屬作為具有廣泛污染物降解能力的菌屬,其相對豐度的增大有利于污染物去除率的提高,這與污染物去除率變化相一致。陶氏菌屬和固氮弧菌屬()均為反硝化過程中的重要菌屬[34-35]。隨著進水Na+/K+摩爾比的降低,固氮弧菌屬相對豐度逐漸增大,厭氧區、缺氧區和好氧區固氮弧菌屬的相對豐度分別由2.1%、2.6%和2.2%增加至4.8%、4.2%和6.0%,從而促進反硝化的進行。同時,隨著進水Na+/K+摩爾比的降低,參與反硝化的陶氏菌屬和固氮弧菌屬增多,未知菌屬所占比例減少,有利于污染物的去除。
1)隨著進水Na+/K+摩爾比的下降,化學需氧量、總氮和總磷去除率升高,A2/O工藝反硝化除磷效率逐漸增強。雖然同時投加Na+和K+對A2/O工藝污染物去除產生抑制作用,但進水K+濃度的增加緩解了Na+對微生物的抑制能力。
2)隨著進水Na+/K+摩爾比的下降,厭氧區、缺氧區和好氧區的Zeta電位、污泥粒徑和重絮凝性呈上升趨勢,污泥絮凝性升高,高濃度的K+濃度緩解了Na+的解絮行為。
3)隨著進水Na+/K+摩爾比的下降,厭氧區、缺氧區和好氧區的微生物群落豐富度和多樣性降低,微生物的群落結構差異顯著。優勢菌門始終為變形菌門、擬桿菌門、綠彎菌門、厚壁菌門和綠菌門,陶氏菌屬相對豐度的增大有利于污染物去除率的提高,固氮弧菌屬相對豐度的提高有利于促進反硝化的進行。
[1] Church J, Hwang J H, Kim K T, et al. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production[J]. Bioresource Technology, 2017, 243: 147-153.
[2] 張蘭河,田蕊,陳子成,等. NaCl鹽度對A2/O工藝去除廢水污染物和系統微生物的影響[J]. 農業工程學報,2018,34(10):231-237.
Zhang Lanhe, Tian Rui, Chen Zichen, et al. Effects of NaCl salinity on wastewater pollutants removal and microorganism in A2/O technology process[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(10): 231-237. (in Chinese with English abstract)
[3] 張崇淼,馬宇超,牛全睿,等. 漸增NaCl對印染廢水處理系統活性污泥微生物的影響[J]. 工業水處理,2017,37(2):33-37.
Zhang Chongmiao, Ma Yuchao, Niu Quanrui, et al. Influences of gradual-increase NaCl on the activated sludge microbes in dyeing wastewater treatment systems[J]. Industrial Water Treatment, 2017, 37(2): 33-37. (in Chinese with English abstract)
[4] Wu G, Guan Y, Zhan X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J].Water Science & Technology, 2008, 58(2): 351-358.
[5] 趙凱峰,王淑瑩,葉柳,等. NaCl鹽度對耐鹽活性污泥沉降性能及脫氮的影響[J]. 環境工程學報,2010,4(3):570-574.
Zhao Kaifeng, Wang Shuying, Ye Liu, et al. Effects of salinity on salt-tolerant activated sludge settling performance and nitrogen removal[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 570-574. (in Chinese with English abstract)
[6] Mannina G, Capodici M, Cosenza A, et al. Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity[J]. Bioresource Technology, 2016, 209: 205-212.
[7] Hong J, Li W, Lin B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316(5): 23-30.
[8] Li J, Shi W, Jiang C, et al. Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater[J]. Bioresource Technology, 2018, 266: 68-74.
[9] 鄒小玲,許柯,夏興華,等. NaCl和KCl鹽度對厭氧污泥的馴化及對比產甲烷活性的影響[J]. 中國沼氣,2009,27(3):23-25.
Zou Xiaoling, Xu Ke, Xia Xinghua, et al. NaCl and KCl salinity acclimations of anaerobic sludge and their effects on specific methanogenic activity[J]. China Biogas, 2009, 27(3): 23-25. (in Chinese with English abstract)
[10] 鄒小玲,許柯,丁麗麗,等. NaCl和KCl對厭氧污泥抑制的動力學研究[J]. 化工環保,2009,29(5):394-397.
Zou Xiaoling, Xu Ke, Ding Lili, et al. Kinetics study of inhibiting action of NaCl and KCl on anaerobic sludge[J]. Environmental Protection of Chemical Industry, 2009, 29(5): 394-397. (in Chinese with English abstract)
[11] LiuL, Yan H, Tan W, et al. Influence of Na+, K+, Mg2+, Ca2+, and Fe3+on filterability and settleability of drilling sludge[J]. Chinese Journal of Chemical Engineering, 2016, 25(5):658-664.
[12] 楊紅薇,陳佼,張建強. K+、Ca2+、Mg2+對高鹽肝素廢水處理的影響[J]. 環境工程學報,2014,8(10):4267-4272.
Yang Hongwei, Chen Jiao, Zhang Jianqiang. Effects of K+,Ca2+,Mg2+on high salt heparin wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2014, 8(10):4267-4272. (in Chinese with English abstract)
[13] Hwang K L, Bang C H, Zoh K D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant[J]. Bioresource Technology, 2016, 214: 881-884.
[14] 徐華勤,肖潤林,鄒冬生,等. 長期施肥對茶園土壤微生物群落功能多樣性的影響[J].生態學報,2007,27(8):3355-3361.
Xu Huaqin, Xiao Runlin, Zou Dongsheng, et al. Effects of long-term fertilization on functional diversity of soil microbial community of the tea plantation[J]. Acta Ecologica Sinica, 2007, 27(8): 3355-3361. (in Chinese with English abstract)
[15] 魏民,鄭國臣,李建政,等. 表征水體中生物活性及脫氫酶檢測方法研究[J]. 東北水利水電,2012,30(8):43-46.
Wei Min, Zheng Guochen, Li Jianzheng, et al. Study on detection method of biological activity and dehydrogenase in water[J]. Water Resources & Hydropower of Northeast China, 2012, 30(8): 43-46. (in Chinese with English abstract)
[16] Guo H, Zhou J, Zhang S, et al. Characteristics of nitrogen and phosphorus removal in a sequencing batch reactor[J]. Journal of Environmental Sciences, 2011, 23, Suppl(11): S110-S113.
[17] Wu D, Ekama G A, Wang H G, et al. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process[J]. Water Research, 2014, 49(2): 251-264.
[18] 林兵. 鹽脅迫下好氧顆粒污泥微生物種群變化及生態響應機制[D]. 鎮江:江蘇科技大學,2014.
Lin Bing. Change of Microbial Community Structure and Ecology Reponse Mechanism of Aerobic Granular Sludge under Salt Stress[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. (in Chinese with English abstract)
[19] 李志華,王曉昌,王耀東. 含鹽量對好氧顆粒污泥形成過程的影響[J]. 環境工程學報,2008,2(9):1228-1230.
Li Zhihua, Wang Xiaochang, Wang Yaodong. Influence of sodium chloride on formation of aerobic granules[J]. Chinese Journal of Environmental Engineering, 2008, 2(9): 1228-1230. (in Chinese with English abstract)
[20] 陶衛平. 嗜鹽菌的嗜鹽機制[J]. 生物學通報,1996,31(1):23-24.
[21] Shilo, Moshe. Strategies of Microbial Life in Extreme Environments [M]. Verlag Chemie, 1979.
[22] 何健. 高鹽難降解工業廢水微生物處理的污泥馴化研究與應用[D]. 南京:南京農業大學,2000.
He Jian. Sludge Acclimation of Microbiological Treatment of Hypersaline Refractory Waste Water[D]. Nanjing: Agricultural University of Nanjing, 2000. (in Chinese with English abstract)
[23] 李玲玲,周鵬. 活性污泥中功能性菌群抗鹽度沖擊性能研究[J]. 環境工程學報,2010,4(1):105-109.
Li Lingling, Zhou Peng. Effect of salinity shock on specific microorganisms in conventional activated sludge[J]. Chinese Journal of Environmental Engineering, 2010, 4(1): 105-109. (in Chinese with English abstract)
[24] 張蘭河,田蕊,郭靜波,等. NaCl鹽度對A2/O工藝缺氧區胞外聚合物及生物絮凝性的影響[J].環境科學,2018,39(9):4281-4288.
Zhang Lanhe, Tian Rui, Guo Jingbo, et al. Effect of NaCl salinity on extracellular polymeric substances and bioflocculation of anoxic sludge in A2/O process[J]. Environmental Sciences, 2018, 39(9): 4281-4288. (in Chinese with English abstract)
[25] Zhang W, Zheng J, Zheng P, et al. Sludge-Derived biochar for arsenic(iii) immobilization: effects of solution chemistry on sorption behavior[J]. Journal of Environmental Quality, 2015, 44(4): 1119-1126.
[26] Nouha K, Kumar R S, Balasubramanian S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences, 2017, 66(4): 225-245.
[27] Amatore C, Jutand A, Le?Duc G. Mechanistic origin of antagonist effects of usual anionic bases (OH?, CO32?) as modulated by their Countercations (Na+, Cs+, K+) in palladium-catalyzed suzuki-miyaura reactions[J]. Chemistry, 2012, 18(21): 6616-6625.
[28] Guo X, Miao Y, Wu B, et al. Correlation between microbial community structure and biofouling as determined by analysis of microbial community dynamics[J]. Bioresource Technology, 2015, 197: 99-105.
[29] 周貴忠,許碩,姚倩,等. 不同鹽度下活性污泥中微生物群落變化規律及其處理模擬染料廢水[J]. 環境科學,2017,38(7):2972-2977.
Zhou Guizhong, Xu Shuo, Yao Qian, et al. Influence of salinity on microbial community in activated sludge and its application in simulated dye wastewater treatment[J]. Environmental Science, 2017, 38(7): 2972-2977. (in Chinese with English abstract)
[30] Wu G, Guan Y, Zhan X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J]. Water Sci Technol, 2008, 58: 351-358.
[31] 李墨青. 納米銀對SBR系統水處理效能及微生物菌群的影響研究[D]. 哈爾濱:哈爾濱工業大學,2014.
Li Moqing. Impacts of Silver Nanoparticles on Water Treatment Efficiencies of SBR system and Microbial Communities[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese with English abstract)
[32] Hallenbeck P C, Liu Y. Recent advances in hydrogen production by photosynthetic bacteria[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4446-4454.
[33] Lin P Y, Chen H L, Huang C T, et al. Biofilm production, use of intravascular indwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia[J]. International Journal of Antimicrobial Agents, 2010, 36(5): 436-440.
[34] Shen L D, Zheng P H, Ma S J. Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches[J]. Biology & Fertility of Soils, 2016, 52(2): 127-136.
[35] Tian M, Zhao F, Shen X, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 181-190.
Effect of coexistence of Na+and K+on sludge properties and microbial community structure in A2/O process
Zhang Lanhe1,2, Zheng Jing1, Tian Rui1, Chen Zicheng1※, Guo Jingbo3, Jia Yanping1, Li Zheng1, Zhang Jian1
(1.132012,; 2.,130118; 3.,132012)
A large amount of salty wastewater is produced from industrial processes such as food processing, tanning, textiles, aquaculture and oil production. After the salty wastewater entered the activated sludge system and contacted with the activated sludge, the sedimentation, microbial activity and community structure of activated sludge were influenced, which could result in the change of pollutant removal efficiency. A2/O process could achieve simultaneously nitrogen and phosphorus removal, but it was unclear how Na+and K+influenced the microbial communities and the removal efficiency of pollutants in the anaerobic, anoxic and oxic zones. In order to reveal the removal mechanism of the pollutants and the characteristics of activated sludge in the biological treatment system under the coexisting multiple metal ions, the effect of the coexisting Na+and K+on the removal efficiency of pollutants was investigated and the properties of sludge and microbial community in the anaerobic, anoxic and oxic zones were analyzed by high-throughput sequencing. Combined with the changes of removal efficiency of nitrogen and phosphorus and sludge properties, the succession regulation of dominant populations were explored based on the analysis of microbial community structure under different Na+/K+molar ratios to distinguish the effect of the coexistence of Na+and K+on the removal efficiency of the pollutants in the salty wastewater from the point of microorganisms. The results showed that when the influent Na+/K+molar ratio was 2, 1 and 0.5, the removal efficiencies of COD were 80%, 84% and 86%, respectively. The removal efficiencies of TN were 73%, 77% and 80%, respectively. The increase of K+concentration alleviated the inhibition of Na+on the removal efficiency of COD and TN. The release rates of TP in anaerobic areas were 70%, 73% and 74%, respectively. The phosphorus uptake rates in the anoxic zone were 53%, 55% and 58%, respectively. The phosphorus uptake rates in the oxic zone were 70%, 72% and 75%, respectively. The Zeta potential in anaerobic zone is -25.4, -23.2 and -14.7 mV, respectively. The Zeta potential in the anoxic zone is -33.0, -26.6 and -13.7 mV and the Zeta potential in oxic zone is -30.4, -18.6 and -11.0 mV, respectively. The positive charge adsorbed by sludge floc increased. Moreover, the biological flocculation of sludge increased gradually and the deflocculation ability of Na+was inhibited. The richness and diversity of microbial communities in anaerobic, anoxic and oxic zones decreased and the differences of microbial communities were significant. The relative abundance ofincreased by about 30% and the relative abundance ofanddecreased gradually. As the dominant genera, the relative abundance of nitrogen-fixingandgradually increased and the proportion of unknown bacteria decreased, which were beneficial to the removal of pollutants. Therefore, the increase of K+concentration contributed to increase the removal efficiency of nitrogen and phosphorus under the coexistence of Na+and K+. It was also beneficial to the improvement of dehydrogenase activity of sludge in anoxic zone and oxic zone and the enhancement of particle size and flocculation ability (FA) of sludge.
metal ions; wastewater; sludge; bioreactor; microbial community structure; salinity
2018-11-07
2019-04-07
國家自然科學基金(51678119,51508073);吉林省科技發展計劃項目(20180201016SF,20180101309JC,20180101079JC);吉林省教育廳科學技術研究項目(JJKH20180454KJ,JJKH20180453KJ)
張蘭河,博士,教授,主要研究方向為污水生物脫氮除磷技術。Email:zhanglanhe@163.com
陳子成,博士,副教授,主要研究方向為水處理技術與理論。Email:chenzicheng@126.com
10.11975/j.issn.1002-6819.2019.11.024
X703
A
1002-6819(2019)-11-0206-08
張蘭河,鄭 晶,田 蕊,陳子成,郭靜波,賈艷萍,李 正,張 健. Na+和K+共存對A2/O工藝脫氮除磷效果及污泥性質的影響[J]. 農業工程學報,2019,35(11):206-213. doi:10.11975/j.issn.1002-6819.2019.11.024 http://www.tcsae.org
Zhang Lanhe, Zheng Jing, Tian Rui, Chen Zicheng, Guo Jingbo, Jia Yanping, Li Zheng, Zhang Jian. Effect of coexistence of Na+and K+on sludge properties and microbial community structure in A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 206-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.024 http://www.tcsae.org