郭全恩,王益權,南麗麗,李保國,曹詩瑜
?
不同溶質及礦化度對土壤溶液鹽離子的影響
郭全恩1,2,3,王益權2,南麗麗4,李保國3,曹詩瑜1
(1. 甘肅省農業科學院土壤肥料與節水農業研究所,蘭州 730070; 2. 西北農林科技大學資源環境學院,楊凌 712100;3. 中國農業大學資源與環境學院,北京 100193;4. 甘肅農業大學草業學院,蘭州 730070)
中國西北旱區水源短缺已成為農業生產的重要限制因素,如何科學有效地利用微咸水資源對于提高灌區水資源利用效率和保障糧食安全生產具有十分重要的意義。該研究以甘肅省秦安縣果園粉砂質黏壤土為研究對象,基于土壤水分特征曲線的測定方法,采用蒸餾水(CK)和不同礦化度(1, 3, 5, 10 g/L)的NaCl、Na2SO4兩種類型的鹽溶液對土壤飽和浸泡8~12 h后離心,收集不同轉速下的釋水溶液,研究不同吸力(分別為1.0,1.49,2.01,2.71,3.49,4.09)條件下土壤釋水溶液鹽分離子的組成。結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液電導率、HCO3-、Cl-、SO42-、Ca2+、Mg2+、Na+的影響差異均達極顯著(<0.01)或顯著水平(<0.05)。相同礦化度的NaCl和Na2SO4在土壤釋水過程中對不同鹽分離子的影響不同。同為1 g/L的NaCl和Na2SO4,NaCl中的Cl-置換土壤中HCO3-的能力要強于Na2SO4中的SO42-。在土壤水吸力()小于2.01時,高礦化度(>3 g/L)的NaCl對于土壤溶液中Ca2+的解離具有促進作用,且促進能力隨著礦化度的增大而增大;在土壤水吸力()大于2.01時,加入溶液中的Cl-和SO42-均具有抑制土壤中HCO3-的解離,加入溶液中的Cl-具有抑制土壤中SO42-的解離,加入溶液中的SO42-具有抑制土壤溶液中Cl-的解離,低礦化度(1 g/L)的NaCl對于土壤溶液中Ca2+的解離具有抑制作用。不同礦化度的NaCl和Na2SO4,對土壤溶液中Mg2+的解離具有促進作用。因此,從微咸水利用于鹽漬化土壤改良的角度來看,對于蘇打型鹽土,可嘗試用含Cl-和SO42-的鹽水灌溉;對于硫酸鹽型鹽土,可嘗試用含Cl-的鹽水灌溉;對于氯化物型鹽土,可嘗試用含SO42-的鹽水灌溉。
土壤;溶液;鹽離子;水吸力;咸水灌溉;溶質類型;礦化度
中國西北旱區水源短缺已成為農業生產的重要限制因素[1],開發利用微咸水是解決干旱區水資源短缺的重要途徑[2]。據統計,中國西北地區地下微咸水(礦化度2~5 g/L)儲量為88.7 億m3[3],如何科學有效地利用微咸水資源對于提高灌區水資源利用效率和保障糧食安全生產具有十分重要的意義。
微咸水進入土壤后,與土壤溶液和固體顆粒發生各種物理化學作用,必然會改變土壤結構,導致土壤孔隙特性發生變化,進而影響土壤能量和導水特征,也影響土壤原有化學元素存在的狀態和形式,勢必造成土壤水鹽運移特征的變化[4]。目前,咸水灌溉對土壤水鹽運移[5-9]、物理特性[10-14]、酶活性[15]和微生物[16-17]以及冬小麥光合參數[18]的影響方面已有大量報道,有關不同溶質類型和礦化度的咸水對土壤持水性[19]、水分有效性[20]、水分擴散率[21]等方面有所涉及,但有關不同溶質類型和礦化度的鹽分離子進入土壤,在釋水過程中對鹽分離子含量的影響還鮮見報道。由于土壤吸持的水分對植物的有效性不在于含水量的高低,而在于水吸力的大小[22],且土壤所吸持水分并非在某一吸力段100%釋放出來供植物吸收利用,而是隨著吸力增大漸漸釋放,釋放速度也隨著吸力的改變而變化[23]。因此,不同吸力段土壤溶液離子組成的變異性決定了離子危害性的不同。
甘肅省秦安縣興國鎮果園長期利用微咸水灌溉,導致果園土壤次生鹽漬化的發生,特別是鈉鹽的危害[24],嚴重制約了當地果業的發展。為此,本研究以秦安縣果園土壤為研究對象,從微咸水利用的角度出發,在不同吸力條件下探討不同鹽分類型和礦化度的水質進入土壤對釋水溶液鹽分離子含量的影響,為微咸水灌溉提供理論支持和技術支撐,具有重要的科學意義。
供試土壤采集甘肅省秦安縣興國鎮果園,砂粒(0.02~2 mm)質量分數為252.0 g/kg,粉砂粒(0.002~0.02 mm)質量分數為539.3 g/kg,黏粒(<0.002 mm)質量分數為208.7 g/kg,屬粉砂質黏壤土,有機質質量分數為10.52 g/kg,pH值為8.54,電導率為0.43mS/cm,HCO3-為0.85 g/kg,Cl-為0.16 g/kg,SO42-為0.14 g/kg,Ca2+為0.24 g/kg,Mg2+為0.06 g/kg,K+為0.05 g/kg,Na+為0.13 g/kg,碳酸鈣質量分數為134.8 g/kg。
由于甘肅省秦安縣的鹽漬化土壤類型主要是氯化物型和硫酸鹽型,故本試驗分別選擇NaCl和Na2SO4兩種不同類型的鹽溶液,鹽溶液的礦化度分別設置為:1,3,5和10g/L,用蒸餾水作為對照(CK)。在室溫條件下用高速離心機進行釋水試驗,重復4次。
將待測土樣過2 mm篩,按容重1.30 g/cm3裝入底部預先鋪雙層濾紙的環刀中。試驗分別用不同處理的鹽溶液和蒸餾水(CK)浸泡裝填土壤的環刀,經過8~12 h飽和后,用日本HITACHI公司生產的CR21G離心機在不同水吸力(1.01,1.49,2.01,2.71,3.49,4.09)下離心,收集不同轉速下的釋水溶液,分別測定不同吸力下釋水溶液的電導率、HCO3-、SO42-、Cl-、水溶性Na+、Ca2+、Mg2+等。
釋水溶液電導率和鹽分離子的測定均采用常規的分析方法[25]。離心溶液電導率用電導法測定,HCO3-用標準H2SO4滴定法測定,SO42-用EDTA絡合滴定法測定,Cl-用標準硝酸銀滴定法測定,水溶性Na+用火焰光度計法測定,Ca2+、Mg2+用EDTA絡合滴定法測定。用OriginPro8.0軟件進行作圖,用DPS7.5軟件進行方差分析和配對檢驗。
土壤電導率與土壤含鹽量之間存在正相關關系,可用電導率反映土壤含鹽量的變化情況[26]。由圖1可知,不同吸力條件下土壤溶液電導率隨NaCl和Na2SO4溶液礦化度的增大而增大。對于礦化度為1 g/L的NaCl處理,當水吸力由1.0增大到1.49時,土壤溶液電導率呈現出增大的趨勢;當水吸力由1.49增大到2.71時,土壤溶液電導率呈現出逐漸減小的趨勢;當水吸力大于2.71時,土壤溶液電導率呈現出隨水吸力的增加而增大的趨勢。而對于礦化度為1 g/L的Na2SO4處理,土壤溶液電導率隨水吸力的增大基本保持不變。當礦化度為3 g/L時,NaCl處理的土壤溶液電導率隨水吸力的增大而逐漸增大;而Na2SO4處理的土壤溶液電導率隨水吸力的增大而增大,當水吸力為2.01時,土壤溶液電導率值最大,隨后隨著水吸力的增大土壤溶液電導率呈現減小的趨勢。當礦化度為5 g/L時,NaCl處理的土壤溶液電導率隨水吸力由1.0增大至1.49呈現減小的趨勢,隨后水吸力由1.49增大至2.01時,土壤溶液電導率在這吸力段呈現增加的趨勢,當水吸力大于2.01時,土壤溶液電導率隨水吸力的增大呈現減小的趨勢;而Na2SO4處理的土壤溶液電導率隨水吸力的增大基本保持不變。當礦化度為10 g/L時,NaCl處理的釋水溶液電導率隨水吸力的增大先基本保持不變,當大于3.49時,土壤溶液電導率隨水吸力的增大明顯減小;而Na2SO4處理的釋水溶液電導率隨水吸力的增大先略有減小,后基本保持不變。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液電導率的影響差異均達極顯著水平(<0.01),而不同水吸力之間差異均不顯著(>0.05)。

圖1 不同礦化度的NaCl和Na2SO4溶液對土壤溶液電導率的影響
2.2.1 HCO3-含量
從圖2可知,NaCl處理比Na2SO4處理對釋水溶液HCO3-含量的影響大。對于礦化度為1、3和10 g/L的NaCl處理,隨著水吸力的增大,釋水溶液HCO3-含量規律不明顯。對于礦化度為5g/L的NaCl處理和1、5 g/L的Na2SO4處理,釋水溶液HCO3-量隨著水吸力的增大,一直保持恒定值;對于礦化度3 g/L的Na2SO4處理,在低吸力段(小于2.01),釋水溶液HCO3-含量為12 mg/L;在吸力大于2.71時,釋水溶液HCO3-含量為15 mg/L;而對于礦化度10 g/L Na2SO4處理,釋水溶液HCO3-含量隨著水吸力的增大,呈先減小后趨于穩定。

圖2 不同礦化度NaCl和Na2SO4溶液對土壤溶液HCO3-含量的影響
與對照(蒸餾水)相比,不同礦化度的NaCl和Na2SO4處理在大于2.01時,釋水溶液HCO3-含量都低于對照,說明在土壤水吸力大于2.01時,加入溶液中的Cl-和SO42-均具有抑制土壤中HCO3-的解離,從而使土壤釋水溶液中的HCO3-含量降低。這進一步證實了土壤碳酸鹽的溶解度也受溶液中所含其他鹽類的影響。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液HCO3-的影響差異分別達極顯著水平(<0.01)和顯著水平(<0.05)。
2.2.2 Cl-含量
由圖3可知,不同礦化度Na2SO4處理要比NaCl處理對土壤溶液中Cl-含量的影響復雜。對于NaCl處理,釋水溶液中Cl-含量隨著加入溶液礦化度的增大而增大;蒸餾水、3、5 g/L的NaCl處理,釋水溶液中Cl-含量隨著水吸力的增大基本呈現波動式的較小變化。這是由于Cl-與其他離子相比最易活動,且Cl-帶負電荷,與土壤顆粒所帶的電荷相同,它們之間產生排斥力,Cl-便于脫離土壤顆粒隨水溶液遷移,Cl-隨土壤水吸力變化較為平緩的現象充分地證實Cl-在不同持水孔隙中的分布具有均勻性。對于1 g/L的NaCl處理,在為1.49時,釋水溶液中Cl-含量明顯增高,這說明低濃度的NaCl在此吸力條件下對土壤中的Cl-具有誘導效應。對于10 g/L的NaCl處理,在大于3.49時,釋水溶液中Cl-含量明顯增高。對于1、10 g/L的Na2SO4處理,釋水溶液中Cl-含量隨水吸力的增大呈現先減小后保持恒定;而5 g/L的Na2SO4處理,釋水溶液中Cl-含量隨水吸力的增大呈現先保持恒定(大于2.71)后增大的趨勢;對于蒸餾水,在為2.01時,釋水溶液中Cl-含量最低,為105 mg/L,在其余吸力段土壤溶液中Cl-含量基本穩定;對于3 g/L的Na2SO4處理,在為2.71時,釋水溶液中Cl-含量最高,為110 mg/L,其余吸力段土壤溶液中Cl-含量均為50 mg/L。且所有Na2SO4處理的釋水溶液Cl-含量都低于對照處理的,這說明加入溶液中的SO42-對于土壤溶液中Cl-的解離具有抑制作用。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液Cl-含量的影響差異均達極顯著水平(<0.01)。

圖3 不同礦化度NaCl和Na2SO4溶液對土壤溶液Cl-含量的影響
2.2.3 SO42-含量
由圖4可知,不同礦化度NaCl和Na2SO4處理對土壤釋水過程中SO42-含量的影響不同。不同礦化度的NaCl處理,土壤釋水溶液中SO42-含量隨水吸力的增大呈現波動式變化,且當大于2.01時,NaCl各處理土壤釋水溶液中SO42-含量都低于對照,這說明加入溶液中的Cl-具有抑制土壤中SO42-的解離。而不同礦化度Na2SO4處理對釋水溶液中SO42-含量的影響與NaCl處理對土壤溶液中Cl-含量的影響有些相似。釋水溶液SO42-含量隨著Na2SO4礦化度的增大而增大,隨著水吸力的增大呈波動式變化。與NaCl處理對土壤溶液中Cl-含量影響不同的是,對照處理的釋水溶液SO42-含量高于1 g/L Na2SO4處理,這說明加入低濃度的Na2SO4溶液具有抑制土壤中SO42-的解離。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液SO42-含量的影響差異均達極顯著水平(<0.01)。

圖4 不同礦化度NaCl和Na2SO4溶液對土壤溶液SO42-含量影響
Fig.4 Effect of mineralization degree of NaCl and Na2SO4on content of SO42-in soil solution
2.2.4 Ca2+含量
Ca2+是土壤質量的重要標志。咸水灌溉和大量使用無機化肥,對土壤質量的重要影響就在于加速了土壤脫鈣和鎂,使得土壤顆粒分散,影響土壤物理狀態。如圖5所示,在水吸力小于2.01時,對于礦化度分別為3、5和10 g/L的NaCl處理,土壤溶液中的Ca2+含量明顯高于對照處理,且土壤溶液Ca2+含量隨著礦化度的增大而增大。這說明在低水吸力條件下,加入NaCl溶液有助于土壤中的Ca2+淋失而脫鈣,這種作用隨著加入溶液礦化度的增大而增大。而對于礦化度1g/L的NaCl處理,在水吸力大于2.01時,其土壤溶液Ca2+含量明顯低于對照處理,這說明低濃度的NaCl溶液在高水吸力條件下(>2.01),對土壤溶液Ca2+的解離具有抑制作用。與NaCl處理相比,礦化度分別為5和10 g/L的Na2SO4處理,在水吸力小于2.71時,其土壤溶液Ca2+含量明顯高于對照,這說明礦化度5和10 g/L的Na2SO4溶液,在此吸力條件下,對土壤溶液Ca2+的解離具有促進作用;而在水吸力大于2.71時,土壤溶液Ca2+含量與對照差別不大。相同礦化度的NaCl和Na2SO4對土壤釋水溶液Ca2+含量的影響比較,NaCl促進土壤溶液中Ca2+解離的能力大于Na2SO4。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液Ca2+含量的影響差異均達極顯著水平(<0.01)。

圖5 不同礦化度NaCl和Na2SO4溶液對土壤溶液Ca2+含量影響
2.2.5 Mg2+含量
由圖6可以看出,不同礦化度的NaCl和Na2SO4處理,其釋水溶液中的Mg2+含量均高于對照處理,這說明不同濃度的NaCl和Na2SO4溶液對土壤中Mg2+的解離具有促進作用。相同礦化度的NaCl和Na2SO4處理相比,NaCl處理釋水溶液中Mg2+含量要高于Na2SO4處理,這說明在礦化度相同的條件下,NaCl促進土壤溶液中Mg2+解離的能力大于Na2SO4。這是由于NaCl和Na2SO4溶液中的Na+具有交換土壤膠體中的Mg2+的能力,在相同礦化度條件下,NaCl解離的Na+要明顯多于Na2SO4解離的Na+,因而NaCl溶液中的Na+交換出的Mg2+明顯高于Na2SO4溶液中的Na+交換出的Mg2+。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液Mg2+含量的影響差異分別達極顯著水平(<0.01)和顯著水平(<0.05)。

圖6 不同礦化度NaCl和Na2SO4溶液對土壤溶液Mg2+含量影響
2.2.6 Na+含量
土壤中的鈉離子含量是反映土壤鹽分的重要指標,也是鹽分對作物生長和土壤孔隙狀況產生直接影響的元素。由圖7可以看出,不同礦化度的NaCl和Na2SO4處理對土壤釋水溶液中Na+含量影響不同。但從整體上來看,對于NaCl和Na2SO4處理,釋水溶液中Na+含量隨著礦化度的增大而增大,且NaCl處理較Na2SO4處理增幅明顯。這是因為土壤溶液中的離子與土壤膠體表面離子之間的交換是服從于質量作用定律,Na2SO4的分子質量較NaCl的大,在相同礦化度的條件下,NaCl解離的Na+較Na2SO4解離的多,所以在相同礦化度條件下,NaCl處理的釋水溶液中Na+含量較Na2SO4處理增幅明顯。方差分析結果表明:不同礦化度的NaCl和Na2SO4對釋水溶液Na+含量的影響差異均達極顯著水平(<0.01)。

圖7 不同礦化度NaCl和Na2SO4溶液對土壤溶液Na+含量影響
為了進一步分析同一礦化度NaCl和Na2SO4對土壤釋水溶液電導率和鹽分離子差異性的影響。本研究利用DPS軟件中配對樣本檢驗法對同一礦化度的2種鹽溶液處理兩兩比較,結果表明(表1),2種溶質對釋水溶液中Cl-含量有極顯著的影響(<0.01);礦化度為3,5,10g/L的兩種鹽溶液對土壤釋水溶液電導率和SO42-的影響均達極顯著水平(<0.01);礦化度為5g/L的兩種鹽溶液對土壤釋水溶液中Na+和Mg2+的含量有極顯著的影響(<0.01);礦化度為3g/L的兩種鹽溶液對土壤釋水溶液中Mg2+的含量有顯著影響(<0.05);礦化度為10g/L的兩種鹽溶液對土壤釋水溶液中Na+的含量有顯著影響(<0.05)。這說明同一礦化度的NaCl和Na2SO4對土壤釋水溶液鹽分和離子的影響不同。

表1 同一礦化度的NaCl和Na2SO4對土壤溶液電導率和鹽分離子的配對t檢驗
注:*表示在<0.05水平上差異顯著;**表示在<0.01水平上差異顯著。
Note: * denotes a significant difference at<0.05;while ** denotes a significant difference at<0.01.
微咸水作為重要的補充水源被應用到農業灌溉中,造成的鹽堿等環境問題逐漸受到關注[27]。咸水用于灌溉時水中超過90%的Na+和Cl-存留在土壤中,進入作物體內的Na+和Cl-量很少,且隨著灌溉水中NaCl 含量的增加,土壤中水溶性Na+、Cl-含量直線增加[28]。咸水灌溉帶入的鹽分與土壤本身化學元素及土壤顆粒發生相互作用,改變土壤理化特性, 導致土壤水分和鹽分運移規律的變化,影響土壤水分有效性和鹽分分布[29]。Ben等[30]研究發現咸水灌溉導致土壤鹽分顯著增加。這與本研究的咸水灌溉土壤釋水溶液電導率增加相一致。與加入土壤溶液的電導率相比,土壤釋水溶液的電導率高于加入溶液的電導率。這是由于土壤吸收了所加入溶液中的水分,使得土壤釋水溶液濃度提高。另一方面,也說明咸水灌溉具有誘導效應,使得土壤溶液離子強度顯著提高,增加了鹽分離子危害的風險性。因此,在農業生產實踐中,一方面要關注灌溉水的礦化度,另一方面也要關注土壤本身的含鹽量,防止咸水灌溉誘導效應產生高濃度的鹽分離子對植物的毒害。
灌溉的水質所含鹽分類型和含量不同,其在土壤中的化學行為差異非常顯著。灌溉過程中土壤水分入滲會驅逐土壤空氣,可能導致土壤出現周期性的滯水,這時土壤膠體中的某些鹽分離子與灌溉水質中的鹽分離子發生化學反應,容易造成土壤結構的崩解[1]。在低濃度條件下,對于在土壤中容易遷移的離子而言,會產生離子在不同孔徑的孔隙中明顯的分異;而對于不易遷移的離子而言,各級孔隙中的這種分異性表現的不明顯。對于高濃度鹽溶液,由于其對土壤團聚作用的破壞強,使得土壤結構孔隙喪失,成為質地孔隙,離子在各孔隙中的分異性不明顯。NaCl和Na2SO4兩種鹽溶液在土壤釋水過程中的表現就充分證實這一點,NaCl溶液的波動性比Na2SO4溶液明顯。研究發現石灰性土壤加入蒸餾水后,隨著土壤水吸力增加,釋水溶液中HCO3-有一個明顯的遞增階段,隨后穩定在較高水平上,這說明隨著脫水吸力的增加,土壤膠體上吸附的陽離子被解離到溶液后水解作用所致。本研究進一步證實在土壤中加入鈉鹽對于土壤膠體上吸附的交換性鈣鎂等陽離子的解離具有一定的影響。因為加入鈉鹽的陪伴離子不同,置換能力以及被置換出的陽離子與所加入的陰離子之間具有不同結合能。在石灰性土壤中加入NaCl溶液,因為Cl-與Ca2+、Mg2+結合,仍然是易溶性的離子態化合物,而加入Na2SO4溶液中的SO42-與交換出的Ca2+、Mg2+易結合成微溶性化合物,所以NaCl處理釋水溶液中Ca2+、Mg2+含量要比Na2SO4處理高。
一般認為土壤有效水的范圍在“田間持水量(為1.8)”與“凋萎含水量(為3.8)”之間[20,31]。由于不同鹽分類型、礦化度鹽溶液的黏滯性和流動性不同, 從而對土壤水分的有效性產生直接影響,另一個方面是由于溶質改變了土壤的結構等理化性質, 從而對土壤水分的有效性產生間接影響[20]。因此,更應該關注此吸力段土壤釋水溶液離子組成情況。從本研究的結果來看,水吸力變化在1.8~3.8之間,釋水溶液HCO3-、Cl-、SO42-、Ca2+、Mg2+含量隨著吸力的增大變化明顯。由于本試驗僅對輕度鹽漬化的粉砂質黏壤土進行了研究,對于中度和重度鹽漬化的粉砂質黏壤土以及其他質地類型的土壤有待于進一步研究。從溶質類型來看,NaCl和Na2SO4均為中性鹽,對于不同礦化度的堿性鹽(如Na2CO3)對土壤釋水溶液鹽分離子的影響還需進一步研究。
1)不同礦化度NaCl和Na2SO4對釋水溶液電導率、HCO3-、Cl-、SO42-、Ca2+、Mg2+、Na+的影響差異均達極顯著(<0.01)或顯著水平(<0.05)。
2)相同礦化度的NaCl和Na2SO4在土壤釋水過程中對不同鹽分離子的影響不同。同為1 g/L的NaCl和Na2SO4,NaCl中的Cl-置換土壤中HCO3-的能力要強于Na2SO4中的SO42-。在土壤水吸力小于2.01時,高礦化度(>3 g/L)的NaCl對于土壤溶液中Ca2+的解離具有促進作用,且促進能力隨著礦化度的增大而增大;在土壤水吸力大于2.01時,加入溶液中的Cl-和SO42-均具有抑制土壤中HCO3-的解離,加入溶液中的Cl-具有抑制土壤中SO42-的解離,加入溶液中的SO42-具有抑制土壤溶液中Cl-的解離,低礦化度(1 g/L)的NaCl對于土壤溶液中Ca2+的解離具有抑制作用。
3)不同礦化度的NaCl和Na2SO4對土壤溶液中Mg2+的解離具有促進作用。
[1] 郭全恩,南麗麗,李保國,等. 灌溉水鹽分組成對土壤水鹽遷移參數的影響[J]. 農業工程學報,2017,33(23):123-128.
Guo Quanen, Nan Lili, Li Baoguo, et al. Effect of salt ion composition of irrigation water on parameters of soil water and salt movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 123-128. (in Chinese with English abstract)
[2] 張俊鵬,曹彩云,馮棣,等. 微咸水造墑條件下植棉方式對產量與土壤水鹽的影響[J]. 農業機械學報,2013,44(2):97-102.
Zhang Junpeng, Cao Caiyun, Feng Di, et al. Effects of different planting patterns on cotton yield and soil water-salt under brackish water irrigation before sowing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 97-102. (in Chinese with English abstract)
[3] 張璐瑤,沈暉,姚自凱,等. 不同礦化度微咸水灌溉對壓砂地歐李光合作用及產量品質的影響[J]. 節水灌溉,2018(12):44-48.
Zhang Luyao, Shen Hui, Yao Zikai, et al. The influences of brackish water irrigation with different salinity on photosynthesis, yield and quality of Cerasus humilis in gravel-mulched field[J]. Water Saving Irrigation, 2018(12): 44-48. (in Chinese with English abstract)
[4] 王全九,單魚洋. 微咸水灌溉與土壤水鹽調控研究進展[J]. 農業機械學報,2015,46(12):117-126.
Wang Quanjiu, Shan Yuyang. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-126. (in Chinese with English abstract)
[5] 譚軍利,王西娜,田軍倉,等. 不同微咸水灌水量條件下覆砂措施對土壤水鹽運移的影響[J]. 農業工程學報,2018,34(17):100-108.
Tan Junli, Wang Xina, Tian Juncang, et al. Effect of gravel-sand mulching on movements of soil water and salts under different amounts of brackish water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 100-108. (in Chinese with English abstract)
[6] 王全九,許紫月,單魚洋,等. 去電子處理微咸水礦化度對土壤水鹽運移特征的影響[J]. 農業工程學報,2018,34(4):125-132.
Wang Quanjiu, Xu Ziyue, Shan Yuyang, et al. Effect of salinity of de-electronic brackish water on characteristics of water and salt movement in soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 125-132. (in Chinese with English abstract)
[7] 王相平,楊勁松,姚榮江,等. 蘇北灘涂水稻微咸水灌溉模式及土壤鹽分動態變化[J]. 農業工程學報,2014,30(7):54-63.
Wang Xiangping, Yang Jingsong, Yao Rongjiang, et al. Irrigation regime and salt dynamics for rice with brackish water irrigation in coastal region of North Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 54-63. (in Chinese with English abstract)
[8] 張珂萌,牛文全,汪有科,等. 微咸水微潤灌溉下土壤水鹽運移特性研究[J]. 農業機械學報,2017,48(1):175-182.
Zhang Kemeng, Niu Wenquan, Wang Youke, et al. Characteristics of water and salt movement in soil under moistube-irrigation with brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 175-182. (in Chinese with English abstract)
[9] 馬文軍,程琴娟,李良濤,等. 微咸水灌溉下土壤水鹽動態及對作物產量的影響[J]. 農業工程學報,2010,26(1):73-80.
Ma Wenjun, Cheng Qinjuan, Li Liangtao, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 73-80. (in Chinese with English abstract)
[10] Liu B X,Wang S Q, Kong X L, et al. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management, 2019, 211: 98-110.
[11] 唐勝強,佘冬立. 灌溉水質對土壤飽和導水率和入滲特性的影響[J]. 農業機械學報,2016,47(10):108-114.
Tang Shengqiang, She Dongli. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108-114. (in Chinese with English abstract)
[12] 王全九,畢遠杰,吳忠東. 微咸水灌溉技術與土壤水鹽調控方法[J]. 武漢大學學報:工學版,2009,42(5):559-564.
Wang Quanjiu, Bi Yuanjie, Wu Zhongdong. Irrigation technique of saline water and regulation and control method of soil water and salt[J]. Engineering Journal of Wuhan University, 2009, 42(5): 559-564. (in Chinese with English abstract)
[13] Tedeschi A, Aquila R D. Effects of irrigation with saline waters at different concentrations on soil physical and chemical characteristics[J]. Agricultural Water Management, 2005, 77(1-3): 308-322.
[14] 季泉毅,馮紹元,袁成福,等. 石羊河流域咸水灌溉對土壤物理性質的影響[J]. 排灌機械工程學報,2014,32(9):802-807.
Ji Quanyi, Feng Shaoyuan, Yuan Chengfu, et al. Influences of saline water irrigation on soil physical properties in Shiyang River Basin[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(9): 802-807. (in Chinese with English abstract)
[15] 張前前,王飛,劉濤,等. 微咸水滴灌對土壤酶活性、CO2通量及有機碳降解的影響[J]. 應用生態學報,2015,26(9):2743-2750.
Zhang Qianqian, Wang Fei, Liu Tao, et al. Effects of brackish water irrigation on soil enzyme activity, soil CO2flux and organic matter decomposition[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2743-2750. (in Chinese with English abstract)
[16] Guo H J, Hu Z Q, Zhang H M, et al. Soil microbial metabolic activity and community structure in drip-irrigated calcareous soil as affected by irrigation water salinity[J]. Water Air and Soil Pollution, 2019, 230(2): Doi: 10.1007/s11270-019-4094-0.
[17] 靳正忠,雷加強,李生宇,等. 咸水滴灌林地風沙土中微生物群落代謝特征[J]. 中國沙漠,2014,34(2):363-370.
Jin Zhengzhong, Lei Jiaqiang, Li Shenyu, et al. Characteristics of sandy soil microbial metabolisms in the forests drip-irrigated with saline water[J]. Journal of Desert Research, 2014, 34(2): 363-370. (in Chinese with English abstract)
[18] 于瀟,侯云寒,徐征和,等. 微咸水灌溉對冬小麥光合及熒光動力學參數的影響[J]. 節水灌溉,2019(2):102-106.
Yu Xiao, Hou Yunhan, Xu Zhenghe, et al. Effects of brackish water irrigation on photosynthetic characteristics and fluorescence kinetics parameters of winter wheat [J]. Water Saving Irrigation, 2019(2): 102-106. (in Chinese with English abstract)
[19] 郭全恩,王益權,南麗麗,等. 溶質類型與礦化度對土壤持水特性的影響[J]. 土壤通報,2014,45(2):340-344.
Guo Quanen, Wang Yiquan, Nan Lili, et al. Effect of Solute Type and Salinity on Soil Water Retention Curve [J].Chinese Journal of Soil Science, 2014, 45(2): 340-344. (in Chinese with English abstract)
[20] 郭全恩,王益權,南麗麗,等. 溶質類型與礦化度對半干旱鹽漬化地區果園土壤水分有效性的影響[J]. 中國生態農業學報,2013,21(8):973-978.
Guo Quanen, Wang Yiquan, Nan Lili, et al. Effect of solute type and salinity on soil water availability in orchards in saline semiarid regions[J]. Chinese Journal of Eco- Agriculture, 2013, 21(8): 973-978. (in Chinese with English abstract)
[21] 郭全恩,王益權,馬忠明,等. 溶質類型與礦化度對土壤水分擴散率的影響[J]. 干旱區地理,2011,34(1):86-90.
Guo Quanen, Wang Yiquan, Ma Zhongming, et al. Effect of solute type and mineralizations on soil moisture diffusivity[J]. Arid Land Geography, 2011, 34(1): 86-90. (in Chinese with English abstract)
[22] 張強,孫向陽,王涵,等. 毛烏素沙地土壤的持水特性研究[J]. 林業科學研究,2004,17(增刊):63-66.
Zhang Qiang, Sun Xiangyang, Wang Han, et al. Study on water-retention characters of Maowusu sandy soil[J]. Forest Research, 2004, 17(Supp.): 63-66. (in Chinese with English abstract)
[23] 莊文化,馮浩,吳普特,等. 2種高分子保水材料對土壤持水能力的影響[J]. 中國水土保持科學,2008,6(3):81-87.
Zhuang Wenhua, Feng Hao, Wu Pute, et al. Effects of two super absorbent polymers on water retention capacity of soil[J]. Science of Soil and Water Conservation, 2008, 6(3): 81-87. (in Chinese with English abstract)
[24] 郭全恩,王益權,南麗麗,等. 灌水定額對旱區蘋果園土壤水鹽再分布的影響[J]. 應用生態學報,2013,24(7): 1863-1870.
Guo Quanen, Wang Yiquan, Nan Lili, et al. Effects of irrigation quota on moisture and salt redistribution in apple orchard soil in arid region[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1863-1870. (in Chinese with English abstract)
[25] 魯如坤. 土壤農業化學分析法[M]. 北京:中國農業科技出版社,2000.
[26] 吳忠東,王全九. 入滲水礦化度對土壤入滲特征和離子遷移特性的影響[J]. 農業機械學報,2010,41(7):64-75.
Wu Zhongdong, Wang Quanjiu. Effect on both infiltration characteristics and ion mobility features by mineralization degree of infiltration water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7): 64-75. (in Chinese with English abstract)
[27] 王帥杰,楊培嶺,蘇艷平,等. 微咸水與淡水輪灌對春玉米土壤CO2和N2O排放的影響[J]. 中國農業大學學報,2018,23(10):41-48.
Wang Shuaijie, Yang Peiling, Su Yanping, et al. Effects of alternative irrigation between brackish water and fresh water on CO2and N2O emission from spring maize soil[J]. Journal of China Agricultural University, 2018, 23(10): 41-48. (in Chinese with English abstract)
[28] 李加宏,俞仁培. 礦化灌溉水?土壤?作物系統中鹽分遷移和循環的分室模型[J]. 土壤通報,1997,28(5):197-201.
Li Jiahong, Yu Renpei. Compartment model of salt transplant and circular in water-soil-plant system by mineralize irrigational water[J]. Chinese Journal of Soil Science, 1997, 28(5): 197-201. (in Chinese with English abstract)
[29] 蘇瑩,王全九,葉海燕,等. 咸淡輪灌土壤水鹽運移特征研究[J]. 灌溉排水學報,2005,24(1):50-53.
Su Ying, Wang Quanjiu, Ye Haiyan, et al. Research of soil water and salt transport feature for alternative irrigation of fresh and saline water[J]. Journal of Irrigation and Drainage, 2005, 24(1): 50-53. (in Chinese with English abstract)
[30] Ben Ahmed C, Magdich S, Ben Rouina B, et al. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive[J]. Journal of Environmental Management, 2012, 113: 538-544.
[31] 日本土壤物理性測定委員會. 土壤物理性測定法[M]. 翁德衡,譯. 重慶:科學技術文獻出版社,1979.
Effects of solute types and degree of mineralization on salt ions in soil release solution
Guo Quanen1,2,3, Wang Yiquan2, Nan Lili4, Li Baoguo3, Cao Shiyu1
(1.730070,; 2.,712100,; 3.100193; 4.,730070)
Water resource shortage has become an important limiting factor for the agricultural production in arid areas in Northwest China. The efficient utilization of brackish water resources is of great importance significance for food safety in irrigated areas. However, the influence of irrigation with different solute type and mineralization on salty ions in soil solution during the release water process is unknown. In the study, the soil samples were collected from orchard calcareous soil in Qin’an County of Gansu Province. The content of soil organic matter was 10.52 g/kg and pH was 8.54. Soil electrical conductivity was 0.43 mS/cm. The contents of HCO3-, Cl-,SO42-, Ca2+, Mg2+,K+and Na+were 0.85, 0.16, 0.14, 0.24, 0.06, 0.05, 0.13 g/kg, respectively. The content of calcium carbonate was 134.8g/kg. Soil texture classification was based on the U.S. Department of Agriculture system and the soil texture was a silty clay loam, which has 25.2% sand, 53.9% silt, and 20.9% clay. The influences of two sodium salts (NaCl, Na2SO4) with different mineralization degrees (1, 3, 5, 10 g/L) on salt ion composition in soil solution were explored with the dehydration centrifugal method under different water suction conditions (1.01, 1.49, 2.01, 2.71, 3.49, and 4.09), distilled water was used as control. The results showed that the influences of NaCl and Na2SO4on electrical conductivity, HCO3-, Cl-,SO42-, Ca2+, Mg2+,K+and Na+in soil release solution were significant (<0.05) or extremely significant (<0.01). The influences of NaCl and Na2SO4with the same salinity on salt ions in soil release solution were different. The ability of Cl-to replace HCO3-was better than SO42-to replace HCO3-in soil solution of treatments with 1 g/L of NaCl and 1 g/L of Na2SO4. When soil water tension () was less than 2.01, the NaCl solution with the degree of mineralization more than 3 g/L promoted the dissociation of the Ca2+in soil solution and the promoting effects of dissociation increased with the increase of salinity. When soil water tension () was more than 2.01, Cl-and SO42-in irrigation water inhibited the dissociation of HCO3-in soil solution and Cl-in irrigation water inhibited the dissociation of SO42-in soil solution, and SO42-in irrigation water inhibited the dissociation of Cl-, NaCl solution (the degree of mineralization of was 1 g/L) inhibited the dissociation of Ca2+in soil solution. NaCl and Na2SO4in irrigation water promoted the dissociation of Mg2+in soil solution. Therefore, from the viewpoints of the improvement salinized soil using brackish water, for sodic-saline soils, it was possible to irrigate with brackish water containing the mostly of Cl-and SO42-. For sulfate saline soil, it was possible to irrigate with brackish water containing the mostly of Cl-. For chloride soils, it was possible to irrigate with brackish water containing the mostly of SO42-. The study could provide the basis for restraining soil salts in brackish water irrigation in arid regions.
soils; solution; salty ions; water suction; saline water irrigation; solute type; mineralization degree
2018-12-28
2019-03-31
國家自然科學基金資助項目(41363004);甘肅省農業科學院科技創新工程學科團隊(2015GAAS03)
郭全恩,副研究員,博士,主要從事鹽漬化土壤研究。Email:qnguo@sina.com
10.11975/j.issn.1002-6819.2019.11.012
S153.6
A
1002-6819(2019)-11-0105-07
郭全恩,王益權,南麗麗,李保國,曹詩瑜. 不同溶質及礦化度對土壤溶液鹽離子的影響[J]. 農業工程學報,2019,35(11):105-111. doi:10.11975/j.issn.1002-6819.2019.11.012 http://www.tcsae.org
Guo Quanen, Wang Yiquan, Nan Lili, Li Baoguo, Cao Shiyu. Effects of solute types and degree of mineralization on salt ions in soil release solution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 105-111. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.012 http://www.tcsae.org