陳亮亮 祝長生 喬曉利 伍家駒



關鍵詞:表貼式永磁同步電機;碳纖維護套;解析解;強度分析;應力函數法
DOI:10.15938/j.emc.2019.06.000
中圖分類號文獻標志碼:A 文章編號:1007 -449X(2019)06 -0000 -00
Abstract:As for the problem of no analytical solution of rotor strength for high speed segmented surface mounted permanent magnet synchronous machine (SPMSM) with a carbon fiber sleeve, the analytical solution of rotor strength was proposed based on the plane stress model. The displacement method and stress potential method in polar coordinates were employed to deduce the analytical solution, and the influences of different densities and coefficients of thermal expansion of permanent magnets and pole fillers were taken into account. Then the effectiveness of the analytical solution was validated by finite element method. The effects of design parameters on rotor strength, such as rotational speed, thickness of carbon fiber sleeve and interference fit between the carbon fiber sleeve and the permanent magnet, were further investigated based on the analytical solution proposed. It is shown that the results calculated by the analytical solution and finite element method are in good agreement with each other. The analytical solution proposed can predict the stress distribution of the high speed segmented SPMSM′s rotor with a carbon fiber sleeve, considering the effects of difference in density and coefficient of thermal expansion between permanent magnets and pole fillers.
Keywords:surface mounted permanent magnet synchronous machine (SPMSM); carbon fiber sleeve; analytical solution; strength analysis; stress potential method
0 引 言
高速表貼式永磁同步電機(surfacemounted permanent magnet synchronous motor,SPMSM)具有結構簡單、可靠性強、效率高、功率密度高等優點,已得到了廣泛的應用[1-2]。稀土永磁材料因其高剩磁、高矯頑力及高磁能積等特點而被廣泛應用于永磁電機[3]。在高速SPMSM中永磁體既可加工成整體結構也可制作成分塊結構。在整體結構中,永磁體常加工成圓柱型或圓筒型;在分塊結構中永磁體常加工成瓦片型,磁極間采用非磁性材料填充,填充塊能保證轉子結構的整體性并起阻尼作用,同時也有助于永磁體的固定。整體永磁結構具有結構簡單,易于加工,機械強度高等優點,但永磁材料的利用率較低。分塊永磁體結構提高了永磁材料的利用率,還可以通過選取合適的極弧系數來優化電機氣隙磁場,其缺點是加工工藝較復雜,機械強度較低。
由于稀土永磁材料的抗壓強度較大而抗拉強度很小,容易被電機高速運行時產生的巨大離心力所破壞,因此需要采用非導磁保護套對永磁體進行保護。目前,非導磁保護套主要有高強度復合材料護套及非導磁金屬護套2類。常用的高強度復合材料有碳纖維和玻璃纖維,常用的非導磁金屬材料則有鈦合金及高強度合金鋼。與非導磁金屬護套相比,高強度復合材料護套具有強度高、質量輕、無高頻渦流損耗等優點,但復合材料是熱的不良導體,不利于永磁體的散熱[4-6]。在工程實際應用中,永磁體與保護套之間采用過盈配合,借助過盈配合產生的預壓力來抵消轉子高速運行時永磁體離心力產生的巨大拉應力,進而保護永磁體。為了選取合適的護套厚度及護套與永磁體間的過盈量,需要對轉子強度進行深入分析。
目前,針對高速SPMSM轉子的強度分析方法主要有有限元法和解析法兩類。與有限元法[7-10]相比,解析法的計算量小、效率高、且轉子強度與過盈量、護套厚度等參數之間的物理關系明確,有利于電機轉子強度的優化設計,缺點是復雜轉子結構的強度解析解難以得到。
國內外學者對高速SPMSM的轉子強度解析解已經開展了一些研究。文獻[11-16] 對非導磁金屬護套保護下的永磁轉子的強度解析解進行了研究。Borisavljevic等[11]和Chen等[12] 研究了非導磁金屬護套保護下圓柱型永磁體轉子的強度解析解。王繼強等[13]和張超等[14]分別從平面應力和平面應變的角度研究了非導磁金屬護套保護下圓筒型永磁體轉子的強度解析解。程文杰等[15]對圓柱型永磁體轉子和圓筒型永磁體轉子的強度解析解進行了比較分析。陳亮亮等[16]研究了未考慮轉子發熱時非導磁金屬護套分塊永磁體轉子的強度解析解。文獻[17-19]研究了碳纖維護套保護下的永磁轉子的強度解析解。Binder等人[17]提出了未考慮材料各向異性及轉子發熱影響的碳纖維護套圓柱型永磁體轉子的環向應力及接觸壓強的解析解。陳亮亮等[18]研究了考慮碳纖維材料各向異性及轉子發熱影響的碳纖維護套圓筒型永磁體轉子的強度解析解。Borisavljevic 等[19]分別研究了未考慮和考慮碳纖維護套各向異性特性時圓筒型永磁體轉子的強度解析解。張鳳閣等[20]比較分析了非導磁金屬護套和碳纖維護套保護下圓柱型永磁體轉子的強度解析解。目前所建立的碳纖維護套分塊永磁體轉子的強度解析解均沒有考慮永磁體和極間填充塊的密度及熱膨脹系數不同對轉子應力分布的影響。
目前,高速SPMSM轉子的強度解析解主要針對整體永磁體轉子,而對于碳纖維護套固定的分塊永磁體轉子的強度解析解的研究還較少。在碳纖維護套分塊永磁體轉子中,由于永磁體和填充塊的密度及熱膨脹系數不同,護套/轉子鐵心與永磁體和填充塊間的接觸壓力出現明顯的差異;同時碳纖維材料的各向異性特性也進一步增加了求解轉子強度解析解的難度。
針對高速SPMSM中碳纖維護套保護的分塊永磁體轉子結構,本文基于平面應力模型,綜合運用極坐標下的位移求解法及應力函數求解法,推導了考慮永磁體和極間填充塊密度及熱膨脹系數不同對轉子應力影響的碳纖維護套分塊永磁體轉子的強度解析解,并利用有限元方法對解析解進行了驗證。在轉子強度解析解的基礎上,研究了轉速、碳纖維護套厚度及過盈量等參數對轉子強度的影響,分析了碳纖維固定的高速分塊SPMSM轉子的強度變化規律。
1 轉子結構
本文研究的高速SPMSM的轉子主要由碳纖維護套、永磁體、非磁性填充塊和轉子鐵心4部分組成。其中,永磁體為分塊結構,呈瓦片狀并粘貼于轉子鐵心外表面,極間填充塊為非磁性材料。圖1為4極結構的碳纖維護套分塊永磁轉子,碳纖維護套的內外半徑分別為Ris及Ros;永磁體的內外半徑分別為Rim和Rom;極間填充塊的內外半徑分別為Ria和Roa,一般情況下填充塊的內外半徑與永磁體相同;轉子鐵心的半徑為Ror。
5 結 論
根據碳纖維護套分塊永磁轉子的強度解析解的理論推導、有限元驗證以及基于解析解的轉子強度分析討論,可以得出以下結論:
1)本文提出的針對碳纖維護套分塊永磁轉子的強度解析解能計算考慮轉速和轉子發熱影響時轉子各部件的應力分布,為此類電機轉子的優化設計提供了理論支持。
2)永磁體和填充塊的密度及熱膨脹系數不同對轉子的應力分布有較大的影響,在其影響下護套/轉子鐵心與永磁體和填充塊間的接觸壓力出現明顯的差異。為了減小護套/轉子鐵心與永磁體和填充塊的接觸壓力差異對轉子強度的影響,可考慮選擇密度及熱膨脹系數與永磁體較為接近的非磁性材料作為填充塊,比如鈦合金材料。
3)轉速和轉子溫度對碳纖維固定的高速分塊SPMSM轉子的應力分布有較大影響,因此,在設計過程中,需要分別校驗電機在靜態、冷態及熱態運行時的轉子應力分布。
參 考 文 獻:
[1] ALBERTO T, SILVIO V, ALESSANDRO V. Electrical machines for highspeed applications: design considerations and tradeoffs [J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3022.
[2] 趙祥,范瑜,夏靜,等. 一種減小永磁電機轉子損耗的轉子結構[J]. 電機與控制學報,2019, 23(2):62.
ZHAO Xiang, FAN Yu, XIA Jing, et al. Rotor structure to reduce rotor losses of permanent magnet electric machines[J].Electric Machines and Control, 2019, 23(2): 62.
[3] 鄭大偉,朱明剛,鄭立允,等. 稀土永磁材料在永磁電機中的應用[J]. 微特電機,2015,43(4):81.
ZHENG Dawei, ZHU Minggang, ZHENG Liyun, et al.Application of rare earth permanent magnetic materials for permanent magnet machines[J]. Small and Special Electrical Machines, 2015, 43(4):81.
[4] KOLONDZOVSKI Z, ARKKIO A, LARJOLA J, et al. Power limits of highspeed permanentmagnet electrical machines for compressor applications [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 73.
[5] KOLONDZOVSKI Z, BELAHCEN A, ARKKIO A. Comparative thermal analysis of different rotor types for a highspeed permanentmagnet electrical machine [J]. IET Electric Power Applications, 2009, 3(4): 279.
[6] 張超,朱建國,佟文明,等.高速內置式永磁轉子強度分析與設計[J]. 電機與控制學報,2017,21(12):43.
ZHANG Chao, ZHU Jianguo, TONG Wenming, et al. Strength analysis and design of high speed interior permanent magnet rotor[J]. Electric Machines and Control, 2017,21(12): 43.
[7] HONG D, WOO B, KOO D. Rotor dynamics of 120000 r/min 15 kW ultra high speed motor [J]. IEEE Transactions on Magnetics, 2009, 45(6): 2831.
[8] BAILEY C, SABAN D M, GUEDESPINTO P. Design of highspeed directconnected permanentmagnet motors and generators forthe petrochemical industry [J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1159.
[9] SOONG W L, KLIMAN G B, JOHNSON R N, et al. Novel highspeed induction motor for a commercial centrifugal compressor [J]. IEEE Transactions on Industry Applications, 2000, 36(3): 706.
[10] ZHANG F, DU G, WANG T. Rotor retaining sleeve design for a 1.12-MW highspeed PM machine [J]. IEEE Transactions on Industry Applications, 2015, 51(5): 3675.
[11] BORISAVLJEVIC A, POLINDER H, FERREIRA J A. On the speed limits of permanentmagnet machines[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 220.
[12] CHEN L, ZHU C. Rotor strength analysis for high speed permanent magnet machines [C]// Proceedings of the International Conference on Electrical Machines and Systems (ICEMS), October 22-25, 2014, Hangzhou, China. 2014: 65-69.
[13] 王繼強,王鳳翔,鮑文博, 等. 高速永磁電機轉子設計與強度分析[J]. 中國電機工程學報, 2005, 25(15): 140.
WANG Jiqiang, WANG Fengxiang, BAO Wenbo, et al. Rotor design and strength analysis of high speed permanent magnet machine [J]. Proceedings of the CSEE, 2005, 25(15): 140.
[14] 張超,朱建國,韓雪巖. 高速表貼式永磁電機轉子強度分析[J]. 中國電機工程學報, 2016, 36(17): 4719.
ZHANG Chao, ZHU Jianguo, HAN Xueyan. Rotor strength analysis of highspeed surface mounted permanent magnet motors [J]. Proceedings of the CSEE, 2016, 36(17): 4719.
[15] 程文杰,耿海鵬,馮圣, 等. 高速永磁同步電機轉子強度分析[J]. 中國電機工程學報, 2012, 32(27): 87.
CHENG Wenjie, GENG Haipeng, FENG Sheng,et al. Rotor strength analysis of highspeed permanent magnet synchronous motors [J]. Proceedings of the CSEE, 2012, 32(27): 87.
[16] 陳亮亮,祝長生,蔣科堅. 含極間填充塊的高速表貼式永磁同步電機轉子強度分析[J]. 浙江大學學報(工學版), 2015, 49(09): 1738.
CHEN Liangliang, ZHU Changsheng, JIANG Kejian. Rotor strength analysis for highspeed surfacemounted permanent magnet synchronous motor with filled blocks between magnetic poles [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(09): 1738.
[17] BINDER A, SCHNEIDER T, KLOHR M. Fixation of buried and surfacemounted magnets in highspeed permanentmagnet synchronous machines [J]. IEEE Transactions on Industrial Electronics, 2006, 42(4): 1031.
[18] 陳亮亮,祝長生,王萌. 碳纖維護套高速永磁電機熱態轉子強度[J]. 浙江大學學報(工學版), 2015, 49(01): 162.
CHEN Liangliang, ZHU Changsheng, WANG Meng.Strength analysis for thermal carbonfiber retaining rotor in highspeed permanent magnet machine [J]. Journal of Zhejiang University (Engineering Science), 2015, 49(01): 162.
[19] BORISAVLJEVIC A, POLINDER H, FERREIRA J A. Enclosure design for a highspeed permanent magnet rotor [C]// Proceedings of the 5th IET International Conference on Power Electronics, Machines and Drives, April 19-21, 2010, Brighton, UK. 2010: 1-6.
[20] 張鳳閣,杜光輝,王天煜. 高速永磁電機轉子不同保護措施的強度分析[J]. 中國電機工程學報, 2013, 33(S): 195.
ZHANG Fengge, DU Guanghui, WANG Tianyu. Rotor strength analysis of highspeed permanent magnet under different protection measures [J]. Proceedings of the CSEE, 2013, 33(Supplement): 195.
[21] CALME O, BIGAUD D, JONES S, et al. Analytical evaluation of stress state in braided orthotropic composite cylinders under lateral compression [J]. Composites Science and Technology, 2006, 66(15): 3040.
(編輯:劉琳琳)